Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model

  • Received: 01 October 2013 Revised: 01 June 2014
  • Primary: 35L65, 35Q91; Secondary: 91B74.

  • The Aw-Rascle-Zhang (ARZ) model can be interpreted as a generalization of the Lighthill-Whitham-Richards (LWR) model, possessing a family of fundamental diagram curves, each of which represents a class of drivers with a different empty road velocity. A weakness of this approach is that different drivers possess vastly different densities at which traffic flow stagnates. This drawback can be overcome by modifying the pressure relation in the ARZ model, leading to the generalized Aw-Rascle-Zhang (GARZ) model. We present an approach to determine the parameter functions of the GARZ model from fundamental diagram measurement data. The predictive accuracy of the resulting data-fitted GARZ model is compared to other traffic models by means of a three-detector test setup, employing two types of data: vehicle trajectory data, and sensor data. This work also considers the extension of the ARZ and the GARZ models to models with a relaxation term, and conducts an investigation of the optimal relaxation time.

    Citation: Shimao Fan, Michael Herty, Benjamin Seibold. Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model[J]. Networks and Heterogeneous Media, 2014, 9(2): 239-268. doi: 10.3934/nhm.2014.9.239

    Related Papers:

    [1] Shimao Fan, Michael Herty, Benjamin Seibold . Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model. Networks and Heterogeneous Media, 2014, 9(2): 239-268. doi: 10.3934/nhm.2014.9.239
    [2] Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales . Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks and Heterogeneous Media, 2013, 8(3): 745-772. doi: 10.3934/nhm.2013.8.745
    [3] Mauro Garavello . A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5(3): 565-581. doi: 10.3934/nhm.2010.5.565
    [4] Michael Herty, Lorenzo Pareschi, Mohammed Seaïd . Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2(3): 481-496. doi: 10.3934/nhm.2007.2.481
    [5] Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini . Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 2016, 11(1): 29-47. doi: 10.3934/nhm.2016.11.29
    [6] Michael Burger, Simone Göttlich, Thomas Jung . Derivation of second order traffic flow models with time delays. Networks and Heterogeneous Media, 2019, 14(2): 265-288. doi: 10.3934/nhm.2019011
    [7] Bertrand Haut, Georges Bastin . A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2(2): 227-253. doi: 10.3934/nhm.2007.2.227
    [8] Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783
    [9] Oliver Kolb, Simone Göttlich, Paola Goatin . Capacity drop and traffic control for a second order traffic model. Networks and Heterogeneous Media, 2017, 12(4): 663-681. doi: 10.3934/nhm.2017027
    [10] Michael Herty, S. Moutari, M. Rascle . Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1(2): 275-294. doi: 10.3934/nhm.2006.1.275
  • The Aw-Rascle-Zhang (ARZ) model can be interpreted as a generalization of the Lighthill-Whitham-Richards (LWR) model, possessing a family of fundamental diagram curves, each of which represents a class of drivers with a different empty road velocity. A weakness of this approach is that different drivers possess vastly different densities at which traffic flow stagnates. This drawback can be overcome by modifying the pressure relation in the ARZ model, leading to the generalized Aw-Rascle-Zhang (GARZ) model. We present an approach to determine the parameter functions of the GARZ model from fundamental diagram measurement data. The predictive accuracy of the resulting data-fitted GARZ model is compared to other traffic models by means of a three-detector test setup, employing two types of data: vehicle trajectory data, and sensor data. This work also considers the extension of the ARZ and the GARZ models to models with a relaxation term, and conducts an investigation of the optimal relaxation time.


    [1] T. Alperovich and A. Sopasakis, Modeling highway traffic with stochastic dynamics, J. Stat. Phys, 133 (2008), 1083-1105. doi: 10.1007/s10955-008-9652-6
    [2] S. Amin, et al., Mobile century - Using GPS mobile phones as traffic sensors: A field experiment, in 15th World Congress on Intelligent Transportation Systems, New York, Nov., 2008.
    [3] A. Aw and M. Rascle, Resurrection of second order models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938. doi: 10.1137/S0036139997332099
    [4] M. Bando, Hesebem K., A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042.
    [5] A. M. Bayen and C. G. Claudel, Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory, IEEE Trans. Automat. Contr., 55 (2010), 1142-1157. doi: 10.1109/TAC.2010.2041976
    [6] A. M. Bayen and C. G. Claudel, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, SIAM J. Control Optim., 49 (2011), 383-402. doi: 10.1137/090778754
    [7] N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463. doi: 10.1137/090746677
    [8] F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Arch. Ration. Mech. Anal., 187 (2008), 185-220. doi: 10.1007/s00205-007-0061-9
    [9] S. Blandin, G. Bretti, A. Cutolo and B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, Appl. Math. Comput., 210 (2009), 441-454. doi: 10.1016/j.amc.2009.01.057
    [10] S. Blandin, A. Coque and A. Bayen, On sequential data assimilation for scalar macroscopic traffic flow models, Physica D, (2012), 1421-1440.
    [11] S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127. doi: 10.1137/090754467
    [12] R. Borsche, M. Kimathi and A. Klar, A class of multiphase traffic theories for microscopic, kinetic and continuum traffic models, Comp. Math. Appl., 64 (2012), 2939-2953. doi: 10.1016/j.camwa.2012.08.013
    [13] C. Chalons and P. Goatin, Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Commun. Math. Sci., 5 (2007), 533-551. doi: 10.4310/CMS.2007.v5.n3.a2
    [14] G. Q. Chen, C. D. Levermore and T. P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787-830. doi: 10.1002/cpa.3160470602
    [15] R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2003), 708-721. doi: 10.1137/S0036139901393184
    [16] R. M. Colombo and P. Goatin, Traffic flow models with phase transitions, Flow Turbulence Combust., 76 (2006), 383-390.
    [17] R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666. doi: 10.1137/090752468
    [18] R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen, 100 (1928), 32-74. doi: 10.1007/BF01448839
    [19] C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transp. Res. B, 28 (1994), 269-287. doi: 10.1016/0191-2615(94)90002-7
    [20] C. F. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transp. Res. B, 29 (1995), 277-286. doi: 10.1016/0191-2615(95)00007-Z
    [21] C. F. Daganzo, Fundamentals of Transportation and Traffic Operations, Emerald Group Pub Ltd, 1997.
    [22] C. F. Daganzo, In traffic flow, cellular automata = kinematic waves, Transp. Res. B, 40 (2006), 396-403. doi: 10.1016/j.trb.2005.05.004
    [23] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998.
    [24] S. Fan, Data-fitted Generic Second Order Macroscopic Traffic Flow Models, Dissertation, Temple University, 2013.
    [25] S. Fan, B. Piccoli and B. Seibold, The Collapsed Generalized Aw-Rascle-Zhang Model of Traffic Flow, in preparation, 2014.
    [26] S. Fan and B. Seibold, A comparison of data-fitted first order traffic models and their second order generalizations via trajectory and sensor data, in 93rd Annual Meeting of Transportation Research Board, paper number 13-4853, Washington DC, 2013.
    [27] S. Fan and B. Seibold, Effect of the choice of stagnation density in data-fitted first- and second-order traffic models, arXiv:1308.0393, 2013.
    [28] Website, http://www.fhwa.dot.gov/publications/research/operations/06137.
    [29] Website, http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
    [30] M. R. Flynn, A. R. Kasimov, J.-C. Nave, R. R. Rosales and B. Seibold, Self-sustained nonlinear waves in traffic flow, Phys. Rev. E, 79 (2009), 056113, 13 pp. doi: 10.1103/PhysRevE.79.056113
    [31] M. Fukui and Y. Ishibashi, Traffic flow in 1D cellular automaton model including cars moving with high speed, J. Phys. Soc. Japan, 65 (1996), 1868-1870. doi: 10.1143/JPSJ.65.1868
    [32] M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences, 2006.
    [33] P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modeling, 44 (2006), 287-303. doi: 10.1016/j.mcm.2006.01.016
    [34] S. K. Godunov, A difference scheme for the numerical computation of a discontinuous solution of the hydrodynamic equations, Math. Sbornik, 47 (1959), 271-306.
    [35] J. M. Greenberg, Extension and amplification of the Aw-Rascle model, SIAM J. Appl. Math., 62 (2001), 729-745. doi: 10.1137/S0036139900378657
    [36] J. M. Greenberg, Congestion redux, SIAM J. Appl. Math., 64 (2004), 1175-1185. doi: 10.1137/S0036139903431737
    [37] B. D. Greenshields, A study of traffic capacity, Proceedings of the Highway Research Record, 14 (1935), 448-477.
    [38] A. Harten, P. D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25 (1983), 35-61. doi: 10.1137/1025002
    [39] D. Helbing, Improved fluid-dynamic model for vehicular traffic, Phys. Rev. E, 51 (1995), 3164-3169. doi: 10.1103/PhysRevE.51.3164
    [40] D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics, 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067
    [41] R. Herman and I. Prigogine, Kinetic Theory of Vehicular Traffic, Elsevier, New York, 1971.
    [42] M. Herty and R. Illner, Analytical and numerical investigations of refined macroscopic traffic flow models, Kinet. Relat. Models, 3 (2010), 311-333. doi: 10.3934/krm.2010.3.311
    [43] M. Herty and L. Pareschi, Fokker-Planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165-179. doi: 10.3934/krm.2010.3.165
    [44] R. Illner, A. Klar and T. Materne, Vlasov-Fokker-Planck models for multilane traffic flow, Commun. Math. Sci., 1 (2003), 1-12. doi: 10.4310/CMS.2003.v1.n1.a1
    [45] R. J. Karunamuni and T. Alberts, A generalized reflection method of boundary correction in kernel density estimation, Canad. J. Statist., 33 (2005), 497-509. doi: 10.1002/cjs.5550330403
    [46] A. R. Kasimov, R. R. Rosales, B. Seibold and M. R. Flynn, Existence of jamitons in hyperbolic relaxation systems with application to traffic flow, in preparation, 2014.
    [47] B. S. Kerner and P. Konhäuser, Cluster effect in initially homogeneous traffic flow, Phys. Rev. E, 48 (1993), R2335-R2338. doi: 10.1103/PhysRevE.48.R2335
    [48] B. S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Phys. Rev. E, 50 (1994), 54-83. doi: 10.1103/PhysRevE.50.54
    [49] A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math., 60 (2000), 1749-1766. doi: 10.1137/S0036139999356181
    [50] J.-P. Lebacque, Les modeles macroscopiques du traffic, Annales des Ponts., 67 (1993), 24-45.
    [51] J.-P. Lebacque, S. Mammar and H. Haj-Salem, Generic second order traffic flow modelling, in Transportation and Traffic Theory (eds. R. E. Allsop, M. G. H. Bell and B. G. Heydecker), Proc. of the 17th ISTTT, Elsevier, 2007, 755-776.
    [52] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
    [53] T. P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys., 108 (1987), 153-175. doi: 10.1007/BF01210707
    [54] Website, http://data.dot.state.mn.us/datatools.
    [55] http://traffic.berkeley.edu.
    [56] K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. I France, 2 (1992), 2221-2229.
    [57] P. Nelson and A. Sopasakis, The Chapman-Enskog expansion: A novel approach to hierarchical extension of Lighthill-Whitham models, in Proceedings of the 14th International Symposium on Transportation and Trafic Theory (ed. A. Ceder), Jerusalem, 1999, 51-79.
    [58] G. F. Newell, Nonlinear effects in the dynamics of car following, Operations Research, 9 (1961), 209-229. doi: 10.1287/opre.9.2.209
    [59] G. F. Newell, A simplified theory of kinematic waves in highway traffic II: Queueing at freeway bottlenecks, Transp. Res. B, 27 (1993), 289-303. doi: 10.1016/0191-2615(93)90039-D
    [60] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist., 33 (1962), 1065-1076. doi: 10.1214/aoms/1177704472
    [61] H. J. Payne, Models of freeway traffic and control, Proc. Simulation Council, 1 (1971), 51-61.
    [62] H. J. Payne, FREEFLO: A macroscopic simulation model of freeway traffic, Transp. Res. Rec., 722 (1979), 68-77.
    [63] W. F. Phillips, A kinetic model for traffic flow with continuum implications, Transportation Planning and Technology, 5 (1979), 131-138. doi: 10.1080/03081067908717157
    [64] L. A. Pipes, An operational analysis of traffic dynamics, Journal of Applied Physics, 24 (1953), 274-281. doi: 10.1063/1.1721265
    [65] M. Rascle, An improved macroscopic model of traffic flow: Derivation and links with the Lightill-Whitham model, Math. Comput. Modelling, 35 (2002), 581-590. doi: 10.1016/S0895-7177(02)80022-X
    [66] P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
    [67] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Ann. Math. Statist., 27 (1956), 832-837. doi: 10.1214/aoms/1177728190
    [68] S. Sakai, K. Nishinari and S. IIda, A new stochastic cellular automaton model on traffic flow and its jamming phase transition, J. Phys. A: Math. Gen., 39 (2006), 15327-15339. doi: 10.1088/0305-4470/39/50/002
    [69] B. Seibold, M. R. Flynn, A. R. Kasimov and R. R. Rosales, Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models, Netw. Heterog. Media, 8 (2013), 745-772. doi: 10.3934/nhm.2013.8.745
    [70] F. Siebel and W. Mauser, On the fundamental diagram of traffic flow, SIAM J. Appl. Math., 66 (2006), 1150-1162. doi: 10.1137/050627113
    [71] B. Temple, Systems of conservation laws with coinciding shock and rarefaction curves, Contemp. Math., 17 (1983), 143-151.
    [72] R. Underwood, Speed, Volume, and Density Relationships: Quality and Theory of Traffic Flow, Technical Report, Yale Bureau of Highway Traffic, 1961.
    [73] G. B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974.
    [74] D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. Bayen, A traffic model for velocity data assimilation, Appl. Math. Res. Express., 1 (2010), 1-35.
    [75] H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res. B, 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3
  • This article has been cited by:

    1. Paola Goatin, Macroscopic traffic flow modelling: from kinematic waves to autonomous vehicles, 2023, 14, 2038-0909, 1, 10.2478/caim-2023-0001
    2. Ren Wang, Yanning Li, Daniel B. Work, Comparing traffic state estimators for mixed human and automated traffic flows, 2017, 78, 0968090X, 95, 10.1016/j.trc.2017.02.011
    3. Mauro Garavello, Francesca Marcellini, Global Weak Solutions to the Cauchy Problem for a Two-Phase Model at a Node, 2020, 52, 0036-1410, 1567, 10.1137/19M1265041
    4. Ying Shang, Xingang Li, Bin Jia, Zhenzhen Yang, Zheng Liu, Freeway Traffic State Estimation Method Based on Multisource Data, 2022, 148, 2473-2907, 10.1061/JTEPBS.0000657
    5. Lina Guan, Liguo Zhang, Christophe Prieur, Controller design for heterogeneous traffic with bottleneck and disturbances, 2023, 148, 00051098, 110790, 10.1016/j.automatica.2022.110790
    6. Pierre-Olivier Lamare, Florent Di Meglio, 2016, Adding an integrator to backstepping: Output disturbances rejection for linear hyperbolic systems, 978-1-4673-8682-1, 3422, 10.1109/ACC.2016.7525443
    7. Stephan Gerster, Michael Herty, Elisa Iacomini, Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation, 2021, 18, 1551-0018, 4372, 10.3934/mbe.2021220
    8. Maria Delle Monache, Karen Chi, Yong Chen, Paola Goatin, Ke Han, Jing-mei Qiu, Benedetto Piccoli, A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data, 2021, 10, 2075-1680, 17, 10.3390/axioms10010017
    9. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 5, 978-3-030-93014-1, 111, 10.1007/978-3-030-93015-8_5
    10. Toru Seo, Alexandre M. Bayen, 2017, Traffic state estimation method with efficient data fusion based on the Aw-Rascle-Zhang model, 978-1-5386-1526-3, 1, 10.1109/ITSC.2017.8317597
    11. Giuseppe Maria Coclite, Nicola De Nitti, Mauro Garavello, Francesca Marcellini, Vanishing viscosity for a $ 2\times 2 $ system modeling congested vehicular traffic, 2021, 16, 1556-181X, 413, 10.3934/nhm.2021011
    12. Tai-Yu Ma, Yoann Pigné, Bayesian Dynamic Linear Model with Adaptive Parameter Estimation for Short-Term Travel Speed Prediction, 2019, 2019, 0197-6729, 1, 10.1155/2019/5314520
    13. Nikolaos Bekiaris-Liberis, Argiris I. Delis, PDE-Based Feedback Control of Freeway Traffic Flow via Time-Gap Manipulation of ACC-Equipped Vehicles, 2021, 29, 1063-6536, 461, 10.1109/TCST.2020.2974148
    14. Huan Yu, Alexandre M. Bayen, Miroslav Krstic, Boundary Observer for Congested Freeway Traffic State Estimation via Aw-Rascle-Zhang model, 2019, 52, 24058963, 183, 10.1016/j.ifacol.2019.08.033
    15. L. Forestier--Coste, S. Göttlich, M. Herty, Data-Fitted Second-Order Macroscopic Production Models, 2015, 75, 0036-1399, 999, 10.1137/140989832
    16. Fernando Betancourt, Raimund Bürger, Christophe Chalons, Stefan Diehl, Sebastian Farås, A random sampling method for a family of Temple-class systems of conservation laws, 2018, 138, 0029-599X, 37, 10.1007/s00211-017-0900-z
    17. Felisia A. Chiarello, Jan Friedrich, Paola Goatin, Simone Göttlich, Micro-Macro Limit of a Nonlocal Generalized Aw-Rascle Type Model, 2020, 80, 0036-1399, 1841, 10.1137/20M1313337
    18. Michael Herty, Andrea Tosin, Giuseppe Visconti, Mattia Zanella, Hybrid Stochastic Kinetic Description of Two-Dimensional Traffic Dynamics, 2018, 78, 0036-1399, 2737, 10.1137/17M1155909
    19. Maya Briani, Emiliano Cristiani, Paolo Ranut, Macroscopic and Multi-Scale Models for Multi-Class Vehicular Dynamics with Uneven Space Occupancy: A Case Study, 2021, 10, 2075-1680, 102, 10.3390/axioms10020102
    20. Francois Belletti, Mandy Huo, Xavier Litrico, Alexandre M. Bayen, Prediction of traffic convective instability with spectral analysis of the Aw–Rascle–Zhang model, 2015, 379, 03759601, 2319, 10.1016/j.physleta.2015.05.019
    21. Alexander Keimer, Alexandre Bayen, Routing on Traffic Networks Incorporating Past Memory up to Real-Time Information on the Network State, 2020, 3, 2573-5144, 151, 10.1146/annurev-control-091319-125444
    22. Pierre-Olivier Lamare, Nikolaos Bekiaris-Liberis, Alexandre M. Bayen, 2015, Control of 2 × 2 linear hyperbolic systems: Backstepping-based trajectory generation and PI-based tracking, 978-3-9524-2693-7, 497, 10.1109/ECC.2015.7330592
    23. Stéphane Mollier, Maria Laura Delle Monache, Carlos Canudas-de-Wit, Benjamin Seibold, Two-dimensional macroscopic model for large scale traffic networks, 2019, 122, 01912615, 309, 10.1016/j.trb.2019.02.016
    24. Michael Herty, Elisa Iacomini, Uncertainty quantification in hierarchical vehicular flow models, 2022, 15, 1937-5093, 239, 10.3934/krm.2022006
    25. Guillaume Costeseque, Jean-Patrick Lebacque, A variational formulation for higher order macroscopic traffic flow models: Numerical investigation, 2014, 70, 01912615, 112, 10.1016/j.trb.2014.08.012
    26. Shimao Fan, Daniel B. Work, A Heterogeneous Multiclass Traffic Flow Model with Creeping, 2015, 75, 0036-1399, 813, 10.1137/140977977
    27. Michael Herty, Salissou Moutari, Giuseppe Visconti, Macroscopic Modeling of Multilane Motorways Using a Two-Dimensional Second-Order Model of Traffic Flow, 2018, 78, 0036-1399, 2252, 10.1137/17M1151821
    28. Nour Khoudari, Benjamin Seibold, 2023, Chapter 38, 2730-633X, 10.1007/16618_2022_38
    29. Rongye Shi, Zhaobin Mo, Kuang Huang, Xuan Di, Qiang Du, A Physics-Informed Deep Learning Paradigm for Traffic State and Fundamental Diagram Estimation, 2022, 23, 1524-9050, 11688, 10.1109/TITS.2021.3106259
    30. Wenjun Li, Si Chen, Xiaoquan Wang, Chaoying Yin, Zhaoguo Huang, A hybrid approach for short-term traffic flow forecasting based on similarity identification, 2021, 35, 0217-9849, 2150212, 10.1142/S0217984921502122
    31. Caterina Balzotti, Elisa Iacomini, 2021, Chapter 4, 978-3-030-66559-3, 63, 10.1007/978-3-030-66560-9_4
    32. Felisia Angela Chiarello, Benedetto Piccoli, Andrea Tosin, Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles, 2021, 19, 1540-3459, 589, 10.1137/20M1360128
    33. Caterina Balzotti, Maya Briani, Barbara De Filippo, Benedetto Piccoli, A computational modular approach to evaluate $ {\mathrm{NO_{x}}} $ emissions and ozone production due to vehicular traffic, 2022, 27, 1531-3492, 3455, 10.3934/dcdsb.2021192
    34. Haiyang Yu, Rui Jiang, Zhengbing He, Zuduo Zheng, Li Li, Runkun Liu, Xiqun Chen, Automated vehicle-involved traffic flow studies: A survey of assumptions, models, speculations, and perspectives, 2021, 127, 0968090X, 103101, 10.1016/j.trc.2021.103101
    35. Pierre-Olivier Lamare, Nikolaos Bekiaris-Liberis, Control of 2×2 linear hyperbolic systems: Backstepping-based trajectory generation and PI-based tracking, 2015, 86, 01676911, 24, 10.1016/j.sysconle.2015.09.009
    36. Alina Chertock, Michael Herty, Şeyma Nur Özcan, 2018, Chapter 28, 978-3-319-91544-9, 345, 10.1007/978-3-319-91545-6_28
    37. Toru Seo, Alexandre M. Bayen, Takahiko Kusakabe, Yasuo Asakura, Traffic state estimation on highway: A comprehensive survey, 2017, 43, 13675788, 128, 10.1016/j.arcontrol.2017.03.005
    38. Rabie Ramadan, Rodolfo Ruben Rosales, Benjamin Seibold, 2021, Chapter 3, 978-3-030-66559-3, 35, 10.1007/978-3-030-66560-9_3
    39. Jonathan Krook, Mladen Cicic, Karl Henrik Johansson, 2022, Learning Micro-Macro Models for Traffic Control Using Microscopic Data, 978-3-9071-4407-7, 377, 10.23919/ECC55457.2022.9838136
    40. Antoine Tordeux, Guillaume Costeseque, Michael Herty, Armin Seyfried, From Traffic and Pedestrian Follow-the-Leader Models with Reaction Time to First Order Convection-Diffusion Flow Models, 2018, 78, 0036-1399, 63, 10.1137/16M110695X
    41. Ranju Mohan, Gitakrishnan Ramadurai, Multi-class traffic flow model based on three dimensional flow–concentration surface, 2021, 577, 03784371, 126060, 10.1016/j.physa.2021.126060
    42. Oliver Kolb, Simone Göttlich, Paola Goatin, Capacity drop and traffic control for a second order traffic model, 2017, 12, 1556-181X, 663, 10.3934/nhm.2017027
    43. Francois Belletti, Mandy Huo, Xavier Litrico, Alexandre M. Bayen, 2016, Characterization of the convective instability of the Aw-Rascle-Zhang model via spectral analysis, 978-1-4673-8682-1, 6127, 10.1109/ACC.2016.7526632
    44. Nikolaos Bekiaris-Liberis, Argiris Delis, Feedback Control of Freeway Traffic Flow via Time-Gap Manipulation of ACC-Equipped Vehicles: A PDE-Based Approach, 2019, 52, 24058963, 1, 10.1016/j.ifacol.2019.08.139
    45. Caterina Balzotti, Maya Briani, Benedetto Piccoli, Emissions minimization on road networks via Generic Second Order Models, 2023, 18, 1556-1801, 694, 10.3934/nhm.2023030
    46. Yibing Wang, Xianghua Yu, Jinqiu Guo, Ioannis Papamichail, Markos Papageorgiou, Lihui Zhang, Simon Hu, Yongfu Li, Jian Sun, Macroscopic traffic flow modelling of large-scale freeway networks with field data verification: State-of-the-art review, benchmarking framework, and case studies using METANET, 2022, 145, 0968090X, 103904, 10.1016/j.trc.2022.103904
    47. Yibing Wang, Mingming Zhao, Xianghua Yu, Yonghui Hu, Pengjun Zheng, Wei Hua, Lihui Zhang, Simon Hu, Jingqiu Guo, Real-time joint traffic state and model parameter estimation on freeways with fixed sensors and connected vehicles: State-of-the-art overview, methods, and case studies, 2022, 134, 0968090X, 103444, 10.1016/j.trc.2021.103444
    48. Alexandra Würth, Mickaël Binois, Paola Goatin, Simone Göttlich, Data-driven uncertainty quantification in macroscopic traffic flow models, 2022, 48, 1019-7168, 10.1007/s10444-022-09989-5
    49. Nikolaos Bekiaris-Liberis, On 1-D PDE-Based Cardiovascular Flow Bottleneck Modeling and Analysis: A Vehicular Traffic Flow-Inspired Approach, 2022, 55, 24058963, 544, 10.1016/j.ifacol.2022.07.500
    50. Paola Goatin, Alexandra Würth, The initial boundary value problem for second order traffic flow models with vacuum: Existence of entropy weak solutions, 2023, 233, 0362546X, 113295, 10.1016/j.na.2023.113295
    51. Nikolaos Bekiaris-Liberis, On 1-D PDE-Based Cardiovascular Flow Bottleneck Modeling and Analysis: A Vehicular Traffic Flow-Inspired Approach, 2023, 68, 0018-9286, 3728, 10.1109/TAC.2022.3195148
    52. Elisa Iacomini, 2023, Chapter 6, 978-3-031-29874-5, 121, 10.1007/978-3-031-29875-2_6
    53. Xuan Di, Rongye Shi, Zhaobin Mo, Yongjie Fu, Physics-Informed Deep Learning for Traffic State Estimation: A Survey and the Outlook, 2023, 16, 1999-4893, 305, 10.3390/a16060305
    54. Brian Block, Xiaoling Chen, Stephanie Stockar, 2023, Stabilization of a POD/Galerkin Reduced Order Payne-Whitham Traffic Model * , 979-8-3503-2806-6, 4443, 10.23919/ACC55779.2023.10155885
    55. Daniel Inzunza, Paola Goatin, 2023, A PINN approach for traffic state estimation and model calibration based on loop detector flow data, 978-1-6654-5530-5, 1, 10.1109/MT-ITS56129.2023.10241621
    56. Shurong Mo, Nailong Wu, Jie Qi, Anqi Pan, Zhiguang Feng, Huaicheng Yan, Yueying Wang, Proximal policy optimization learning based control of congested freeway traffic, 2023, 0143-2087, 10.1002/oca.3068
    57. Jan Friedrich, Simone Göttlich, Michael Herty, Lyapunov Stabilization for Nonlocal Traffic Flow Models, 2023, 61, 0363-0129, 2849, 10.1137/22M152181X
    58. Balakrishna Chhatria, T. Raja Sekhar, Dia Zeidan, Limiting behaviour of the Riemann solution to a macroscopic production model with van der Waals equation of state, 2024, 465, 00963003, 128404, 10.1016/j.amc.2023.128404
    59. Sergey V. Matrosov, Nikolay B. Filimonov, 2024, Chapter 16, 978-3-031-51056-4, 210, 10.1007/978-3-031-51057-1_16
    60. Michael Herty, Niklas Kolbe, Data‐driven models for traffic flow at junctions, 2024, 0170-4214, 10.1002/mma.10053
    61. Alexandra Würth, Paola Goatin, Luis-Miguel Villada, 2024, Chapter 18, 978-3-031-55263-2, 209, 10.1007/978-3-031-55264-9_18
    62. Paola Goatin, Dissipation of Stop-and-Go Waves in Traffic Flows Using Controlled Vehicles: A Macroscopic Approach, 2024, 8, 2475-1456, 628, 10.1109/LCSYS.2024.3401092
    63. John P. Wakefield, Smadar Karni, 2024, Chapter 40, 978-3-031-55263-2, 467, 10.1007/978-3-031-55264-9_40
    64. Liguo Zhang, Haoran Luan, Jingyuan Zhan, Stabilization of Stop-and-Go Waves in Vehicle Traffic Flow, 2024, 69, 0018-9286, 4583, 10.1109/TAC.2023.3337703
    65. Zhaobin Mo, Xu Chen, Xuan Di, Elisa Iacomini, Chiara Segala, Michael Herty, Mathieu Lauriere, A Game-Theoretic Framework for Generic Second-Order Traffic Flow Models Using Mean Field Games and Adversarial Inverse Reinforcement Learning, 2024, 0041-1655, 10.1287/trsc.2024.0532
    66. Paola Goatin, Alessandra Rizzo, Instabilities in generic second-order traffic models with relaxation, 2024, 75, 0044-2275, 10.1007/s00033-024-02307-7
    67. Niklas Kolbe, Moritz Berghaus, Eszter Kalló, Michael Herty, Markus Oeser, A Microscopic On-Ramp Model Based on Macroscopic Network Flows, 2024, 14, 2076-3417, 9111, 10.3390/app14199111
    68. Wei Chen, Shumo Cui, Kailiang Wu, Tao Xiong, Bound-Preserving OEDG Schemes for Aw–Rascle–Zhang Traffic Models on Networks, 2024, 00219991, 113507, 10.1016/j.jcp.2024.113507
    69. Tianxiang Fan, S.C. Wong, Zhiwen Zhang, Jie Du, Stochastic Lighthill-Whitham-Richards traffic flow model for nonlinear speed-density relationships, 2024, 12, 2168-0566, 10.1080/21680566.2024.2419402
    70. Brian Block, Stephanie Stockar, A Physics-Inspired Distributed Energy Equation for Macroscopic Traffic Flow Models, 2024, 25, 1524-9050, 16666, 10.1109/TITS.2024.3416735
    71. Yen-Lin Huang, Yao Cheng, Gang-Len Chang, I-METANET: Macroscopic Freeway Model for Real-Time Incident Impact Estimation and Traffic Management, 2024, 0361-1981, 10.1177/03611981241297639
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4646) PDF downloads(235) Cited by(71)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog