1.
|
Peng Zhang, Dong-yan Wu, S. C. Wong, Yi-zhou Tao,
Kinetic description of bottleneck effects in traffic flow,
2009,
30,
0253-4827,
425,
10.1007/s10483-009-0403-z
|
|
2.
|
Jonathan Zinsl,
Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations,
2016,
23,
1021-9722,
10.1007/s00030-016-0399-5
|
|
3.
|
A. Bertozzi, J. Garnett, T. Laurent, J. Verdera,
The Regularity of the Boundary of a Multidimensional Aggregation Patch,
2016,
48,
0036-1410,
3789,
10.1137/15M1033125
|
|
4.
|
Lijiang Wu, Dejan Slepčev,
Nonlocal Interaction Equations in Environments with Heterogeneities and Boundaries,
2015,
40,
0360-5302,
1241,
10.1080/03605302.2015.1015033
|
|
5.
|
Wanwan Wang, Yuxiang Li,
Interaction Functional with Nonlinear Diffusion and Exogenous Potential,
2020,
21,
1424-0637,
2637,
10.1007/s00023-020-00930-4
|
|
6.
|
Stefano Lisini, Antonio Marigonda,
On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals,
2010,
133,
0025-2611,
197,
10.1007/s00229-010-0371-3
|
|
7.
|
Barry D. Hughes, Klemens Fellner,
Continuum models of cohesive stochastic swarms: The effect of motility on aggregation patterns,
2013,
260,
01672789,
26,
10.1016/j.physd.2013.05.001
|
|
8.
|
Joep H M Evers, Razvan C Fetecau, Lenya Ryzhik,
Anisotropic interactions in a first-order aggregation model,
2015,
28,
0951-7715,
2847,
10.1088/0951-7715/28/8/2847
|
|
9.
|
Andrea L. Bertozzi, Thomas Laurent,
The behavior of solutions of multidimensional aggregation equations with mildly singular interaction kernels,
2009,
30,
0252-9599,
463,
10.1007/s11401-009-0191-5
|
|
10.
|
Hui Sun, David Uminsky, Andrea L. Bertozzi,
Stability and clustering of self-similar solutions of aggregation equations,
2012,
53,
0022-2488,
115610,
10.1063/1.4745180
|
|
11.
|
Klemens Fellner, Gaël Raoul,
Stability of stationary states of non-local equations with singular interaction potentials,
2011,
53,
08957177,
1436,
10.1016/j.mcm.2010.03.021
|
|
12.
|
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Elena Zhizhina,
On an aggregation in birth-and-death stochastic dynamics,
2014,
27,
0951-7715,
1105,
10.1088/0951-7715/27/6/1105
|
|
13.
|
Andrea L. Bertozzi, Thomas Laurent, Jesús Rosado,
Lp theory for the multidimensional aggregation equation,
2011,
64,
00103640,
45,
10.1002/cpa.20334
|
|
14.
|
Andrea L. Bertozzi, John B. Garnett, Thomas Laurent,
Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations,
2012,
44,
0036-1410,
651,
10.1137/11081986X
|
|
15.
|
Martin Burger, Luis Caffarelli, Peter A. Markowich,
Partial differential equation models in the socio-economic sciences,
2014,
372,
1364-503X,
20130406,
10.1098/rsta.2013.0406
|
|
16.
|
Theodore Kolokolnikov, José A. Carrillo, Andrea Bertozzi, Razvan Fetecau, Mark Lewis,
Emergent behaviour in multi-particle systems with non-local interactions,
2013,
260,
01672789,
1,
10.1016/j.physd.2013.06.011
|
|
17.
|
J.A. Carrillo, S. Lisini, G. Savaré, D. Slepčev,
Nonlinear mobility continuity equations and generalized displacement convexity,
2010,
258,
00221236,
1273,
10.1016/j.jfa.2009.10.016
|
|
18.
|
Alistair M. Middleton, Christian Fleck, Ramon Grima,
A continuum approximation to an off-lattice individual-cell based model of cell migration and adhesion,
2014,
359,
00225193,
220,
10.1016/j.jtbi.2014.06.011
|
|
19.
|
J. A. Carrillo, M. G. Delgadino, F. S. Patacchini,
Existence of ground states for aggregation-diffusion equations,
2019,
17,
0219-5305,
393,
10.1142/S0219530518500276
|
|
20.
|
Yanghong Huang, Andrea Bertozzi,
Asymptotics of blowup solutions for the aggregation equation,
2012,
17,
1553-524X,
1309,
10.3934/dcdsb.2012.17.1309
|
|
21.
|
Li Chen, Kevin Painter, Christina Surulescu, Anna Zhigun,
Mathematical models for cell migration: a non-local perspective,
2020,
375,
0962-8436,
20190379,
10.1098/rstb.2019.0379
|
|
22.
|
Lincoln Chayes, Inwon Kim, Yao Yao,
An Aggregation Equation with Degenerate Diffusion: Qualitative Property of Solutions,
2013,
45,
0036-1410,
2995,
10.1137/120874965
|
|
23.
|
Hailiang Liu, Zhongming Wang,
A free energy satisfying finite difference method for Poisson–Nernst–Planck equations,
2014,
268,
00219991,
363,
10.1016/j.jcp.2014.02.036
|
|
24.
|
Martin Burger, Marco Di Francesco, Simone Fagioli, Angela Stevens,
Sorting Phenomena in a Mathematical Model For Two Mutually Attracting/Repelling Species,
2018,
50,
0036-1410,
3210,
10.1137/17M1125716
|
|
25.
|
R.C. Fetecau, W. Sun,
First-order aggregation models and zero inertia limits,
2015,
259,
00220396,
6774,
10.1016/j.jde.2015.08.018
|
|
26.
|
Giovanni A. Bonaschi, José A. Carrillo, Marco Di Francesco, Mark A. Peletier,
Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D,
2015,
21,
1292-8119,
414,
10.1051/cocv/2014032
|
|
27.
|
Simone Fagioli, Yahya Jaafra,
Multiple patterns formation for an aggregation/diffusion predator-prey system,
2021,
16,
1556-181X,
377,
10.3934/nhm.2021010
|
|
28.
|
Gunnar Kaib,
Stationary States of an Aggregation Equation with Degenerate Diffusion and Bounded Attractive Potential,
2017,
49,
0036-1410,
272,
10.1137/16M1072450
|
|
29.
|
Arnaud Ducrot, Xiaoming Fu, Pierre Magal,
Turing and Turing–Hopf Bifurcations for a Reaction Diffusion Equation with Nonlocal Advection,
2018,
28,
0938-8974,
1959,
10.1007/s00332-018-9472-z
|
|
30.
|
Arnaud Ducrot, Pierre Magal,
Asymptotic Behavior of a Nonlocal Diffusive Logistic Equation,
2014,
46,
0036-1410,
1731,
10.1137/130922100
|
|
31.
|
Rong Yang, Hui Min,
On the Collisions of an $N$-Particle System Interacting via the Newtonian Gravitational Potential,
2021,
172,
0167-8019,
10.1007/s10440-021-00401-w
|
|
32.
|
Inwon Kim, Yao Yao,
The Patlak–Keller–Segel Model and Its Variations: Properties of Solutions via Maximum Principle,
2012,
44,
0036-1410,
568,
10.1137/110823584
|
|
33.
|
Marco Di Francesco, Massimo Fornasier, Jan-Christian Hütter, Daniel Matthes,
Asymptotic Behavior of Gradient Flows Driven by Nonlocal Power Repulsion and Attraction Potentials in One Dimension,
2014,
46,
0036-1410,
3814,
10.1137/140951497
|
|
34.
|
Mario Annunziato, Alfio Borzì,
A Fokker--Planck Approach to the Reconstruction of a Cell Membrane Potential,
2021,
43,
1064-8275,
B623,
10.1137/20M131504X
|
|
35.
|
R.C. Fetecau, Y. Huang,
Equilibria of biological aggregations with nonlocal repulsive–attractive interactions,
2013,
260,
01672789,
49,
10.1016/j.physd.2012.11.004
|
|
36.
|
Emily J. Hackett-Jones, Kerry A. Landman, Klemens Fellner,
Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling,
2012,
85,
1539-3755,
10.1103/PhysRevE.85.041912
|
|
37.
|
Carlos D. Acosta, Raimund Bürger, Carlos E. Mejía,
Efficient parameter estimation in a macroscopic traffic flow model by discrete mollification,
2015,
11,
2324-9935,
702,
10.1080/23249935.2015.1063022
|
|
38.
|
Stefan Diehl,
2012,
Chapter 7,
978-3-642-20235-3,
175,
10.1007/978-3-642-20236-0_7
|
|
39.
|
Marco Di Francesco, Simone Fagioli,
Measure solutions for non-local interaction PDEs with two species,
2013,
26,
0951-7715,
2777,
10.1088/0951-7715/26/10/2777
|
|
40.
|
Razvan C. Fetecau, Ihsan Topaloglu, Rustum Choksi,
On minimizers of interaction functionals with competing attractive and repulsive potentials,
2015,
32,
0294-1449,
1283,
10.1016/j.anihpc.2014.09.004
|
|
41.
|
Hailiang Liu, Zhongming Wang,
A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson–Nernst–Planck systems,
2017,
328,
00219991,
413,
10.1016/j.jcp.2016.10.008
|
|
42.
|
J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, D. Slepčev,
Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations,
2011,
156,
0012-7094,
10.1215/00127094-2010-211
|
|
43.
|
KLEMENS FELLNER, GAËL RAOUL,
STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS,
2010,
20,
0218-2025,
2267,
10.1142/S0218202510004921
|
|
44.
|
R C Fetecau, Y Huang, T Kolokolnikov,
Swarm dynamics and equilibria for a nonlocal aggregation model,
2011,
24,
0951-7715,
2681,
10.1088/0951-7715/24/10/002
|
|
45.
|
ANDREA L. BERTOZZI, THOMAS LAURENT, FLAVIEN LÉGER,
AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS,
2012,
22,
0218-2025,
1140005,
10.1142/S0218202511400057
|
|
46.
|
Martin Burger, Razvan Fetecau, Yanghong Huang,
Stationary States and Asymptotic Behavior of Aggregation Models with Nonlinear Local Repulsion,
2014,
13,
1536-0040,
397,
10.1137/130923786
|
|
47.
|
John D. Towers,
Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space flux discontinuities,
2018,
139,
0029-599X,
939,
10.1007/s00211-018-0957-3
|
|
48.
|
Jianfeng Lu, Yulong Lu, James Nolen,
Scaling Limit of the Stein Variational Gradient Descent: The Mean Field Regime,
2019,
51,
0036-1410,
648,
10.1137/18M1187611
|
|
49.
|
Benoît Fabrèges, Frédéric Lagoutière, Sébastien Tran Tien, Nicolas Vauchelet,
Relaxation Limit of the Aggregation Equation with Pointy Potential,
2021,
10,
2075-1680,
108,
10.3390/axioms10020108
|
|
50.
|
Razvan C. Fetecau, Weiran Sun, Changhui Tan,
First-order aggregation models with alignment,
2016,
325,
01672789,
146,
10.1016/j.physd.2016.03.011
|
|
51.
|
José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb,
Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics,
2021,
41,
1553-5231,
3985,
10.3934/dcds.2021025
|
|
52.
|
Boris Andreianov, Clément Cancès,
A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rock media,
2014,
18,
1420-0597,
211,
10.1007/s10596-014-9403-5
|
|
53.
|
Marco Di Francesco, Simone Fagioli,
A nonlocal swarm model for predators–prey interactions,
2016,
26,
0218-2025,
319,
10.1142/S0218202516400042
|
|
54.
|
Yanghong Huang, Andrea L. Bertozzi,
Self-Similar Blowup Solutions to an Aggregation Equation in $R^n$,
2010,
70,
0036-1399,
2582,
10.1137/090774495
|
|
55.
|
Judith Berendsen, Martin Burger, Jan-Frederik Pietschmann,
On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion,
2017,
159,
0362546X,
10,
10.1016/j.na.2017.03.010
|
|
56.
|
J. A. Carrillo, J. S. Moll,
Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms,
2010,
31,
1064-8275,
4305,
10.1137/080739574
|
|
57.
|
Martin Burger, Bertram Düring, Lisa Maria Kreusser, Peter A. Markowich, Carola-Bibiane Schönlieb,
Pattern formation of a nonlocal, anisotropic interaction model,
2018,
28,
0218-2025,
409,
10.1142/S0218202518500112
|
|
58.
|
François Bolley, José A. Carrillo,
Nonlinear Diffusion: Geodesic Convexity is Equivalent to Wasserstein Contraction,
2014,
39,
0360-5302,
1860,
10.1080/03605302.2014.892987
|
|
59.
|
Raimund Bürger, Kenneth H. Karlsen, John D. Towers,
An Engquist–Osher-Type Scheme for Conservation Laws with Discontinuous Flux Adapted to Flux Connections,
2009,
47,
0036-1429,
1684,
10.1137/07069314X
|
|
60.
|
Sara Daneri, Emanuela Radici, Eris Runa,
Deterministic particle approximation of aggregation-diffusion equations on unbounded domains,
2022,
312,
00220396,
474,
10.1016/j.jde.2021.12.019
|
|
61.
|
J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, D. Slepčev,
Confinement in nonlocal interaction equations,
2012,
75,
0362546X,
550,
10.1016/j.na.2011.08.057
|
|
62.
|
Klemens Fellner, Barry D. Hughes,
Solutions of a non‐local aggregation equation: Universal bounds, concavity changes, and efficient numerical solutions,
2020,
43,
0170-4214,
5398,
10.1002/mma.6281
|
|
63.
|
Angela Stevens, Michael Winkler,
Taxis-driven persistent localization in a degenerate Keller-Segel system,
2022,
47,
0360-5302,
2341,
10.1080/03605302.2022.2122836
|
|
64.
|
Dongyi Wei,
Global well-posedness and blow-up for the 2-D Patlak–Keller–Segel equation,
2018,
274,
00221236,
388,
10.1016/j.jfa.2017.10.019
|
|
65.
|
Sara Daneri, Emanuela Radici, Eris Runa,
Deterministic particle approximation of aggregation diffusion equations with nonlinear mobility,
2023,
20,
0219-8916,
707,
10.1142/S0219891623500212
|
|
66.
|
Marie Doumic, Sophie Hecht, Benoît Perthame, Diane Peurichard,
Multispecies cross-diffusions: From a nonlocal mean-field to a porous medium system without self-diffusion,
2024,
389,
00220396,
228,
10.1016/j.jde.2024.01.017
|
|
67.
|
Young-Pil Choi, Simone Fagioli, Valeria Iorio,
Small Inertia Limit for Coupled Kinetic Swarming Models,
2025,
35,
0938-8974,
10.1007/s00332-025-10134-x
|
|