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Abstract. The Aw-Rascle-Zhang (ARZ) model can be interpreted as a gener-
alization of the Lighthill-Whitham-Richards (LWR) model, possessing a fam-

ily of fundamental diagram curves, each of which represents a class of drivers
with a different empty road velocity. A weakness of this approach is that

different drivers possess vastly different densities at which traffic flow stag-

nates. This drawback can be overcome by modifying the pressure relation in
the ARZ model, leading to the generalized Aw-Rascle-Zhang (GARZ) model.

We present an approach to determine the parameter functions of the GARZ

model from fundamental diagram measurement data. The predictive accuracy
of the resulting data-fitted GARZ model is compared to other traffic models

by means of a three-detector test setup, employing two types of data: vehicle

trajectory data, and sensor data. This work also considers the extension of the
ARZ and the GARZ models to models with a relaxation term, and conducts

an investigation of the optimal relaxation time.

1. Introduction. The mathematical modeling of vehicular traffic flow knows a
variety of types of descriptions (see [40, 7] for review papers): microscopic (e.g.,
[64, 58, 4, 39]), which model the individual vehicles and their interactions by ODE;
cellular (e.g., [56, 31, 22, 68, 1]), which divide the road into cells and prescribe sto-
chastic rules how vehicles advance through cells; and continuum. This latter class
divides into mesoscopic/gas-kinetic (e.g., [41, 63, 49, 44, 43, 42]) and macroscopic
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(e.g., [52, 66, 72, 61, 62, 50, 47, 48, 20, 3, 22, 32, 33, 8, 6]), i.e., fluid-dynamical, mod-
els. Among the (inviscid) macroscopic models one distinguishes between first-order
models based on scalar hyperbolic equations and second-order models comprised
of systems of hyperbolic equations. Specific examples for the latter are the Payne-
Whitham model [61, 73], two-phase models [16], and the Aw-Rascle-Zhang model
[3, 35, 75, 8].

All of these types of traffic models are of practical importance, however—due to
their different mathematical structure—for different purposes. For instance, micro-
scopic models are well-suited for traffic simulation, i.e., the “in silico” study of a
specific scenario; cellular models reproduce jamming behavior while being simple to
implement and easy to parallelize; mesoscopic models provide a high modeling flex-
ibility; and macroscopic models provide a suitable framework for the incorporation
of on-line data. Moreover, there are mathematical relations between these types
of models. For example, microscopic models as well as cellular models converge
to mesoscopic or macroscopic models in the limit of vanishing cell size or vehicle
spacing, respectively [19, 22, 1, 12]. Similarly, macroscopic models arise as suitable
limits of mesoscopic models [57, 49].

Microscopic and cellular models are nowadays widely used in traffic engineer-
ing, and their combination with data is ubiquitous. In contrast, certain types of
continuum models have been studied mathematically, but very little work has been
conducted on their validation with traffic data. Examples of macroscopic first-order
models used in traffic engineering practice are the Mobile Century project [2] and
the Mobile Millennium project [55], including approaches based on the reformu-
lation of the Lighthill-Whitham-Richards model (2) in terms of Hamilton-Jacobi
equations [5, 6], or in terms of the velocity variable [74]. Further examples are
[9, 10] and the references therein. Those projects focus on the assimilation of data,
the reconstruction of traffic states (e.g., from cell phone data), and the combination
of macroscopic models with filtering techniques.

In contrast, here different types of traffic models are generated via historic data,
and then their predictive accuracy is investigated using time-dependent data. More-
over, the main focus lies on second-order models; and first-order models are consid-
ered mainly for comparison purposes. The contributions of this paper are: (i) the
design of a generalized Aw-Rascle-Zhang model and the analysis of its mathemat-
ical properties; (ii) a systematic methodology to construct data-fitted first-order
and second-order traffic models, using historic fundamental diagram data; (iii) the
validation of first- and second-order macroscopic traffic models via time-dependent
trajectory and sensor data, and the comparison of the predictive accuracy of differ-
ent models; and (iv) the investigation of the optimal relaxation time in second-order
models with a relaxation term.

This paper is organized as follows. In §2 an overview over existing macroscopic
traffic models is provided, including a discussion of some of the modeling short-
comings of the Aw-Rascle-Zhang model. We then introduce the generalized Aw-
Rascle-Zhang model as an approach that addresses the shortcomings, and discuss
its mathematical properties. The fitting of the model parameters and functions is
then described in §3. Given historic fundamental diagram data in the flow rate
vs. density plane, we systematically construct data-fitted first- and second-order
macroscopic models. In §4 the numerical methods used to conduct the model val-
idation and comparison are presented. Unlike studies of cell-transmission models
[19], in this paper all studies are carried out in a macroscopic sense; in particular
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the governing PDE are numerically solved with high enough accuracy such that the
numerical approximation errors are negligibly small relative to the model errors.
The comparison of the models on a three-detector test setup [21] is then carried out
in §5. In addition to the macroscopic traffic models, we also consider a predictor
that simply interpolates the traffic state from the boundaries. For vehicle trajectory
data, and for sensor data, the predictive accuracies of the models are compared, and
their reproduction of features in the traffic states are studied. In §6 we then extend
the studies to data-fitted second-order models with relaxation terms. In particular,
we study the dependence of the model accuracy on the relaxation time at which
drivers adjust their driving behavior. Finally, in §7 we present the conclusions from
our studies.

2. Existing and new macroscopic traffic models. Common to all macroscopic
traffic models is the continuity equation

ρt + (ρu)x = 0 , (1)

which gives the conservation of vehicles. In (1), the vehicle density is ρ(x, t), and
the vehicle velocity field is u(x, t), where x is the position along the road, and t
is time. If the road has multiple lanes (in a given direction), we consider these
aggregated into the scalar field quantities ρ and u.

2.1. The Lighthill-Whitham-Richards model and flow rate functions. The
simplest macroscopic traffic model, the Lighthill-Whitham-Richards (LWR) model
[52, 66], is obtained by assuming a functional relationship between ρ and u, i.e.,
u = U(ρ). This turns equation (1) into a scalar hyperbolic conservation law

ρt + (Q(ρ))x = 0 , (2)

where the flux Q is given by the flow rate function Q(ρ) = ρU(ρ). Because the LWR
model (2) is a closed model consisting of a single equation, it is denoted a first order
model. The velocity function U(ρ) is commonly assumed to be decreasing in ρ with
U(ρmax) = 0 for some maximal vehicle density ρmax > 0.

Popular examples of flow rate functions are the Greenshields flux [37], in which
Q(ρ) is a quadratic function, and the Newell-Daganzo flux [59, 19], in which Q(ρ) is
a piecewise linear function. While these different choices of functions Q(ρ) lead to
well-posed first-order models, the second-order models derived below call for further
properties that the function Q(ρ) must satisfy. In particular, the velocity function
U(ρ) = Q(ρ)/ρ must nowhere be constant, because otherwise hyperbolicity would
be lost (see the analysis in §2.5.2). This rules out the Newell-Daganzo flux; and as
a consequence, in this paper we consider flow rate functions (12) that resemble the
shape of the Newell-Daganzo flux, but that are strictly concave.

2.2. The Aw-Rascle-Zhang model. The strict functional relationship between
ρ and u is loosened in second order models, which augment (1) by an evolution
equation for the velocity field. Payne and Whitham proposed a model [61, 73]
in which the vehicle velocity relaxes towards a velocity function, while also being
affected by a “traffic pressure” that is analogous to a pressure in fluid dynamics.
Because this pressure can lead to unrealistic solutions (vehicles going backwards
on the road, shocks that overtake vehicles, etc., see [20]), Aw and Rascle [3], and
independently Zhang [75], proposed a different form of “pressure” that remedies the
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shortcomings of the Payne-Whitham model. The homogeneous Aw-Rascle-Zhang
(ARZ) model reads as

ρt + (ρu)x = 0 ,

(u+ h(ρ))t + u(u+ h(ρ))x = 0 ,
(3)

where we call h(ρ) the hesitation function.1 We assume that h′(ρ) > 0 and use
the gauge h(0) = 0. The addition of a relaxation term (analogous to the Payne-
Whitham model) yields the inhomogeneous ARZ model [35, 65]

ρt + (ρu)x = 0 ,

(u+ h(ρ))t + u(u+ h(ρ))x = 1
τ (Ueq(ρ)− u) .

(4)

We call Ueq(ρ) the desired velocity function or the equilibrium velocity function, and
τ the relaxation time scale.

As one can easily verify, the homogeneous ARZ model (3) possesses no mechanism
to make drivers move when starting with all vehicles at rest, i.e., u(x, 0) = 0. In turn,
the inhomogeneous ARZ model (4) does. We therefore expect the homogeneous
ARZ model to yields reasonable results only when the traffic flow is close to its
equilibrium state, i.e., u ≈ Ueq(ρ). Yet, in general the inhomogeneous ARZ model
has the potential to yield more realistic predictions.

Remark 1. The conservative form of (4) is given by

ρt + (q − ρh(ρ))x = 0 ,

qt +
(
q2

ρ − h(ρ)q
)
x

= 1
τ (Qeq(ρ) + ρh(ρ)− q) ,

(5)

where the two conserved variables are ρ and q = ρ(u+h(ρ)), and Qeq(ρ) = ρUeq(ρ)
is called the equilibrium curve that the momentum density ρu relaxes to.

Remark 2. Various authors (e.g., [35, 70]) have proposed to choose the functions
h(ρ) and Ueq(ρ) dependent on each other, namely h(ρ) = Ueq(0) − Ueq(ρ). In this
case, the solution relaxes towards an equilibrium state u = Ueq(ρ) (see §2.5.3). In
this paper, we follow this philosophy, since it generates both functions from the
same data-fitting procedure. However, it should be noted that it is in principle
perfectly reasonable to choose h(ρ) and Ueq(ρ) independently of each other. As
shown in [36, 30, 69, 46], such a choice can generate (whenever h′(ρ) +U ′eq(ρ) < 0)
instabilities and self-sustaining traveling wave solutions that model phantom traffic
jams and traffic waves, respectively.

2.3. Interpretation of ARZ as generalization of LWR. As pointed out in
[50, 3, 8, 26], the homogeneous ARZ model (3) can be interpreted as a generalization
of the LWR model, by introducing the variable w = u + h(ρ). Thus, system (3)
takes the form

ρt + (ρu)x = 0 ,

wt + uwx = 0 ,

where u = w − h(ρ) .

(6)

The interpretation of (6) is that w is advected with the flow u, i.e., it moves with
the vehicles. One can therefore interpret w as a quantity that is associated with
each vehicle, and that is influencing the velocity. Since for ρ = 0, we have h(0) = 0

1The function h(ρ) is sometimes called “pressure”, and denoted p(ρ), even though it does not
play the role of a pressure in the equations.
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and thus w = u, we call w the empty road velocity. The actual vehicle velocity is
given by its empty road velocity, reduced by the hesitation h(ρ).

Using this interpretation, the homogeneous ARZ model generalizes the LWR
model (2), as follows. Given a (decreasing) LWR velocity function U(ρ), we define
h(ρ) = U(0)− U(ρ) (clearly, h′(ρ) > 0 and h(0) = 0). Then, model (6) possesses a
one-parameter family of velocity curves, namely uw(ρ) = w − h(ρ) = U(ρ) + (w −
U(0)), and the LWR velocity curve u(ρ) = U(ρ) is one of them, namely the one
corresponding to w = U(0). The same behavior translates to the flow rate curves
that live in the fundamental diagram (Q vs. ρ). The ARZ model (6) possesses a
one-parameter family of flow rate curves, namely Qw(ρ) = Q(ρ) +ρ(w−U(0)), and
the LWR flow rate curve Q(ρ) is one of them, namely the one corresponding to
w = U(0). This has been observed by Lebacque [50].

The aforementioned relationship between the LWR and the ARZ model is shown
in Fig. 2. The single velocity curve (left panel) and flow rate curve (right panel),
shown in red, is one representative of the family of curves, shown in black, that the
ARZ model possesses. By construction, each velocity curve in the ARZ model is
merely a vertical translation of the LWR velocity curve. Hence, the homogeneous
ARZ model possesses the same number of parameter functions (namely: a single
one) as the LWR model.

In line with Remark 2, i.e., by choosing Ueq(ρ) = U(ρ) = U(0) − h(ρ), we can
extend model (6) to the inhomogeneous case, yielding

ρt + (ρu)x = 0 ,

wt + uwx = 1
τ (U(0)− w) ,

where u = w − h(ρ) ,

(7)

which adds a temporal relaxation of each vehicle’s empty road velocity w towards
a uniform value U(0). In other words: the dynamics, that can be on any velocity
curve uw(ρ), are driven towards the LWR velocity function U(ρ), i.e., the red curves
in Fig. 2—unless the system is driven away from equilibrium by another effect, such
as boundary conditions (see §2.5.3).

2.4. Generalized ARZ model. The interpretation of the ARZ model (3) as pos-
sessing a family of velocity curves (see (6)) reveals a fundamental shortcoming of
the model: due to the additive relationship between velocity, empty road velocity,
and hesitation, there is not a unique maximum density ρmax, at which the flow
stagnates. On the contrary, as the plots in Fig. 2 indicate, variations in w can lead
to significant variations in the density at which uw(ρ) = 0. However, since in reality
the maximum density is largely a property of the road, it should not depend (at
least not strongly) on the velocity that drivers assume when alone on the road. In
order to remedy this shortcoming, the relationship between u, w, and ρ must be
generalized.

To that end, we consider a generalized Aw-Rascle-Zhang (GARZ) model, which
is a representative of the class of generic second order models (GSOM), proposed
by Lebacque, Mammar, and Haj-Salem [51]. Specifically, the homogeneous ARZ
model (6) generalizes to

ρt + (ρu)x = 0 ,

wt + uwx = 0 ,

where u = V (ρ, w) ,

(8)
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where we impose the following requirements on the velocity function V (ρ, w), and
the associated generalized flow rate function Q(ρ, w) = ρV (ρ, w):

• V (ρ, w) ≥ 0, i.e., vehicles never go backwards on the road.
• V (0, w) = w, i.e., we gauge the convected quantity w to play the role of the

empty road velocity, as in the ARZ model (6).

• ∂2Q
∂ρ2 (ρ, w) < 0 for w > 0, i.e., each flow-rate curve Qw(ρ) = Q(ρ, w) is strictly

concave. This condition implies (see Lemma 2.1) in particular that ∂V
∂ρ (ρ, w) <

0, i.e., each velocity curve uw(ρ) = V (ρ, w) is strictly decreasing w.r.t. the
density.

• ∂V
∂w (ρ, w) > 0, i.e., a faster empty road velocity results in a faster velocity for
all possible densities.

• V (ρ, 0) = 0, i.e., for w = 0, the concavity of Q and the slope of V hold with
an equality sign.

Lemma 2.1. Consider a C2 function U(ρ), and let Q(ρ) = ρU(ρ). If Q′′(ρ) < 0
everywhere, then U ′(ρ) < 0 everywhere.

Proof. The function a(ρ) = Q(ρ) − Q′(ρ)ρ satisfies: (i) a(0) = 0, and (ii) a′(ρ) =

−Q′′(ρ)ρ > 0 everywhere. Hence, U ′(ρ) = −a(ρ)
ρ2 < 0 everywhere.

In order to define an inhomogeneous GARZ model, an equilibrium velocity curve
must be specified. We assume that it is a member of the family of velocity curves
defined by V , i.e.

Ueq(ρ) = V (ρ, weq) ,

for some equilibrium empty road velocity weq. We choose to generalize (4) to the
GARZ case as follows:

ρt + (ρu)x = 0 ,

wt + uwx = 1
τ (Ueq(ρ)− u) ,

where u = V (ρ, w) .

(9)

Note that it would alternatively be conceivable to propose a relaxation in (9) of the
form

wt + uwx = 1
τ (weq − w) . (10)

While for the ARZ model, the forms (4) and (7) are equivalent, for the GARZ model
the relaxations (9) and (10) are not. Specifically, if ∂V∂w (ρ, weq) > 0, then both forms
relax to the same limit, but at different rates. A simple Taylor expansion yields
that for w nearby weq, the relaxation in (9) happens ∂V

∂w (ρ, weq) times as rapidly as
the relaxation in (10).

Finally, in line with (5), the GARZ model (9) is meant to be interpreted in the
conservative form

ρt + (V (ρ, q/ρ)ρ)x = 0 ,

qt + (V (ρ, q/ρ)q)x = 1
τ (Qeq(ρ)−Q(ρ, q/ρ)) ,

(11)

where the two conserved variables are ρ and q = ρw. Moreover, Qeq(ρ) = ρUeq(ρ)
and Q(ρ, w) = ρV (ρ, w).
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2.5. Properties of the GARZ model. Most properties of the classical ARZ
model transfer over to its generalization, the GARZ model. Here we only collect
relevant results, many of which have been presented in [51], or that are relatively
straightforward generalizations of the results given in [3, 35, 65]. The theoretical re-
sults presented below are in particular important for the data-fitting methodologies
conducted in §3, and for the interpretation of the results obtained in §6.

2.5.1. Regions of GARZ variables and inverse velocity functions. Because of their
relations and because of their physical meaning, the quantities ρ, w, and u cannot
assume any arbitrary values. In this paper, we assume that there is a unique
stagnation density ρmax, at which vehicles come to a stop, independent of their
empty road velocity, i.e., V (ρmax, w) = 0 for all w. We therefore have ρ ∈ [0, ρmax)
and 0 < u ≤ w, where the latter inequality follows from ∂V

∂ρ (ρ, w) < 0. Moreover,

we assume that there is a minimum and maximum empty road velocity, i.e., 0 <
wmin ≤ w ≤ wmax. Because ∂V

∂ρ < 0 and ∂V
∂w > 0, the function V (ρ, w) can be

“inverted” to define the functions (and their domains):

V : DV −→ [0, wmax] where DV = {(ρ, w) | 0 ≤ ρ < ρmax, wmin ≤ w ≤ wmax},
R : DR −→ [0, ρmax) where DR = {(u,w) | 0 < u ≤ w, wmin ≤ w ≤ wmax},

W : DW −→ [wmin, wmax] where DW = {(ρ, u) | 0 ≤ ρ < ρmax,

V (ρ, wmin) ≤ u ≤ V (ρ, wmax)} .
Here the functions R and W are defined as the unique solutions to the problems:

a) given u and w, find ρ = R(u,w), s.t. V (ρ, w) = u;
b) given ρ and u, find w = W (ρ, u), s.t. V (ρ, w) = u.

From the fact that the quantity w is transported with the flow (while possibly re-
laxing to some weq ∈ (wmin, wmax)), and from the solution of the Riemann problems
of the GARZ model (see below), it follows that the dynamics of the model never
generate values w /∈ [wmin, wmax] or ρ /∈ [0, ρmax). Hence, analogous to the ARZ
model (cf. [3]), the domain DV is an invariant region.

2.5.2. Characteristics and associated fields. The homogeneous part of the GARZ
model (11) is a conservation law of the form

Ut + F(U)x = 0 ,

where

U =

(
ρ
q

)
and F(U) =

(
uρ
uq

)
, where u = V (ρ, q/ρ) .

The Jacobian of the flux function F(U) is

∇F(U) =

(
u+ ρ∂u∂ρ ρ∂u∂q
q ∂u∂ρ u+ q ∂u∂q

)
,

and its eigenvalues and associated eigenvectors are

λ(1) = u+ ρ
∂u

∂ρ
+ q

∂u

∂q
= u+ ρ

∂V

∂ρ
with γ(1) =

(
ρ
q

)
and thus ∇λ(1) · γ(1) 6= 0 ,

and

λ(2) = u with γ(2) =

(
−∂u∂q
∂u
∂ρ

)
and thus ∇λ(2) · γ(2) = 0 .
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Hence, like the ARZ model (5), the GARZ model (11) is strictly hyperbolic for
ρ > 0. One of its characteristic velocities, λ(1), is slower than the vehicles (i.e.,
λ(1) < u) and its associated field is genuinely nonlinear (i.e., it corresponds to shocks
and rarefaction waves, see below). Its other characteristic velocity λ(2) equals the
vehicle velocity and its associated characteristic field is linearly degenerate (i.e., its
associated waves are contact discontinuities that are transported with the flow).

Lemma 2.2. Both characteristic velocities are strictly decreasing w.r.t. ρ, i.e.,
∂λ(1)

∂ρ < 0 and ∂λ(2)

∂ρ < 0.

Proof. We have that λ(1) = V + ρ∂V∂ρ = ∂Q
∂ρ . Since Q is assumed concave w.r.t. ρ, it

follows that ∂λ(1)

∂ρ = ∂2Q
∂ρ2 < 0. Moreover, ∂λ(2)

∂ρ = ∂V
∂ρ < 0 by Lemma 2.1.

We continue with the discussion of the characteristic fields. The scalar function
I(1) = q/ρ = w satisfies ∇I(1) · γ(1) = 0, and it is a Riemann invariant to λ(1).
Hence, across waves of the first family, the empty road velocity w is constant.
The field associated with the second eigenvalue λ(2) is linearly degenerate. It is
given by I(1) = λ(2) = u and across waves of the second family, the velocity u is
constant. The solution to a Riemann problem, i.e., the Cauchy problem to system
(11) on the real line with discontinuous piecewise constant initial data U(x, 0) =
(1−H(x))UL +H(x)UR, where H is the Heaviside function, generalizes naturally
from the ARZ model as well. In general, the solution is obtained by superposition
of simple waves connecting different constant states: from a given left state UL to
a given right state UR via an intermediate state UM that is connected to UL by a
1-wave (i.e., a Lax-shock or rarefaction associated to the first characteristic field),
and to UR by a 2-wave (i.e., a contact discontinuity). Since the GARZ system (11)
is—as the ARZ model—of Temple class [71], shocks and rarefaction wave curves
in phase space coincide. Moreover, due to Lemma 2.2, a simple wave of the first
family is either a shock or a rarefaction wave.

In the phase space (ρ, w)-plane we discuss the shape of the characteristic fields.
The second fields are parallel to the ρ-axis, and the first fields are the contours
V (ρ, w) = const. Since by assumption ∂V

∂ρ < 0 and ∂V
∂w > 0, the contours of V (ρ, w)

always have a finite and truly positive slope in the (ρ, w)-plane. Thus, for any
two states (ρL, wL) and (ρR, wR) that satisfy wL ≥ uR, where uR = V (ρR, wR),
there is a unique intermediate state (ρM, wM) = (R(uR, wL), wL), defined via the
inverse function given in §2.5.1. Moreover, because λ(1) is decreasing with ρ (see
Lemma 2.2), the Lax entropy conditions [23] imply that for ρL < ρM the 1-wave is a

shock wave (moving with speed s = ρMV (ρM,wM)−ρLV (ρL,wL)
ρM−ρL , given by the Rankine-

Hugoniot conditions [23]), while for ρL > ρM it is a rarefaction wave. The condition
wL ≥ uR means that drivers on the left wish to drive at least as fast as the vehicles
on the right are driving. If this is not the case, i.e., if wL < uR, then there is
no non–negative density at which the 1-wave and the 2-wave intersect. Here, a
vacuum state will be generated, analogously to the construction for the ARZ model
[3, 65]. The left state (ρL, wL) is connected by a rarefaction wave to a left vacuum
state (0, wL); this state is connected to a right vacuum state (0, uR) via another
rarefaction (which is feasible because wL < uR); and this then connects to the right
state (ρR, wR) via a 2-contact discontinuity.

2.5.3. Relaxation of GARZ to LWR. Smooth solutions to the Cauchy problem of
the inhomogeneous GARZ model (9) relax in time towards solutions of the LWR
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Figure 1. Riemann problem at right domain boundary. Consider
a constant initial state (ρR, Qeq(ρR)) in the domain, and prescribed
boundary data (ρR, ρRuR) with uR > Ueq(ρR). The LWR model
preserves the constant state (the boundary data is projected onto
the equilibrium curve vertically along the dashed line). In con-
trast, the GARZ model generates a new state (ρM, Qeq(ρM)) at
the boundary (projected onto the equilibrium curve along a ray
through the origin), from which a shock moves into the domain,
thus changing the initial state to the new boundary state.

model (2), because w tends to weq along characteristic curves. Note that for general
relaxation systems, convergence to a first-order equation is only warranted if a sub-
characteristic condition is satisfied, cf. [53, 14, 69]. Here, we are in the characteristic
case. Moreover, shocks of the 2 × 2 hyperbolic system (11) are also shocks of the
LWR model (2). Therefore, for the Cauchy problem, GARZ solutions converge to
LWR solutions as t→∞, and/or as τ → 0.

In contrast, for initial-boundary-value problems on a bounded domain x ∈ [xL,
xR], this last property is in general not true. To highlight this fact we consider
a simplified setting depicted in Fig. 1. Let constant boundary data ρ(xL), u(xL),
ρ(xR), u(xR) be given. With this data, we can solve the LWR model (2) and the
inhomogeneous GARZ model (11). Then, in general solutions to the latter problem
do not converge to solutions of the former, even in the limit τ → 0. Consider
a constant state (ρR, Qeq(ρR)) inside the domain. At the outflow boundary xR,
let a state (ρR, ρRuR) be given where uR > Ueq(ρR). The LWR model only uses
the density information, and thus the constant state is preserved. In contrast,
the GARZ model uses the full state in the Riemann problem. Its solution yields
an intermediate state (ρM, Qeq(ρM)), whose density is determined via the relation
ρMuR = Qeq(ρM). This intermediate state connects to the boundary state via a
contact discontinuity (a 2-wave) moving with speed uR, and to the interior state
via a shock (a 1-wave) that moves with speed

s =
Qeq(ρR)−Qeq(ρM)

ρR − ρM
,

which in the situation depicted in Fig. 1 moves into the domain, since s < 0. Thus,
after some time in the GARZ model the intermediate state (ρM, ρMuR) is observed
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within the domain. Note that this argument holds independent of the value of the
relaxation time τ in the model (9).

3. Data-fitted traffic models. In this section we describe how the parameter
functions of the traffic models presented in §2 can be fitted to historic fundamental
diagram data. We assume that flow rate vs. density pairs (ρj , Qj), j = 1, . . . n are
given from long-term measurements (commonly obtained via stationary sensors).
As visible in the right panel of Fig. 2, these data (gray dots) tend to exhibit a
relatively clear functional relationship between ρ and Q for low densities. In turn,
for medium densities, a significant spread is visible, i.e., a single ρ-value corresponds
to many different flow rates Q. Finally, for large densities, very few data points are
available at all.

3.1. Data-fitting for the LWR and ARZ models. The first-order LWR model
(2) must represent these data via a single function Q(ρ). As the spread of the data
cannot be captured, it is reasonable to find a function that lies “in the middle” of
the cloud of data points. Specifically, we employ the approach presented in [26].
First, since the stagnation density ρmax is not represented well via data, we prescribe
it as a fixed constant, given by a typical vehicle length of 5 meters, plus 50% of
additional safety distance,

ρmax =
number of lanes

typical vehicle length× safety distance factor
=

#lanes

7.5m
.

Second, a three-parameter family of smooth and strictly concave flow rate curves
is selected as

Qα,λ,p(ρ) = α
(
a+ (b− a)ρ/ρmax −

√
1 + y2

)
, (12)

where

a =

√
1 + (λp)

2
, b =

√
1 + (λ(1− p))2

, and y = λ (ρ/ρmax − p) .

Each flow rate function Qα,λ,p(ρ) in this family vanishes for ρ = 0 and ρ = ρmax.
The three free parameters allow for controlling three important features ofQα,λ,p(ρ):
the value of maximum flow rate Qmax (mainly determined by α), the critical density
ρc (mainly controlled by p), and the “roundness” of the curve, i.e., how rapidly the
slope transitions from positive to negative near ρc (dominated by λ).

Third, from this three-parameter family of flow rate curves, the one is selected
that is the closest to the data points (ρj , Qj), j = 1, . . . n in a least-squares sense,
i.e. we solve

min
α,λ,p

n∑
j=1

(Qα,λ,p(ρj)−Qj)2 . (13)

In the right panel of Fig. 2, the resulting least-squares fit to the given gray data
points, called Qeq(ρ), is depicted by the red curve. The red curve in the left panel
represents the resulting velocity function Ueq(ρ) = Qeq(ρ)/ρ.

As described in §2.3, the ARZ model (6) generalizes the LWR model to a one-
parameter family of velocity curves uw(ρ) = Ueq(ρ) + (w−Ueq(0)) (black curves in
the left panel of Fig. 2) and flow rate curves Qw(ρ) = Qeq(ρ) + (w−Ueq(0))ρ (right
panel of Fig. 2). Due to this property, the ARZ model possesses the same amount
data-fitted parameters as the LWR model.

An interpretation of the ARZ family of velocity curves is that different w-values
represent different types of drivers; the larger w, the faster the corresponding drivers
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Figure 2. Velocity vs. density (left panel) and flow rate vs. density
(right panel) curves of the smooth three-parameter model (12),
fitted with historic fundamental diagram data (gray dots), for the
ARZ model.

tend to drive. As motivated in §2.4, this captures the spread in the fundamental
diagram (which is desirable), but it also results in vastly varying stagnation densities
for different types of drivers. This last property is unrealistic, as the maximum
density is a property of the road, rather than of the behavior of drivers [26]. We
therefore need to construct a family of curves that are not simple shifts of each
other, as done below.

3.2. Data-fitting for the GARZ model. The GARZ model (8) is based on a
generalized velocity function V (ρ, w), where—as for the ARZ model—w represents
different types of drivers, and thus parameterizes a families of velocity and flow
rate curves, respectively. We construct these families of curves by generalizing the
least-squares fit (13) to a weighted least-squares fit, as follows.

Given a weight parameter 0 < β < 1, we consider the minimization problem

min
α,λ,p

(1− β)

n∑
j=1

((Qα,λ,p(ρj)−Qj)+)
2

+ β

n∑
j=1

((Qα,λ,p(ρj)−Qj)−)
2

 , (14)

where

(Qα,λ,p(ρj)−Qj)+ = max {Qα,λ,p(ρj)−Qj , 0} ,
(Qα,λ,p(ρj)−Qj)− = max {−Qα,λ,p(ρj) +Qj , 0} .

For β = 1
2 , problem (14) reduces to (13), i.e., the LWR equilibrium curve is recov-

ered. For β < 1
2 , data below the curve is penalized more, and consequently the

resulting curve moves downwards. In turn, if β > 1
2 , curves above the equilibrium

curve are obtained.
The weighted least-squares problem (14) generates a one-parameter family of

curves Qβ(ρ) = Qα(β),λ(β),p(β)(ρ), parameterized by β; and consequently it also
generates a family of velocity functions

Vβ(ρ) =

{
Qβ(ρ)/ρ if ρ > 0
∂Qβ
∂ρ (0) if ρ = 0

.
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Figure 3. Family of velocity vs. density (left panel) and flow rate
vs. density (right panel) curves generated from the weighted least
square (WLSQ) algorithm in constructing the velocity function u =
V (ρ, w) in the GARZ model.

In this paper, we restrict to the case that the velocity curves in the family are
non-intersecting, i.e.,

If β1 < β2 , then Vβ1
(ρ) < Vβ2

(ρ) for ρ ∈ [0, ρmax) . (15)

Note that in general (i.e., for a general family of flow rate functions, and for general
data points), property (15) is not necessarily satisfied; and furthermore, problem
(14) need not have a unique solution. However, in all cases studied in this paper,
the minimization problem (14) does have a unique solution; and property (15) is in
fact satisfied.

While problem (14) is defined for all 0 < β < 1, values of β that are extremely
close to 0 or 1 tend to lead to unreasonable curves. The reason is that in the limit
β ↗ 1, the resulting curve is the lowest curve that has no data points above it, and
as a result it adjusts to outliers in the data (similar arguments hold for β ↘ 0). We
therefore define a lower/upper flow rate curve, such that 99.9% of all data points
lie above/below it. Consequently, together with the equilibrium curve, we have the
following three special flow rate curves

Qmin(ρ) = Qβmin
(ρ) , Qeq (ρ) = Q 1

2
(ρ) , and Qmax(ρ) = Qβmax

(ρ) ,

where here we use βmin = 10−4 and βmax = 1 − 10−4. In the right panel of Fig. 3
these three curves are depicted by the lowest black curve, the red curve, and the
uppermost black curve, respectively.

Even though the parameter β defines a family of flow rate curves as desired, it
has the shortcoming that it does not have an immediate interpretation as a property
of traffic flow. We therefore re-parameterize the family in terms of the empty road
velocity w, as follows. For any β ∈ [βmin, βmax], we define w as the resulting slope
of the curve Qβ at ρ = 0, i.e.,

w = w(β) = Vβ(0) .

Due to property (15), the relationship w = w(β) is strictly increasing, and thus
can be inverted into β = β(w), defined on the interval w ∈ [wmin, wmax], where
wmin = Q′min(0) and wmax = Q′max(0). Using this re-parameterization, we obtain a
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generalized flow rate function

Q(ρ, w) = Qβ(w)(ρ) ,

and a generalized velocity function

V (ρ, w) = Vβ(w)(ρ) ,

as used in the GARZ model (8). The properties of V (ρ, w) assumed in §2.4 are
satisfied by construction.

3.3. Domain extension for the GARZ model. The systematical construction
of a generalized velocity function V (ρ, w), presented in §3.2, is in line with the
regions of the GARZ variables defined in §2.5.1. In particular, the function W (ρ, u)
is defined only for V (ρ, wmin) ≤ u ≤ V (ρ, wmax). However, when applying the
GARZ model in a forward computation, velocity data may be provided through
initial and boundary conditions that lie outside of the domain of W (ρ, u). In order
to make sense of the model for such data, we effectively extend the domain of the
function W (ρ, u) via a projection of such data, as follows.

Given a density–velocity pair (ρ, u), where 0 < ρ < ρmax, we define a projected
velocity as

Ũ(ρ, u) = min{max{u, V (ρ, wmin)}, V (ρ, wmax)} ,
and thus obtain the extended function

W̃ (ρ, u) = W (ρ, Ũ(ρ, u))

that is defined for arbitrary velocity values. This simple projection (densities are left
unchanged, and velocities are moved onto the lowest or highest curve, respectively)
provides a constant extension of the function W beyond its domain DW . Note that
the range of W remains unaffected as being [wmin, wmax], and consequently the

function W̃ is not invertible outside of DW .

4. Numerical methods. All models are approximated numerically using a finite
volume method on a regular grid of cell size ∆x and time step ∆t, chosen so that
the CFL condition [18]

smax∆t ≤ ∆x ,

is satisfied, where smax = maxk |λk| is the largest wave speed (see §2.5.2 for the
characteristic velocities of the models). In all examples throughout this paper,
the grid resolution is chosen small enough (∆x ≤ 50cm) so that the numerical
approximation errors are much smaller than the model errors. Hence, the studies
are conducted truly on the continuum level.

The first order model (2) is solved using Godunov’s method [34]. For the second
order models, we have to account for the fact that the inhomogeneous GARZ model
(11) becomes stiff if τ is small. Hence, we employ a semi-implicit finite volume
scheme that treats the nonlinear hyperbolic terms explicitly and the relaxation
terms implicitly (to prevent a time step restriction ∆t = O(τ)). The update rule of
a state (ρnj , q

n
j ) in cell j from time tn to the state (ρn+1

j , qn+1
j ) at time tn+1 = tn+∆t

reads as

ρn+1
j = ρnj −

∆t

∆x

(
(Fρ)nj+ 1

2
− (Fρ)nj− 1

2

)
, (16)

qn+1
j = qnj −

∆t

∆x

(
(Fq)nj+ 1

2
− (Fq)nj− 1

2

)
+

∆t

τ

(
Qeq(ρn+1

j )−Q(ρn+1
j , qn+1

j /ρn+1
j )

)
.

(17)
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Here (Fρ)nj+ 1
2

= Fρ(ρnj , qnj , ρnj+1, q
n
j+1) denotes the numerical flux for the quantity

ρ through the boundary between cells j and j + 1; the other fluxes are defined
accordingly. Moreover, Q(ρ, w) = ρV (ρ, w) is the model’s two-parameter flow rate
function, and Qeq(ρ) = ρUeq(ρ) = Q(ρ, weq) is the equilibrium flow rate function.

As in the Godunov method [34] one could use the exact solution to the Riemann
problem (cf. [3, 24]) to define the numerical fluxes. However, this would require the
inversion of the velocity function u = V (ρ, w), which is costly for the GARZ model.
A less expensive approach, employed here, is to define the numerical fluxes via
the HLL approximate Riemann solver [38], which approximates the true Riemann
problem by a single constant intermediate region. Note that due to the fine grid
resolution, and due to the fact that initial and boundary conditions are continuous,
spurious overshoots that may occur in the velocity (cf. [13]) are negligibly small.

Since the inhomogeneous model (11) possesses a relaxation only in the momen-
tum equation, the time update of the density variable, given by (16), is fully ex-
plicit. Therefore, in the time update of the generalized momentum, given by (17),
the quantity ρn+1

j is known. Specifically, the numerical scheme is implemented in
three steps:

1) Based on the data (ρnj , q
n
j )∀j at time tn, the fluxes ((Fρ)nj+ 1

2

, (Fq)nj+ 1
2

)∀j are

computed.
2) The new density states ρn+1

j ∀j are computed via (16).

3) The new generalized momenta qn+1
j ∀j are computed according to (17). On the

cell j, the new state qn+1
j is obtained as the solution of the scalar nonlinear

equation G(q) = 0, where

G(q) = q +
∆t

τ
Q(ρn+1

j , q/ρn+1
j )− qnj +

∆t

∆x

(
(Fq)nj+ 1

2
−(Fq)nj− 1

2

)
− ∆t

τ
Qeq(ρn+1

j ) .

(18)
The root of (18) is found up to machine accuracy within a few Newton steps,
using qnj as the starting guess.

In the special case of the ARZ model (5), the update (17) is given by the explicit
formula

qn+1
j =

qnj − ∆t
∆x

(
(Fq)nj+ 1

2

− (Fq)nj− 1
2

)
+ ∆t

τ ρ
n+1
j weq

1 + ∆t
τ

. (19)

It should further be remarked that the semi-implicit scheme (16) and (17) is equiv-
alent to the fractional step approach that first approximates the homogeneous part
of (11) via a forward Euler step, and then approximates the relaxation part via
a backward Euler step. Hence, in the limit τ → 0 (while ∆t fixed), the scheme
amounts to simply projecting q onto the equilibrium curve in the relaxation step,
i.e., equation (17) turns into qn+1

j = Qeq(ρn+1
j ). In turn, in the homogeneous case,

i.e., τ →∞, the relaxation terms are simply omitted.
The boundary data are provided by introducing a ghost cell adjacent to the

outermost grid cell (on either side of the domain), in which the boundary state
(ρ, q) is assumed. The numerical fluxes in (16) and (17) then by construction pick
up the information corresponding to waves that enter the computational domain.

5. Validation and comparison of models via real data. In the following, we
validate the presented models by studying how well they reproduce the evolution
of real traffic data, and in that process we compare the predictive accuracy of the
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models. A particular focus lies on the investigation of the extent to which the
GARZ model, that addresses various shortcoming of traditional models, improves
the actual model agreement with real traffic data. We conduct the validations using
the NGSIM trajectory data set [29] and the RTMC sensor data set [54].

The test framework considered here is based on the methodology presented in
[26] and further developed in [27]: on a segment of highway, a three-detector test
problem [21] is formulated. At each end of the segment, the traffic state is (at all
times) provided to the traffic model, which is advanced forward in time (using the
numerical methods described in §4) inside the segment. The predictions that the
traffic model produces in time are then compared to real data inside the segment,
and the deviation between predicted and real traffic states is used to quantify the
model error.

5.1. Treatment of data. As described in [26], continuous field quantities ρ(x, t)
and u(x, t) are constructed from the NGSIM vehicle trajectory data [28], using
kernel density estimation [60, 67]. In this approach, given vehicle locations xj(t)
(including “ghost vehicle” positions, obtained via reflection at the boundaries, see
[45]), density and flow rate functions are obtained as superpositions of Gaussian
profiles,

ρ(x, t) =

n∑
j=1

K(x− xj(t)) and

Q(x, t) =

n∑
j=1

ujK(x− xj(t)) , where K(x) = 1√
2πh

e−
x2

2h2 ,

and the velocity field is then given by u(x, t) = Q(x, t)/ρ(x, t). The kernel width
is chosen h = 25 meters. These field quantities then define initial conditions (t =
0) and boundary conditions (when evaluated at the segment boundary positions)
for the traffic models, and reference states for the validation (inside the segment
for t > 0). Before the boundary data can be provided to the traffic model, one
additional processing step must be applied to address spurious fast oscillations in
the reconstructed boundary data (due to variations in the starting and end position
of each vehicle trajectory in the data set): the time domain is divided into intervals
of length 15 seconds, and on each interval the boundary data is replaced by a cubic
polynomial that is a least-squares fit to the data, under the constraint that the
resulting evolution is globally C1.

For the RTMC sensor data, vehicles densities and flow rates are given at three
sensor positions, aggregated in intervals of length 30 seconds. Temporally continu-
ous quantities ρ(xs, t) and u(xs, t) at a sensor position xs are generated via cubic
spline interpolation (in time) of the aggregated information. One shortcoming of
the RTMC data is the absence of a reliable initial state (because information is
given only at the sensor positions). This problem is circumvented by running the
models forward through an initialization phase (5 minutes), before the actual model
comparison is started. During this phase, the boundary data has time to move into
the domain and create a reasonable initial state for the actual validation.

5.2. Quantification of model errors. The quantification of the deviation of the
model predictions from the actual data requires two aspects to be specified: first,
which field quantities to consider and how to combine them into a single quantity;
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Figure 4. Construction of ranges in density and velocity in his-
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and lower and upper velocity boundaries (blue lines). Data points
with densities below a threshold (black line), as well as outliers,
are systematically excluded.

and second, if data is available at multiple positions and/or times, how to combine
these multiple pieces of information into a single quantity?

Regarding the choice of field quantities, in this study we are interested in models
that predict traffic densities (as required for instance for ramp metering) and veloc-
ities (as required for instance for travel time estimates) accurately. Since densities
and velocities have different physical units, suitable normalization constants must
be found, so that the deviations in each quantity contribute with equal influence to
the total model error.

Given model predictions ρmodel(x, t) and umodel(x, t), and real data ρdata(x, t)
and udata(x, t), we define a space-and-time-dependent error measure as

E(x, t) =
|ρmodel(x, t)− ρdata(x, t)|

∆ρ
+
|umodel(x, t)− udata(x, t)|

∆u
, (20)

where the normalization constants ∆ρ and ∆u represent the ranges of the funda-
mental diagram data, as defined below. Note that various choices of normalization
constants have been proposed in the literature. For instance, in [11] the absolute
errors in density and velocity are scaled with ‖ρdata(x, t)‖L1 and ‖udata(x, t)‖L1 ,
respectively. A shortcoming of this choice is that for traffic flow at low densities, er-
rors in density get divided by a very small number and thus significantly amplified.
An alternative choice is employed in [26] by using ρmax and umax as normalization
constants. However, these tend to give too much influence to velocity errors, be-
cause even in moving congested traffic flow, ρ/ρmax tends to be significantly smaller
than u/umax.

In line with [27], we argue that balanced weights are given when the error in
each field quantity is related to the maximum variation that the respective quantity
exhibits in the historic fundamental diagram. In order to exclude the influence of
outliers in the data, we conduct the following four-step approach. First, all data
points (ρj , uj) with ρj < 5 veh/km/lane are neglected. The rationale is that these
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data do not contribute any meaningful information about the spread in the traffic
states, and moreover such low density values are not meaningful in the context of
a macroscopic description of traffic flow. In Fig. 4, this boundary is depicted by
the black line. Second, similar to the method presented in [9], the upper density
boundary ρup is defined such that 99.9% of the remaining data points lie below
it (red line in Fig. 4). Third, the lower (upper) velocity boundary ulow (uup) is
defined such that 99.9% of the remaining data points lie above (below) it (blue lines
in Fig. 4). Fourth, we define the data ranges

∆ρ = ρup and ∆u = uup − ulow .

Regarding the norms and averages to measure the model errors, we use the
following expressions. On a segment x ∈ [0, L] and time interval t ∈ [0, T ], spatial
and spatio-temporal averages are considered

Ex(t) =
1

L

∫ L

0

E(x, t) dx , (21)

E =
1

TL

∫ T

0

∫ L

0

E(x, t) dx dt . (22)

Moreover, for the RTMC data set, the temporal error at a sensor position xs inside
the road segment on a given day is considered, as well averages over multiple days

Eday =
1

T

∫ T

0

E(xs, t) dt , (23)

E =
1

#days

#days∑
day=1

Eday . (24)

5.3. List of models. We compare the following four models in terms of their
predictive accuracy of the real data:

1) Interpolation: A predictor that, at any instance in time, constructs the traffic
density and velocity via direct linear interpolation of the boundary conditions,
i.e., on the road segment x ∈ [0, L], the predicted state is ρ(x, t) = ρ(0, t)(1 −
x/L) + ρ(L, t)x/L and u(x, t) = u(0, t)(1 − x/L) + u(L, t)x/L. Of course, this
predictor is not an actual traffic model. However, due to its simplistic nature,
it represents an important means of comparison.

2) LWR: The first-order model (2), in which only the density state ρ(x, t) is
evolved, based on the data-fitted equilibrium velocity curve V (ρ, weq), resulting
from the least-squares fit (13) of the family (12) to the fundamental diagram
data.

3) ARZ: The second-order ARZ model (6) that generalizes the least-squares fitted
flow rate curve of the LWR model to a family of curves V (ρ, w) = V (ρ, weq) +
(w − weq).

4) GARZ: The second-order generalized ARZ model (8), whose generalized ve-
locity function V (ρ, w) is obtained via a weighted least-squares fit (14) of the
family (12) to the fundamental diagram data.

The fundamental diagram curves Qw(ρ) = ρV (ρ, w) of the three traffic models are
shown in Fig. 5, overlayed on top of the traffic state data that are actually observed
in the test cases (gray dots). The top row of figures corresponds to the NGSIM
data, and the bottom row represents the RTMC data. The LWR model is shown
on the left, the ARZ model in the middle, and the GARZ model on the right.
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Figure 5. Flow rate vs. density curves for the models LWR (left
column), ARZ (middle column), and GARZ (right column), to-
gether with the traffic states observed in the test cases (gray dots).
The results show the NGSIM data (top row) and the RTMC data
(bottom row).

Regarding the reproduction of real traffic data, it should be stressed that the
models/predictors differ in the way they use data. In the model generation step,
the Interpolation predictor uses no historic data; the LWR and ARZ model are
based on the same least-squares fit; and the GARZ model employs more information
from the fundamental diagram data due to the weighted least-squares fit. In turn,
during the advance forward in time, the Interpolation predictor uses two pieces of
information (ρ and u) at each boundary. In contrast, the LWR model uses only one
piece of information (ρ) at one of the two boundaries (assuming the traffic states at
the two boundaries are either both in free flow or both congested). Finally, the ARZ
and GARZ model use a total of two pieces of information through the boundary
conditions.

5.4. Model validation with the NGSIM trajectory data. As in [26], we
consider a segment of 450 meters in length in the domain of the NSGIM vehicle
trajectories. Data for three time intervals is available: 4:00pm–4:15pm, 5:00pm–
5:15pm, and 5:15pm–5:30pm. However, because our model validation requires a
traffic state be defined on the complete study segment, slightly shorter study time
intervals must be chosen that guarantee that recorded vehicles are present every-
where on the road. We choose: 4:00:30pm–4:14:00pm, 5:00:30pm–5:13:30pm, and
5:15:30pm–5:28:00pm. The parameters of the traffic models, obtained by fitting to
the fundamental diagram data provided with NSGIM, are given in the NGSIM row
of Table 1. In line with the temporal resolution of the data, we generate density
and velocity functions (real data and model predictions) in intervals of 0.1 seconds.

Figure 6 displays the time-evolution (5:15pm–5:30pm) of the traffic density and
velocity that are predicted by the selected models, in comparison with the real



COMPARATIVE ACCURACY OF A DATA-FITTED GENERALIZED ARZ MODEL 257

45

60

75

90

D
e

n
s
it
y
 (

v
e

h
/k

m
/l
a

n
e

)
Model prediction at center for NGSIM data (Interp)

 

 

measurement data (density)

Interp model prediction (density)

5:15:30 5:19 5:22:30 5:26 5:28
0

10

20

30

40

Time of day

V
e

lo
c
it
y
 (

k
m

/h
)

 

 

measurement data (velocity)

Interp model prediction (velocity)

45

60

75

90

D
e

n
s
it
y
 (

v
e

h
/k

m
/l
a

n
e

)

Model prediction at center for NGSIM data (LWR)

 

 

measurement data (density)

LWR model prediction (density)

5:15:30 5:19 5:22:30 5:26 5:28
0

10

20

30

40

Time of day

V
e

lo
c
it
y
 (

k
m

/h
)

 

 

measurement data (velocity)

LWR model prediction (velocity)

45

60

75

90

D
e

n
s
it
y
 (

v
e

h
/k

m
/l
a

n
e

)

Model prediction at center for NGSIM data (ARZ)

 

 

measurement data (density)

ARZ model prediction (density)

5:15:30 5:19 5:22:30 5:26 5:28
0

10

20

30

40

Time of day

V
e

lo
c
it
y
 (

k
m

/h
)

 

 

measurement data (velocity)

ARZ model prediction (velocity)

45

60

75

90

D
e

n
s
it
y
 (

v
e

h
/k

m
/l
a

n
e

)

Model prediction at center for NGSIM data (GARZ)

 

 

measurement data (density)

GARZ model prediction (density)

5:15:30 5:19 5:22:30 5:26 5:28
0

10

20

30

40

Time of day

V
e

lo
c
it
y
 (

k
m

/h
)

 

 

measurement data (velocity)

GARZ model prediction (velocity)

Figure 6. Model comparison on the NGSIM 5:15pm–5:30pm data
set. In each panel, the time-evolutions of the model predictions
(colored dashed curve) and measured data (solid gray curve) at the
middle position of the study area are shown (top box: ρ, bottom
box: u). The four panels correspond to: Interpolation (top left,
green), LWR (top right, blue), ARZ (bottom left, red), GARZ
(bottom right, black).

evolution of these quantities, at the mid-point of the study area. Both the LWR
and the ARZ model do reproduce the general trends present in the true density
evolution, albeit with a systematic delay of 30–60 seconds (see [27] for a detailed
discussion on this delay). One difference between LWR and ARZ is that the latter
reproduces, modulo the delay, the velocity evolution better than the former. This is
particularly visible in the predicted velocity in the plateau between 5:19:00pm and
5:22:30pm. In turn, the GARZ model captures the evolution of density and velocity
significantly better than the other two traffic models. There is still a systematic
delay in the model predictions, but this delay is very small. Finally, the Interpola-
tion predictor captures the large–scale features of the real data as well. However,
it also exhibits an oscillatory behavior of a larger frequency. This is due to the fact
that the linear interpolations transmit temporal oscillations from both boundaries
immediately to the observation site. In contrast, the traffic models pick up fewer
boundary data and furthermore oscillations can turn into N-waves and thus reduce
in magnitude as they move into the domain.

To quantify the predictive accuracy of the different models, we turn to the error
metric (20). Figure 7 shows the model errors for the NGSIM data sets: 4:00pm–
4:15pm (top), 5:00pm–5:15pm (middle), and 5:15pm–5:30pm (bottom). In each
panel, the time-evolution of the spatially averaged error (21) is shown (top-left
box), as well as the spatio-temporal average error (22) (top-right box). The models
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Figure 7. Comparison of traffic models for the data sets NGSIM
4:00pm–4:15pm (at the top), NGSIM 5:00pm–5:15pm (in the mid-
dle), and NGSIM 5:15pm–5:30pm (at the bottom). In each panel,
the time-evolution of spatially averaged errors (left top box), mea-
surement traffic density data (left bottom box), and space-time
average errors (right box) are shown in log-scale for Interpolation,
LWR, ARZ, and GARZ.
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Data set α (veh/h/lane) λ p wmin (km/h) wmax (km/h)

NGSIM 247.38 23.41 0.16 39.49 82.01
RTMC 316.46 23.91 0.16 75.81 102.82

Table 1. Model parameters for the data-fitted models for the two
data sets. Here, α, λ, and p are the free parameters of the equi-
librium flow rate curve Qeq(ρ) in the family (12). Moreover, wmin

and wmax denote the boundaries of the empty road velocity for the
GARZ model, as described in §3.2.

Data set Interp. LWR ARZ GARZ

NGSIM 4:00–4:15 0.151 (+10%) 0.181 (+31%) 0.153 (+11%) 0.138
NGSIM 5:00–5:15 0.160 (+25%) 0.161 (+26%) 0.174 (+35%) 0.129
NGSIM 5:15–5:30 0.168 (+30%) 0.162 (+25%) 0.228 (+76%) 0.129
RTMC congested 0.203 (+14%) 0.228 (+24%) 0.208 (+13%) 0.184
RTMC non-cong. 0.108 (+63%) 0.081 (+26%) 0.067 (+4%) 0.064

Table 2. Spatio-temporal average errors of the traffic models and
the Interpolation predictor for the NGSIM data sets (rows 2–4)
and the RTMC data (rows 5–6), separated into congested and non-
congested days. In each row, the parentheses denote the excess
error relative to the best model (GARZ in all cases).

are: Interpolation (thick solid yellow), LWR (solid red), ARZ (dashed blue), and
GARZ (thin solid black). In each bottom-left box, the time-evolution of the average
traffic density is shown. The numerical values of the model errors (22) are given in
rows 2–4 of Table 2.

The time-evolution of the errors (21) confirm several of the above observations,
such as the highly oscillatory nature of the Interpolation predictor, and the good
accuracy of the GARZ model. Another particularly visible effect is the bad perfor-
mance of the ARZ model for large densities: for 4:00–4:15, the ARZ model yields
smaller errors than LWR; in contrast, for 5:15–5:30, the ARZ leads to larger errors
than LWR. Moreover, the peaks in the ARZ errors coincide with local maxima in
the traffic density. These observations confirm that: a) the ARZ model has the
potential to improve upon the LWR model, and b) the non-uniform stagnation
density of the ARZ model significantly affects its predictive accuracy. In contrast,
the GARZ model inherits the advantages of the ARZ model for low densities, and
furthermore remedies its shortcoming for high densities.

Regarding the performance of the Interpolation predictor; its accuracy is, except
for the large oscillations, surprisingly good. Specifically, its average errors (22) are
similar to those of the LWR and ARZ models. The following explanations can be
provided to address this observation:

a) The considered road segment is very short. Hence, the coherence between the
boundaries and the inside of the domain is high, and the actual delays due to
finite-speed information propagation are small. One can expect that on longer
road segments, the finite-speed transport of information becomes more relevant,
and therefore interpolation significantly loses in accuracy.

b) As described in §5.3, the Interpolation predictor picks up twice (four times) as
much data from the boundaries as the second (first) order models. One could
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Figure 8. Model comparison on March 26, 2003 in the RTMC
data set. In each panel, the time-evolutions (4:05pm–5:00pm) of
the model predictions (colored dashed curve) and measured data
(solid gray curve) at the middle sensor are shown (top box: ρ,
bottom box: u). The four panels correspond to: Interpolation (top
left, green), LWR (top right, blue), ARZ (bottom left, red), GARZ
(bottom right, black).

therefore argue that the traffic models are as accurate as the interpolation, while
utilizing less input data.

c) The Interpolation predictor is on par with an “incomplete” model (LWR does
not evolve velocities) and a “defective” model (ARZ is flawed for large densities).
In turn, it does not achieve the accuracy of the GARZ model.

5.5. Model validation with the RTMC sensor data. In line with the test
described in [26], we consider a 1.214 km long segment of highway on the I-35W,
Minneapolis. Two traffic sensors are at the ends of the study segment, and one
sensor is inside of the segment (roughly in the middle). The parameters of the data-
fitted models, obtained from one-year data at the middle sensor, are given in the
RTMC row of Table 1. On each weekday (Monday–Friday) between 01/01/2003 and
04/14/2003, we consider the onset of afternoon rush hour between 4pm and 5pm,
and we divide the 74 days into 45 days with congested traffic (the space-time aver-
aged traffic density exceeds 20 veh/km/lane) and 29 days with non-congested traffic
(the remaining ones). As described in §5.1, the traffic models are run through an
initialization phase 4:00pm–4:05pm, in which boundary data create a realistic state
inside the segment. The actual validation is then conducted in 4:05pm–5:00pm.

Analogously as for the NGSIM data, we first consider the temporal evolution
of the traffic states that the models predict and study the qualitative behavior
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Figure 9. Comparison of models for the RTMC sensor data on
45 week days with congested traffic (top) and 29 days with non-
congested traffic (bottom). The left boxes show the time-averaged
error for each day (23), and the right boxes show the fully averaged
errors (24) of congested and non-congested days. The errors for
Interpolation, LWR, ARZ, and GARZ are depicted in log-scale.

of the models. We look at a day (03/26/2003) on which congestion builds up
rapidly (between 4:35pm and 4:40pm) at the sensor position, so that any delays
in the model behavior become visible. The results, shown in Fig. 8, confirm the
observations made for the NGSIM data: a) LWR and ARZ predict similar densities,
but ARZ does a better job at also capturing velocities correctly; b) both LWR and
ARZ propagate information too slowly, resulting in the onset of congestion to be
predicted 5 minutes too late; c) the GARZ model is not perfect (it still predicts the
onset of congestion 2 minutes too late), but it captures the general trends in both
variables quite nicely. This last point is particularly visible in the velocity profile
in the congested state in 4:42pm–5:00pm.

One aspect that is different from the NGSIM test is that the Interpolation predic-
tor performs visibly worse than the traffic models during the low density and high
velocity period 4:05pm–4:35pm. This demonstrates the assertion made in §5.4, that
simple interpolation performs much worse on longer road segments.

The average model errors obtained with the RTMC data are shown in Fig. 9.
The top panel collects the 45 congested days, and the bottom panel contains the



262 SHIMAO FAN, MICHAEL HERTY AND BENJAMIN SEIBOLD

29 non-congested days. In the left boxes the time-averaged errors (23) in 4:05pm–
5:00pm are shown for each day. The right boxes show the resulting total errors (24),
resulting from averaging over all study days. The numerical values, as well as the
excess errors of the models relative to GARZ, are shown in rows 5–6 of Table 2.

The results of the low density days demonstrate quite clearly that a) traffic mod-
els yield noticeably better predictions than simple interpolation; and b) second-order
models reproduce the real traffic behavior better than the first-order LWR model.
The fact that the GARZ model does not differ much from the ARZ model results
from the fact that for low densities, the two families of flow rate curves are very
similar (see Fig. 5). In turn, the results of the high density days confirm that a) as
expected, the quality of the ARZ model worsens relative to the other models; while
b) the GARZ model does not suffer from the same amount of accuracy deterioration
than ARZ. A somewhat unexpected observation is that for the high-density days,
the Interpolation predictor does not perform worse than LWR and ARZ. The reason
for this lies is the fact that LWR and ARZ propagate information too slowly, and
thus capture features with a delay (see Fig. 8). In contrast, interpolation propa-
gates information instantaneously—which is obviously unrealistic, but here happens
to lead to less severe errors than the spurious delays in LWR and ARZ.

6. Inhomogeneous ARZ and GARZ models. Thus far we have restricted our
attention to homogeneous second-order models, in which each vehicle remains for all
times attached to its specific velocity curve uw(ρ) = V (ρ, w). However, it is plausible
that in real traffic, drivers vary their empty road velocity w over time, and that
the overall traffic dynamics tend towards an equilibrium velocity curve Ueq(ρ) =
V (ρ, weq). We therefore extend our model validations to the inhomogeneous ARZ
model (7), denoted ARZ-τ , and the inhomogeneous GARZ model (9), denoted
GARZ-τ . In both cases the equilibrium velocity curve is the LWR velocity curve.

As argued in §2.5.3, for a Cauchy problem the solutions of the inhomogeneous
second-order models converge (as t → ∞ for τ fixed; or as τ → 0 for tfinal fixed)
to solutions of the first-order LWR model. In the presence of boundary data, the
same statement holds; however, the limits of the second-order model solutions are
LWR solutions with different boundary conditions than the LWR solutions that
we consider here. Consequently, the models ARZ-τ and GARZ-τ are not merely
perturbations of the LWR model, but instead could reproduce the dynamics of real
traffic better than LWR and better than homogeneous second-order models.

The inhomogeneous second-order models are based on the same data-fitted func-
tions as their homogeneous counterparts. The only new parameter is the relaxation
time τ . Since historic fundamental diagram data is commonly devoid of temporal
information relevant for traffic dynamics, there is no canonical way to obtain the
value of τ from historic data. Regarding realistic choices for τ , the only information
found in the literature is that it cannot be much smaller than 3 seconds due to
physical restrictions of the vehicle engines. Due to this absence of a good modeling
principle for the value of τ , we conduct our model validation procedure for multiple
instances of the inhomogeneous ARZ and GARZ models, where we let τ range from
milliseconds to days. For each test, whichever choice of τ yields the smallest model
error is then the optimal ARZ-τ (respectively optimal GARZ-τ) model.

The described τ -study is conducted for one day (January 8, 2003) in the RTMC
data set, and for the three NGSIM data sets. For the RTMC data we evaluate
the temporally averaged error (23), and for the NSGIM data the spatio-temporally
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Figure 10. Model errors of the inhomogeneous ARZ and GARZ
models, ARZ-τ (dashed blue) and GARZ-τ (solid black), as func-
tions of the relaxation time τ . Shown are the time-averaged errors
(23) for one day in the RTMC data set (top left), and spatio-
temporally averaged errors (22) for the three NSGIM data sets:
4:00pm–4:15pm (top right), 5:00pm–5:15pm (bottom left), and
5:15pm–5:30pm (bottom right). Also shown are the errors with the
homogeneous (i.e., τ → ∞) ARZ model (blue square) and GARZ
model (black circle), the error obtained with the LWR model (red
square), and the choices of τ that yield the smallest model error
(red star and red plus).

averaged errors (22). The results of the study are shown in Fig. 10. In each test case,
the ARZ-τ and GARZ-τ models are computed for many values of τ (blue and black
functions, respectively). In addition, the (homogeneous) ARZ and GARZ models
are computed (blue square and black circle). As expected, they agree with ARZ-τ
and GARZ-τ , respectively, for τ � 1. Moreover, the LWR model is computed (red
square). As argued above, due to the presence of boundary data with u 6= Ueq(ρ),
its results are different from ARZ-τ and GARZ-τ for τ � 1. Finally, in each test
case the particular τ = τopt is marked (red star and red plus) for which ARZ-τ and
GARZ-τ , respectively, yield the smallest model errors. It is apparent that in all four
cases shown in Fig. 10, the inhomogeneous models possess an optimal relaxation
time 0 < τopt <∞.

As one can see in Fig. 10, the error-minimizing relaxation times are τopt ≈ 25s for
the ARZ model (the result for NGSIM 4:00pm–4:15pm is not as reliable, because
the minimum is weakly pronounced), and τopt ≈ 50s for the GARZ model in the
NGSIM data. Moreover, for the RTMC data, the GARZ model yields τopt ≈ 150s.
If the values of τopt give an indication about the time scales on which driving be-
havior evolves in reality, then their relatively large values give rise to the interesting
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Data set ARZ ARZ-τopt GARZ GARZ-τopt

NGSIM 4:00–4:15 0.153 (+13%) 0.141 (+4%) 0.138 (+2%) 0.135
NGSIM 5:00–5:15 0.174 (+43%) 0.137 (+13%) 0.129 (+6%) 0.122
NGSIM 5:15–5:30 0.228 (+87%) 0.165 (+35%) 0.129 (+6%) 0.122
RTMC congested 0.208 (+18%) 0.192 (+8%) 0.184 (+4%) 0.177
RTMC non-cong. 0.067 (+6%) 0.066 (+5%) 0.064 (+2%) 0.063

Table 3. Spatio-temporal average errors of the homogeneous ARZ
and GARZ models, together with the inhomogeneous versions,
ARZ-τ and GARZ-τ , with optimal choices of the relaxation time
τ . Shown are the results for the three NGSIM data sets (rows
2–4), as well as the RTMC data, separated into congested and
non-congested days (rows 5–6). In each row, the parentheses de-
note the excess error relative to the best model (GARZ-τopt in all
cases). For the RTMC data, the optimal τ values are computed
separately for each day; then, averages over all respective days are
taken.

observation that real driving behavior changes rather slowly; much slower than the
time scales on which vehicles are able to accelerate due to engine power. In addi-
tion, one can observe that the GARZ model’s optimal relaxation time is noticeably
slower for the RTMC data than it is for the NGSIM data. While it is in princi-
ple possible that this difference stems from differences in driving behavior between
Minnapolis vs. the San Francisco Bay Area, more plausibly the difference stems
from the combination of a relatively flat minimum of the black error curve, and
from aggregation and lack of precision effects in the sensor data.

In order to quantify how much the inhomogeneous second-order models can im-
prove the model accuracy relative to homogeneous second-order models, we consider
the model errors of the ARZ-τ and GARZ-τ models (with τ = τopt for each test
case) in comparison with the errors of the ARZ and GARZ models. The resulting
error values, together with the excess errors relative to the GARZ-τopt model shown
in parentheses, are shown in Table 3. One can see that the addition of a relaxation
term can improve the accuracy of the ARZ model noticeably, in particular for flow
at high traffic densities (see NSGIM 5:15–5:30). This is in part due to the fact
that the ARZ model’s unrealistic spread in flow rate curves for large densities is
ameliorated by a relaxation towards the LWR curve. In contrast, the addition of a
relaxation term (of the considered form) to the GARZ model does hurt the model
accuracy, but it does not lead to significant improvements either; the GARZ model
appears to be quite good already in its homogeneous form, at least for the data sets
studied here.

7. Conclusions. We have presented a systematic approach to construct a data-
fitted generalized Aw-Rascle-Zhang (GARZ) model of traffic flow from historic fun-
damental diagram data. The modeling advantages and the mathematical properties
of the GARZ model have been discussed. Moreover, the predictive accuracy of the
GARZ model has been compared with other macroscopic traffic models via a three-
detector test on vehicle trajectory and stationary sensor data. The actual model
comparison has been carried out in a macroscopic sense, i.e., discretization effects
are kept small, and thus the accuracy of the actual PDE is investigated.
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The model comparison considers a hierarchy of models: (i) the first-order Lighthill-
Whitham-Richards (LWR) model, that is defined via a single curve Q(ρ) in the fun-
damental diagram; (ii) the second-order Aw-Rascle-Zhang (ARZ) model, that is de-
fined via a family of curves in the fundamental diagramQw(ρ) = Q(ρ)+ρ(w−Q′(0)),
each of which is the LWR curve plus a linear function; (iii) the second-order GARZ
model, that is defined via a family of curves that are not simple transformations of
each other, i.e., Qw(ρ) = ρV (ρ, w), where V (ρ, w) is a two-parameter generalized
velocity function; and finally, the model validation is augmented by (iv) an Inter-
polation predictor that reconstructs the traffic density and velocity in the study
domain via a simple linear interpolation of the boundary data. Moreover, the
second-order traffic models are considered in their homogeneous form, ARZ and
GARZ, as well as inhomogeneous versions thereof, ARZ-τ and GARZ-τ , for which
a relaxation term towards the LWR equilibrium state is added.

The general conclusions that can be drawn from the comparisons are as follows.
First, and most importantly, the GARZ model yields the most accurate predictions,
and it reproduces the behavior of the real data in the best fashion. Second, the ARZ
model is superior to the LWR model for low traffic densities; but its model accu-
racy suffers noticeably as traffic becomes more congested. This observation can be
interpreted as a manifestation of the ARZ model’s multiple stagnation densities—a
drawback that is addressed by the GARZ model. Third, in terms of averaged errors,
the Interpolation predictor yields model errors that are similar to, or even slightly
lower than, those of the LWR and ARZ models. At the same time, predictions
based on mere interpolation are more oscillatory and less sharp than predictions
obtained via traffic models. In addition, interpolation performs less well on longer
road segments. Fourth, it is observed that the addition of a relaxation term can
further improve the accuracy of second-order models. However, a noticeable im-
provement is only observed when the relaxation time τ is chosen well. In turn,
when τ is selected too small, the inhomogeneous model could be less accurate than
the corresponding homogeneous model.

The studies of the inhomogeneous second-order models reveal that the optimal
relaxation times lie in the range 14–60 seconds (with some values even larger). This
is two orders of magnitude larger than the drivers’ reaction time, and one order of
magnitude larger than what the vehicles’ engine capabilities would allow. A possible
explanation for such seemingly slow relaxation is that in the ARZ and the GARZ
models, it is the drivers’ empty road velocities that relax, i.e., their general driving
behavior, and not the actual vehicle velocities.

One modeling shortcoming of the ARZ model that is not addressed by the GARZ
model studied in this paper is that no unique functional relationship between flow
rate and density for low densities (“free flow regime”) is allowed. To address this
point, phase transition models (cf. [15, 33]) and variations of the ARZ model that
result from introducing an upper bound on the vehicle velocity [17] have been pro-
posed. Moreover, a specific phase transition model has been applied in a practical
context [11]. The possibility to allow for a unique flow rate vs. density relationship
may be of importance in certain applications. As described in a companion paper
[25], this task can also be achieved within the GARZ framework, by collapsing the
fundamental diagram curves into a single function in the free flow regime.
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