[1]
|
J. A. Acebron, L. L. Bonilla, C. J. Perez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. doi: 10.1103/RevModPhys.77.137
|
[2]
|
J. A. Acebron, L. L. Bonilla and R. Spigler, Synchronization in populations of globally coupled oscillators with inertial effect, Phys. Rev. E., 62 (2000), 3437-3454. doi: 10.1103/PhysRevE.62.3437
|
[3]
|
J. A. Acebron and R. Spigler, Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators, Phys. Rev. Lett., 81 (1998), 2229-2332. doi: 10.1103/PhysRevLett.81.2229
|
[4]
|
J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564. doi: 10.1038/211562a0
|
[5]
|
N. J. Balmforth and R. Sassi, A shocking display of synchrony, Physica D., 143 (2000), 21-55. doi: 10.1016/S0167-2789(00)00095-6
|
[6]
|
preprint, arXiv:1301.1883.
|
[7]
|
H. Chiba, Continuous limit of the moments system for the globally coupled phase oscillator, Discrete Contin. Dyn. Syst., 33 (2013), 1891-1903. doi: 10.3934/dcds.2013.33.1891
|
[8]
|
to appear in Quart. Appl. Math.
|
[9]
|
Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D., 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011
|
[10]
|
Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D., 240 (2011), 32-44. doi: 10.1016/j.physd.2010.08.004
|
[11]
|
N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Autom. Control., 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884
|
[12]
|
J. D. Crawford and K. T. R. Davies, Synchronization of globally coupled phase oscillators: Singularities and scaling for general couplings, Physica D., 125 (1999), 1-46. doi: 10.1016/S0167-2789(98)00235-8
|
[13]
|
H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function, Physica D., 91 (1996), 24-66. doi: 10.1016/0167-2789(95)00260-X
|
[14]
|
B. C. Daniels, S. T. Dissanayake and B. R. Trees, Synchronization of coupled rotators: Josephson junction ladders and the locally coupled Kuramoto model, Phys. Rev. E., 67 (2003), 026216. doi: 10.1103/PhysRevE.67.026216
|
[15]
|
F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X
|
[16]
|
G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Biol., 22 (1985), 1-9. doi: 10.1007/BF00276542
|
[17]
|
S.-Y. Ha, T. Y. Ha and J.-H. Kim, On the complete synchronization for the Kuramoto model, Physica D., 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003
|
[18]
|
S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325. doi: 10.4310/CMS.2009.v7.n2.a2
|
[19]
|
H. Hong, M. Y. Choi, J. Yi and K.-S. Soh, Inertia effects on periodic synchronization in a system of coupled oscillators, Phys. Rev. E., 59 (1999), 353-363. doi: 10.1103/PhysRevE.59.353
|
[20]
|
H. Hong, G. S. Jeon and M. Y. Choi, Spontaneous phase oscillation induced by inertia and time delay, Phys. Rev. E., 65 (2002), 026208. doi: 10.1103/PhysRevE.65.026208
|
[21]
|
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3
|
[22]
|
Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics., 39 (1975), 420-422.
|
[23]
|
C. Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transp. Theory Stat. Phys., 34 (2005), 523-535. doi: 10.1080/00411450508951152
|
[24]
|
M. M. Lavrentiev and R. Spigler, Existence and uniqueness of solutions to the Kuramoto-Sakaguchi nonliner parabolic integrodifferential equation, Differ. Integr. Eq., 13 (2000), 649-667.
|
[25]
|
H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, In Kinetic Theories and the Boltzmann Equation, Lecture Notes in Mathematics 1048, Springer, Berlin, Heidelberg. doi: 10.1007/BFb0071878
|
[26]
|
A. Pikovsky, M. Rosenblum and J. Kurths, Synchrnization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743
|
[27]
|
P.-A. Raviart, An analysis of particle methods, in Numerical Methods in Fluid Dynamics (Como, 1983), 243-324, Lecture Notes in Mathematics, 1127, Springer, Berlin, 1985. doi: 10.1007/BFb0074532
|
[28]
|
H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entraintment, Prog. Theor. Phys., 76 (1986), 576-581. doi: 10.1143/PTP.76.576
|
[29]
|
H. Sphohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin and Heidelberg, 1991. doi: 10.1007/978-3-642-84371-6
|
[30]
|
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D., 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4
|
[31]
|
H. A. Tanaka, A. J. Lichtenberg and S. Oishi, First order phase transition resulting from finite inertia in coupled oscillator systems, Phys. Rev. Lett., 78 (1997), 2104-2107. doi: 10.1103/PhysRevLett.78.2104
|
[32]
|
H. A. Tanaka, A. J. Lichtenberg and S. Oishi, Self-synchronization of coupled oscillators with hysteretic responses, Physica D., 100 (1997), 279-300. doi: 10.1016/S0167-2789(96)00193-5
|
[33]
|
S. Watanabe and J. W. Swift, Stability of periodic solutions in series arrays of Josephson junctions with internal capacitance, J. Nonlinear Sci., 7 (1997), 503-536. doi: 10.1007/s003329900038
|
[34]
|
S. Watanabe and S. H. Strogatz, Constants of motion for superconducting Josephson arrays, Physica D., 74 (1994), 197-253. doi: 10.1016/0167-2789(94)90196-1
|
[35]
|
K. Wiesenfeld, R. Colet and S. H. Strogatz, Synchronization transitions in a disordered Josephson series arrays, Phys. Rev. Lett., 76 (1996), 404-407. doi: 10.1103/PhysRevLett.76.404
|
[36]
|
K. Wiesenfeld, R. Colet and S. H. Strogatz, Frequency locking in Josephson arrays: Connection with the Kuramoto model, Phys. Rev. E., 57 (1988), 1563-1569. doi: 10.1103/PhysRevE.57.1563
|
[37]
|
K. Wiesenfeld and J. W. Swift, Averaged equations for Josephson junction series arrays, Phys. Rev. E., 51 (1995), 1020-1025. doi: 10.1103/PhysRevE.51.1020
|
[38]
|
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42. doi: 10.1016/0022-5193(67)90051-3
|