[1]
|
G. Alberti, Variational models for phase transitions, an approach via $\Gamma$-convergence, Calculus of Variations and Partial Differential Equations, (2000), 95-114.
|
[2]
|
S. B Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal Differential Equations, 67 (1987), 212-242. doi: 10.1016/0022-0396(87)90147-1
|
[3]
|
S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. I, Arch. Rational Mech. Anal., 59 (1975), 159-188.
|
[4]
|
S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. II, Arch. Rational Mech. Anal., 62 (1976), 209-235.
|
[5]
|
P. C. Fife and W. M. Greenlee, Interior transition layers for elliptic boundary value problems with a small parameter, Russian Math. Surveys, 29 (1974), 103-131. doi: 10.1070/RM1974v029n04ABEH001291
|
[6]
|
M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Volume I, Applied Mathematical Sciences 51, Spring-Verlag, New York 1985.
|
[7]
|
J. K. Hale and X. B. Lin, Multiple internal layer solutions generated by spatially oscillatory perturbations, J. Diff. Eqns., 154 (1999), 364-418. doi: 10.1006/jdeq.1998.3566
|
[8]
|
J. K. Hale and K. Sakamoto, Existence and stability of transition layers, Japan Journal Applied Math., 5 (1988), 367-405. doi: 10.1007/BF03167908
|
[9]
|
C. Q. Huang and N. K. Yip, Singular perturbation and bifurcation of diffused transition layers in degenerate inhomogeneous media, Part II, in Preprint, (2013).
|
[10]
|
J. E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory, Calc. Var. Partial Differential Equations, 10 (2000), 49-84. doi: 10.1007/PL00013453
|
[11]
|
H. Ikeda, Singular perturbation approach to stability properties of traveling wave solutions of reaction-diffusion systems, Hiroshima Math. J., 19 (1989), 587-630.
|
[12]
|
H. Ikeda, M. Mimura and Y. Nishirura, Global bifurcation phenomena of traveling wave solutions for some bistable reaction-diffusion systems, Nonlinear Analysis, Theory, Method and Application, 13 (1989), 507-526. doi: 10.1016/0362-546X(89)90061-8
|
[13]
|
H. Ikeda, Y. Nishiura and H. Suzuki, Stability of traveling waves and a relation between the Evans function and the SLEP equation, J. Reine Angew. Math., 475 (1996), 1-37.
|
[14]
|
R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Royal Soc. Edinburgh Sect. A, 111 (1989), 69-84. doi: 10.1017/S0308210500025026
|
[15]
|
M. Kowalczyk, On the existence and morse index of solutions to Allen-Cahn equation in two dimensions, Annali di Mathematics Pura ed Applicata, 184 (2005), 17-52. doi: 10.1007/s10231-003-0088-y
|
[16]
|
H. Kukubu, Y. Nishirura and H. Oka, Heteroclinic and homoclinic bifurcation in bistable reaction-diffusion systems, Journal of Differential Equations, 86 (1990), 260-341. doi: 10.1016/0022-0396(90)90033-L
|
[17]
|
F. Li and K. Nakashima, Transition layers for a spatially inhomogeneous Allen-Cahn in a multidimensional domains, Disc. Cont. Dyn. Sys., 32 (2012), 1391-1420. doi: 10.3934/dcds.2012.32.1391
|
[18]
|
L. Modica and S. Mortola, Il limite nella $\Gamma$-convergenze di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A, 14 (1977), 426-529.
|
[19]
|
A. S. do Nascimento, Local minimizers induced by spatial inhomogeneity with inner transition layer, J. Diff. Eqns., 133 (1997), 203-223. doi: 10.1006/jdeq.1996.3206
|
[20]
|
A. S. do Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in $N$-dimensional domains, J. Diff. Eqns., 190 (2003), 16-38. doi: 10.1016/S0022-0396(02)00147-X
|
[21]
|
N. N. Nefedov and K. Sakamoto, Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equation with balanced nonlinearity, Hiroshima Math. J., 33 (2003), 391-432.
|
[22]
|
Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593. doi: 10.1137/0513037
|
[23]
|
Y. Nishiura, Singular limit approach to stability and bifurcation for bistable reaction diffusion systems, Rocky Mountain J. Math., 21 (1991), 727-767. doi: 10.1216/rmjm/1181072964
|
[24]
|
Y. Nishiura, H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 1726-1770. doi: 10.1137/0518124
|
[25]
|
Y. Nishiura, M. Mimura, H. Ikeda and H. Fujii, Singular limit analysis of stability of traveling wave solutions to bistable reaction-diffusion systems, SIAM J. Math. Anal., 21 (1990), 85-122. doi: 10.1137/0521006
|
[26]
|
F. Pacard and M. Ritore, From constant mean curvature hypersurfaces to the gradient theory of phase transitions, Journal of Differential Geometry, 64 (2003), 359-423.
|
[27]
|
H. Padilla and Y. Tonegawa, On the convergence of stable phase transitions, Communications on Pure and Applied Mathematics, 51 (1998), 551-579. doi: 10.1002/(SICI)1097-0312(199806)51:6<551::AID-CPA1>3.0.CO;2-6
|
[28]
|
M. del Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interfaces in the Allen-Cahn equation, Arch. Rational Mech. Anal., 190 (2008), 141-187. doi: 10.1007/s00205-008-0143-3
|
[29]
|
P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260. doi: 10.1007/BF00253122
|