Loading [Contrib]/a11y/accessibility-menu.js

Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I

  • Received: 01 February 2013 Revised: 01 September 2013
  • Primary: 35B25, 35B32, 35K57; Secondary: 34D15, 34E05, 34E10.

  • We consider a singularly perturbed bistable reaction diffusion equation in a one-dimensional spatially degenerate inhomogeneous media. Degeneracy arises due to the choice of spatial inhomogeneity from some well-known class of normal forms or universal unfoldings. By means of a bilinear double well potential, we explicitly demonstrate the similarities and discrepancies between the bifurcation phenomena of the reaction diffusion equation and the limiting problem. The former is described by the location of the transition layer while the latter by the zeros of the spatial inhomogeneity function. Our result is the first which considers simultaneously the effects of singular perturbation, spatial inhomogeneity and bifurcation phenomena. (Part II [9] of this series analyzes the pitch-fork bifurcation for a general smooth double well potential where precise asymptotics and spectral analysis are needed.)

    Citation: Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I[J]. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009

    Related Papers:

    [1] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [2] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10(4): 897-948. doi: 10.3934/nhm.2015.10.897
    [3] Toshiyuki Ogawa, Takashi Okuda . Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance. Networks and Heterogeneous Media, 2012, 7(4): 893-926. doi: 10.3934/nhm.2012.7.893
    [4] Gabriela Jaramillo . Inhomogeneities in 3 dimensional oscillatory media. Networks and Heterogeneous Media, 2015, 10(2): 387-399. doi: 10.3934/nhm.2015.10.387
    [5] Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012
    [6] Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058
    [7] Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013
    [8] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351
    [9] John R. King . Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity. Networks and Heterogeneous Media, 2013, 8(1): 343-378. doi: 10.3934/nhm.2013.8.343
    [10] Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales . Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks and Heterogeneous Media, 2013, 8(3): 745-772. doi: 10.3934/nhm.2013.8.745
  • We consider a singularly perturbed bistable reaction diffusion equation in a one-dimensional spatially degenerate inhomogeneous media. Degeneracy arises due to the choice of spatial inhomogeneity from some well-known class of normal forms or universal unfoldings. By means of a bilinear double well potential, we explicitly demonstrate the similarities and discrepancies between the bifurcation phenomena of the reaction diffusion equation and the limiting problem. The former is described by the location of the transition layer while the latter by the zeros of the spatial inhomogeneity function. Our result is the first which considers simultaneously the effects of singular perturbation, spatial inhomogeneity and bifurcation phenomena. (Part II [9] of this series analyzes the pitch-fork bifurcation for a general smooth double well potential where precise asymptotics and spectral analysis are needed.)


    [1] G. Alberti, Variational models for phase transitions, an approach via $\Gamma$-convergence, Calculus of Variations and Partial Differential Equations, (2000), 95-114.
    [2] S. B Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal Differential Equations, 67 (1987), 212-242. doi: 10.1016/0022-0396(87)90147-1
    [3] S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. I, Arch. Rational Mech. Anal., 59 (1975), 159-188.
    [4] S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. II, Arch. Rational Mech. Anal., 62 (1976), 209-235.
    [5] P. C. Fife and W. M. Greenlee, Interior transition layers for elliptic boundary value problems with a small parameter, Russian Math. Surveys, 29 (1974), 103-131. doi: 10.1070/RM1974v029n04ABEH001291
    [6] M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Volume I, Applied Mathematical Sciences 51, Spring-Verlag, New York 1985.
    [7] J. K. Hale and X. B. Lin, Multiple internal layer solutions generated by spatially oscillatory perturbations, J. Diff. Eqns., 154 (1999), 364-418. doi: 10.1006/jdeq.1998.3566
    [8] J. K. Hale and K. Sakamoto, Existence and stability of transition layers, Japan Journal Applied Math., 5 (1988), 367-405. doi: 10.1007/BF03167908
    [9] C. Q. Huang and N. K. Yip, Singular perturbation and bifurcation of diffused transition layers in degenerate inhomogeneous media, Part II, in Preprint, (2013).
    [10] J. E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory, Calc. Var. Partial Differential Equations, 10 (2000), 49-84. doi: 10.1007/PL00013453
    [11] H. Ikeda, Singular perturbation approach to stability properties of traveling wave solutions of reaction-diffusion systems, Hiroshima Math. J., 19 (1989), 587-630.
    [12] H. Ikeda, M. Mimura and Y. Nishirura, Global bifurcation phenomena of traveling wave solutions for some bistable reaction-diffusion systems, Nonlinear Analysis, Theory, Method and Application, 13 (1989), 507-526. doi: 10.1016/0362-546X(89)90061-8
    [13] H. Ikeda, Y. Nishiura and H. Suzuki, Stability of traveling waves and a relation between the Evans function and the SLEP equation, J. Reine Angew. Math., 475 (1996), 1-37.
    [14] R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Royal Soc. Edinburgh Sect. A, 111 (1989), 69-84. doi: 10.1017/S0308210500025026
    [15] M. Kowalczyk, On the existence and morse index of solutions to Allen-Cahn equation in two dimensions, Annali di Mathematics Pura ed Applicata, 184 (2005), 17-52. doi: 10.1007/s10231-003-0088-y
    [16] H. Kukubu, Y. Nishirura and H. Oka, Heteroclinic and homoclinic bifurcation in bistable reaction-diffusion systems, Journal of Differential Equations, 86 (1990), 260-341. doi: 10.1016/0022-0396(90)90033-L
    [17] F. Li and K. Nakashima, Transition layers for a spatially inhomogeneous Allen-Cahn in a multidimensional domains, Disc. Cont. Dyn. Sys., 32 (2012), 1391-1420. doi: 10.3934/dcds.2012.32.1391
    [18] L. Modica and S. Mortola, Il limite nella $\Gamma$-convergenze di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A, 14 (1977), 426-529.
    [19] A. S. do Nascimento, Local minimizers induced by spatial inhomogeneity with inner transition layer, J. Diff. Eqns., 133 (1997), 203-223. doi: 10.1006/jdeq.1996.3206
    [20] A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in $N$-dimensional domains, J. Diff. Eqns., 190 (2003), 16-38. doi: 10.1016/S0022-0396(02)00147-X
    [21] N. N. Nefedov and K. Sakamoto, Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equation with balanced nonlinearity, Hiroshima Math. J., 33 (2003), 391-432.
    [22] Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593. doi: 10.1137/0513037
    [23] Y. Nishiura, Singular limit approach to stability and bifurcation for bistable reaction diffusion systems, Rocky Mountain J. Math., 21 (1991), 727-767. doi: 10.1216/rmjm/1181072964
    [24] Y. Nishiura, H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 1726-1770. doi: 10.1137/0518124
    [25] Y. Nishiura, M. Mimura, H. Ikeda and H. Fujii, Singular limit analysis of stability of traveling wave solutions to bistable reaction-diffusion systems, SIAM J. Math. Anal., 21 (1990), 85-122. doi: 10.1137/0521006
    [26] F. Pacard and M. Ritore, From constant mean curvature hypersurfaces to the gradient theory of phase transitions, Journal of Differential Geometry, 64 (2003), 359-423.
    [27] H. Padilla and Y. Tonegawa, On the convergence of stable phase transitions, Communications on Pure and Applied Mathematics, 51 (1998), 551-579. doi: 10.1002/(SICI)1097-0312(199806)51:6<551::AID-CPA1>3.0.CO;2-6
    [28] M. del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interfaces in the Allen-Cahn equation, Arch. Rational Mech. Anal., 190 (2008), 141-187. doi: 10.1007/s00205-008-0143-3
    [29] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260. doi: 10.1007/BF00253122
  • This article has been cited by:

    1. Chaoqun Huang, Nung Kwan Yip, Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II, 2015, 10, 1556-181X, 897, 10.3934/nhm.2015.10.897
    2. Arnd Scheel, Sergey Tikhomirov, 2017, Chapter 6, 978-3-319-64172-0, 88, 10.1007/978-3-319-64173-7_6
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4523) PDF downloads(77) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog