Loading [MathJax]/jax/output/SVG/jax.js

Korn inequalities on thin periodic structures

  • Received: 01 December 2008 Revised: 01 December 2008
  • Primary: 58F15, 58F17; Secondary: 53C35.

  • We prove Korn-type inequalities for thin periodic structures of period ε and thickness εh(ε), where h(ε)0 as ε0, among which there are plane grids, spatial rod and box structures. These inequalities are important in homogenization of corresponding elasticity problems.

    Citation: V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures[J]. Networks and Heterogeneous Media, 2009, 4(1): 153-175. doi: 10.3934/nhm.2009.4.153

    Related Papers:

    [1] V. V. Zhikov, S. E. Pastukhova . Korn inequalities on thin periodic structures. Networks and Heterogeneous Media, 2009, 4(1): 153-175. doi: 10.3934/nhm.2009.4.153
    [2] S. E. Pastukhova . Asymptotic analysis in elasticity problems on thin periodic structures. Networks and Heterogeneous Media, 2009, 4(3): 577-604. doi: 10.3934/nhm.2009.4.577
    [3] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [4] María Anguiano, Renata Bunoiu . Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15(1): 87-110. doi: 10.3934/nhm.2020004
    [5] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651
    [6] Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk . Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks and Heterogeneous Media, 2007, 2(2): 255-277. doi: 10.3934/nhm.2007.2.255
    [7] Grégory Faye, Pascal Chossat . A spatialized model of visual texture perception using the structure tensor formalism. Networks and Heterogeneous Media, 2013, 8(1): 211-260. doi: 10.3934/nhm.2013.8.211
    [8] Martin Heida . Stochastic homogenization on perforated domains Ⅰ – Extension Operators. Networks and Heterogeneous Media, 2023, 18(4): 1820-1897. doi: 10.3934/nhm.2023079
    [9] François Murat, Ali Sili . A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15(1): 125-142. doi: 10.3934/nhm.2020006
    [10] Lifang Pei, Man Zhang, Meng Li . A novel error analysis of nonconforming finite element for the clamped Kirchhoff plate with elastic unilateral obstacle. Networks and Heterogeneous Media, 2023, 18(3): 1178-1189. doi: 10.3934/nhm.2023050
  • We prove Korn-type inequalities for thin periodic structures of period ε and thickness εh(ε), where h(ε)0 as ε0, among which there are plane grids, spatial rod and box structures. These inequalities are important in homogenization of corresponding elasticity problems.


  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3118) PDF downloads(102) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog