Loading [MathJax]/jax/output/SVG/fonts/TeX/Math/BoldItalic/Main.js

Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity

  • Received: 01 February 2006 Revised: 01 June 2006
  • Primary: 58F15, 58F17; Secondary: 53C35.

  • Solid tumours grow through two distinct phases: the avascular and the vascular phase. During the avascular growth phase, the size of the solid tumour is restricted largely by a diffusion-limited nutrient supply and the solid tumour remains localised and grows to a maximum of a few millimetres in diameter. However, during the vascular growth stage the process of cancer invasion of peritumoral tissue can and does take place. A crucial component of tissue invasion is the over-expression by the cancer cells of proteolytic enzyme activity, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs). uPA itself initiates the activation of an enzymatic cascade that primarily involves the activation of plasminogen and subsequently its matrix degrading protein plasmin. Degradation of the matrix then enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body.
        In this paper we consider a relatively simple mathematical model of cancer cell invasion of tissue (extracellular matrix) which focuses on the role of a generic matrix degrading enzyme such as uPA. The model consists of a system of reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the host tissue. The results obtained from numerical computations carried out on the model equations produce dynamic, heterogeneous spatio-temporal solutions and demonstrate the ability of a rather simple model to produce complicated dynamics, all of which are associated with tumour heterogeneity and cancer cell progression and invasion.

    Citation: M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity[J]. Networks and Heterogeneous Media, 2006, 1(3): 399-439. doi: 10.3934/nhm.2006.1.399

    Related Papers:

    [1] M.A.J Chaplain, G. Lolas . Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1(3): 399-439. doi: 10.3934/nhm.2006.1.399
    [2] Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini . The impact of cell crowding and active cell movement on vascular tumour growth. Networks and Heterogeneous Media, 2006, 1(4): 515-535. doi: 10.3934/nhm.2006.1.515
    [3] A. Chauviere, T. Hillen, L. Preziosi . Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2(2): 333-357. doi: 10.3934/nhm.2007.2.333
    [4] Urszula Ledzewicz, Heinz Schättler, Shuo Wang . On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks and Heterogeneous Media, 2019, 14(1): 131-147. doi: 10.3934/nhm.2019007
    [5] Henri Berestycki, Guillemette Chapuisat . Traveling fronts guided by the environment for reaction-diffusion equations. Networks and Heterogeneous Media, 2013, 8(1): 79-114. doi: 10.3934/nhm.2013.8.79
    [6] Laura Cattaneo, Paolo Zunino . Computational models for fluid exchange between microcirculation and tissue interstitium. Networks and Heterogeneous Media, 2014, 9(1): 135-159. doi: 10.3934/nhm.2014.9.135
    [7] Nicola Bellomo, Raluca Eftimie, Guido Forni . What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems. Networks and Heterogeneous Media, 2024, 19(2): 655-681. doi: 10.3934/nhm.2024029
    [8] Andrea Tosin . Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks and Heterogeneous Media, 2008, 3(1): 43-83. doi: 10.3934/nhm.2008.3.43
    [9] Nicola Bellomo, Sarah De Nigris, Damián Knopoff, Matteo Morini, Pietro Terna . Swarms dynamics approach to behavioral economy: Theoretical tools and price sequences. Networks and Heterogeneous Media, 2020, 15(3): 353-368. doi: 10.3934/nhm.2020022
    [10] Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond . A new model for the emergence of blood capillary networks. Networks and Heterogeneous Media, 2021, 16(1): 91-138. doi: 10.3934/nhm.2021001
  • Solid tumours grow through two distinct phases: the avascular and the vascular phase. During the avascular growth phase, the size of the solid tumour is restricted largely by a diffusion-limited nutrient supply and the solid tumour remains localised and grows to a maximum of a few millimetres in diameter. However, during the vascular growth stage the process of cancer invasion of peritumoral tissue can and does take place. A crucial component of tissue invasion is the over-expression by the cancer cells of proteolytic enzyme activity, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs). uPA itself initiates the activation of an enzymatic cascade that primarily involves the activation of plasminogen and subsequently its matrix degrading protein plasmin. Degradation of the matrix then enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body.
        In this paper we consider a relatively simple mathematical model of cancer cell invasion of tissue (extracellular matrix) which focuses on the role of a generic matrix degrading enzyme such as uPA. The model consists of a system of reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the host tissue. The results obtained from numerical computations carried out on the model equations produce dynamic, heterogeneous spatio-temporal solutions and demonstrate the ability of a rather simple model to produce complicated dynamics, all of which are associated with tumour heterogeneity and cancer cell progression and invasion.


  • This article has been cited by:

    1. J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, 2010, 23, 0951-7715, R1, 10.1088/0951-7715/23/1/R01
    2. Dumitru Trucu, Ping Lin, Mark A. J. Chaplain, Yangfan Wang, A Multiscale Moving Boundary Model Arising in Cancer Invasion, 2013, 11, 1540-3459, 309, 10.1137/110839011
    3. Gülnihal Meral, Christian Stinner, Christina Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, 2015, 20, 1553-524X, 189, 10.3934/dcdsb.2015.20.189
    4. Feng Dai, Bin Liu, Optimal control problem for a general reaction–diffusion tumor–immune system with chemotherapy, 2021, 358, 00160032, 448, 10.1016/j.jfranklin.2020.10.032
    5. Gülnihal Meral, İbrahim Çağatay Yamanlar, Mathematical Analysis and Numerical Simulations for the Cancer Tissue Invasion Model, 2018, 68, 1303-5991, 371, 10.31801/cfsuasmas.421546
    6. Thomas Lorenz, Christina Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, 2014, 24, 0218-2025, 2383, 10.1142/S0218202514500249
    7. Anne Dietrich, Niklas Kolbe, Nikolaos Sfakianakis, Christina Surulescu, Multiscale Modeling of Glioma Invasion: From Receptor Binding to Flux-Limited Macroscopic PDEs, 2022, 20, 1540-3459, 685, 10.1137/21M1412104
    8. Xinru Cao, Boundedness in a three-dimensional chemotaxis–haptotaxis model, 2016, 67, 0044-2275, 10.1007/s00033-015-0601-3
    9. A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion, 2008, 250, 00225193, 684, 10.1016/j.jtbi.2007.10.026
    10. Yifu Wang, A Review on the Qualitative Behavior of Solutions in Some Chemotaxis–Haptotaxis Models of Cancer Invasion, 2020, 8, 2227-7390, 1464, 10.3390/math8091464
    11. Pia Domschke, Dumitru Trucu, Alf Gerisch, Mark A. J. Chaplain, Structured models of cell migration incorporating molecular binding processes, 2017, 75, 0303-6812, 1517, 10.1007/s00285-017-1120-y
    12. Chunhua Jin, Global solvability and stabilization to a cancer invasion model with remodelling of ECM, 2020, 33, 0951-7715, 5049, 10.1088/1361-6544/ab9249
    13. Feng Dai, Bin Liu, Optimal control and pattern formation for a haptotaxis model of solid tumor invasion, 2019, 356, 00160032, 9364, 10.1016/j.jfranklin.2019.08.039
    14. Jiashan Zheng, Boundedness of the solution of a higher-dimensional parabolic–ODE–parabolic chemotaxis–haptotaxis model with generalized logistic source, 2017, 30, 0951-7715, 1987, 10.1088/1361-6544/aa675e
    15. Szabolcs Suveges, Raluca Eftimie, Dumitru Trucu, Directionality of Macrophages Movement in Tumour Invasion: A Multiscale Moving-Boundary Approach, 2020, 82, 0092-8240, 10.1007/s11538-020-00819-7
    16. Ying Chen, John S. Lowengrub, Tumor growth in complex, evolving microenvironmental geometries: A diffuse domain approach, 2014, 361, 00225193, 14, 10.1016/j.jtbi.2014.06.024
    17. Gülnihal Meral, DRBEM-FDM solution of a chemotaxis–haptotaxis model for cancer invasion, 2019, 354, 03770427, 299, 10.1016/j.cam.2018.04.047
    18. Jeyaraj Manimaran, Lingeshwaran Shangerganesh, Solvability and numerical simulations for tumor invasion model with nonlinear diffusion, 2020, 2, 2577-7408, 10.1002/cmm4.1068
    19. Feng Dai, Bin Liu, Global boundedness of classical solutions to a two species cancer invasion haptotaxis model with tissue remodeling, 2020, 483, 0022247X, 123583, 10.1016/j.jmaa.2019.123583
    20. Xueyan Tao, Global weak solutions to an oncolytic viral therapy model with doubly haptotactic terms, 2021, 60, 14681218, 103276, 10.1016/j.nonrwa.2020.103276
    21. Mehdi Dehghan, Niusha Narimani, An element-free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue, 2018, 59, 0307904X, 500, 10.1016/j.apm.2018.01.034
    22. A. Morozov, M. Ptashnyk, V. Volpert, A. Morozov, M. Ptashnyk, V. Volpert, Preface. Bifurcations and Pattern Formation in Biological Applications, 2016, 11, 1760-6101, 1, 10.1051/mmnp/201611501
    23. Christian Engwer, Christian Stinner, Christina Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, 2017, 27, 0218-2025, 1355, 10.1142/S0218202517400188
    24. Yan Li, Johannes Lankeit, Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion, 2016, 29, 0951-7715, 1564, 10.1088/0951-7715/29/5/1564
    25. David Reher, Barbara Klink, Andreas Deutsch, Anja Voss-Böhme, Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model, 2017, 12, 1745-6150, 10.1186/s13062-017-0188-z
    26. Feng Dai, Bin Liu, Global boundedness for a N-dimensional two species cancer invasion haptotaxis model with tissue remodeling, 2022, 27, 1531-3492, 311, 10.3934/dcdsb.2021044
    27. Jone Urdal, Jahn Otto Waldeland, Steinar Evje, Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present, 2019, 18, 1617-7959, 1047, 10.1007/s10237-019-01128-2
    28. Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu, Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions, 2021, 18, 1551-0018, 5252, 10.3934/mbe.2021267
    29. M. Aquino, M. Negreanu, A.M. Vargas, A meshless numerical method for a system with intraspecific and interspecific competition, 2022, 145, 09557997, 242, 10.1016/j.enganabound.2022.09.005
    30. Mikhail K. Kolev, Miglena N. Koleva, Lubin G. Vulkov, Two positivity preserving flux limited, second-order numerical methods for a haptotaxis model, 2013, 29, 0749159X, 1121, 10.1002/num.21748
    31. Youshan Tao, Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source, 2009, 354, 0022247X, 60, 10.1016/j.jmaa.2008.12.039
    32. Feng Dai, Linjie Ma, Boundedness in a two-dimensional two-species cancer invasion haptotaxis model without cell proliferation, 2023, 74, 0044-2275, 10.1007/s00033-023-01942-w
    33. Jozil Takhirov, Global existence of classical solutions to a chemotaxis-haptotaxis model, 2021, 2, 2662-2963, 10.1007/s42985-021-00069-9
    34. Meng Liu, Yuxiang Li, Global generalized solutions of a haptotaxis model describing cancer cells invasion and metastatic spread, 2022, 21, 1534-0392, 927, 10.3934/cpaa.2022004
    35. Youshan Tao, Michael Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant, 2014, 257, 00220396, 784, 10.1016/j.jde.2014.04.014
    36. Luca Scarpa, Andrea Signori, On a class of non-local phase-field models for tumor growth with possibly singular potentials, chemotaxis, and active transport, 2021, 34, 0951-7715, 3199, 10.1088/1361-6544/abe75d
    37. Xuegang Hu, Liangchen Wang, Chunlai Mu, Ling Li, Boundedness in a three-dimensional chemotaxis–haptotaxis model with nonlinear diffusion, 2017, 355, 1631073X, 181, 10.1016/j.crma.2016.12.005
    38. Shin-Ichiro Ei, Hirofumi Izuhara, Masayasu Mimura, Spatio-temporal oscillations in the Keller–Segel system with logistic growth, 2014, 277, 01672789, 1, 10.1016/j.physd.2014.03.002
    39. Peter Romeo Nyarko, Martin Anokye, Mathematical modeling and numerical simulation of a multiscale cancer invasion of host tissue, 2020, 5, 2473-6988, 3111, 10.3934/math.2020200
    40. Jiashan Zheng, 2019, Chapter 12, 978-3-030-15241-3, 351, 10.1007/978-3-030-15242-0_12
    41. H. Lefraich, 2022, Chapter 16, 978-3-031-12514-0, 287, 10.1007/978-3-031-12515-7_16
    42. Antonino Amoddeo, Modeling Avascular Tumor Growth: Approach with an Adaptive Grid Numerical Technique, 2018, 09, 1756-9737, 1840002, 10.1142/S1756973718400024
    43. Youshan Tao, Chun Cui, A density-dependent chemotaxis–haptotaxis system modeling cancer invasion, 2010, 367, 0022247X, 612, 10.1016/j.jmaa.2010.02.015
    44. Kevin J. Painter, Thomas Hillen, Spatio-temporal chaos in a chemotaxis model, 2011, 240, 01672789, 363, 10.1016/j.physd.2010.09.011
    45. Anna Zhigun, Christina Surulescu, Aydar Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, 2016, 67, 0044-2275, 10.1007/s00033-016-0741-0
    46. Hui Wang, Pan Zheng, Jie Xing, Boundedness in a chemotaxis–haptotaxis model with gradient-dependent flux limitation, 2021, 122, 08939659, 107505, 10.1016/j.aml.2021.107505
    47. Yuhuan Li, Ke Lin, Chunlai Mu, Boundedness and asymptotic behavior of solutions to a chemotaxis–haptotaxis model in high dimensions, 2015, 50, 08939659, 91, 10.1016/j.aml.2015.06.010
    48. Tomomi Yokota, Michael Winkler, Akio Ito, Kentarou Fujie, Stabilization in a chemotaxis model for tumor invasion, 2015, 36, 1078-0947, 151, 10.3934/dcds.2016.36.151
    49. Tian Xiang, Jiashan Zheng, A new result for 2D boundedness of solutions to a chemotaxis–haptotaxis model with/without sub-logistic source, 2019, 32, 0951-7715, 4890, 10.1088/1361-6544/ab41d5
    50. Adam Korpusik, A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection, 2017, 43, 10075704, 369, 10.1016/j.cnsns.2016.07.017
    51. On some models for cancer cell migration through tissue networks, 2011, 8, 1551-0018, 575, 10.3934/mbe.2011.8.575
    52. Zuzanna Szymańska, Jakub Urbański, Anna Marciniak-Czochra, Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue, 2009, 58, 0303-6812, 819, 10.1007/s00285-008-0220-0
    53. Kang-Ling Liao, Xue-Feng Bai, Avner Friedman, Timothy W. Secomb, Mathematical Modeling of Interleukin-27 Induction of Anti-Tumor T Cells Response, 2014, 9, 1932-6203, e91844, 10.1371/journal.pone.0091844
    54. P. Gerlee, A.R.A. Anderson, Evolution of cell motility in an individual-based model of tumour growth, 2009, 259, 00225193, 67, 10.1016/j.jtbi.2009.03.005
    55. Pan Zheng, Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion, 2016, 21, 1531-3492, 2039, 10.3934/dcdsb.2016035
    56. Gregory Baramidze, Victoria Baramidze, Ying Xu, Fang-Bao Tian, Mathematical model and computational scheme for multi-phase modeling of cellular population and microenvironmental dynamics in soft tissue, 2021, 16, 1932-6203, e0260108, 10.1371/journal.pone.0260108
    57. Peter Y.H. Pang, Yifu Wang, Global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant, 2017, 263, 00220396, 1269, 10.1016/j.jde.2017.03.016
    58. Dan Li, Chunlai Mu, Hong Yi, Global boundedness in a three-dimensional chemotaxis–haptotaxis model, 2019, 77, 08981221, 2447, 10.1016/j.camwa.2018.12.030
    59. M. Kolev, B. Zubik-Kowal, Numerical Solutions for a Model of Tissue Invasion and Migration of Tumour Cells, 2011, 2011, 1748-670X, 1, 10.1155/2011/452320
    60. Vivi Andasari, Alf Gerisch, Georgios Lolas, Andrew P. South, Mark A. J. Chaplain, Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation, 2011, 63, 0303-6812, 141, 10.1007/s00285-010-0369-1
    61. Martina Conte, Luca Gerardo-Giorda, Maria Groppi, Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model, 2020, 486, 00225193, 110088, 10.1016/j.jtbi.2019.110088
    62. Szabolcs Suveges, Raluca Eftimie, Dumitru Trucu, Re-polarisation of Macrophages Within Collective Tumour Cell Migration: A Multiscale Moving Boundary Approach, 2022, 7, 2297-4687, 10.3389/fams.2021.799650
    63. Francisco J. Solis, Sandra E. Delgadillo, Evolution of a mathematical model of an aggressive–invasive cancer under chemotherapy, 2015, 69, 08981221, 545, 10.1016/j.camwa.2015.01.013
    64. Steinar Evje, Huanyao Wen, A Stokes Two-Fluid Model for Cell Migration that Can Account for Physical Cues in the Microenvironment, 2018, 50, 0036-1410, 86, 10.1137/16M1078185
    65. Juan J. Benito, Ángel García, María Lucía Gavete, Mihaela Negreanu, Francisco Ureña, Antonio M. Vargas, Convergence and Numerical Solution of a Model for Tumor Growth, 2021, 9, 2227-7390, 1355, 10.3390/math9121355
    66. Martha B. Alvarez-Elizondo, Rakefet Rozen, Daphne Weihs, 2018, 9780128129524, 449, 10.1016/B978-0-12-812952-4.00015-5
    67. Youshan Tao, Michael Winkler, Large Time Behavior in a Multidimensional Chemotaxis-Haptotaxis Model with Slow Signal Diffusion, 2015, 47, 0036-1410, 4229, 10.1137/15M1014115
    68. Farhad Hatami, Mohammad Bagher Ghaemi, Numerical Solution of Model of Cancer Invasion with Tissue, 2013, 04, 2152-7385, 1050, 10.4236/am.2013.47143
    69. Danqing Zhang, Chunhua Jin, Yi Xiang, Stabilization to a cancer invasion model with remodeling mechanism and slow diffusion, 2022, 73, 0044-2275, 10.1007/s00033-022-01839-0
    70. Youshan Tao, Mingjun Wang, A Combined Chemotaxis-haptotaxis System: The Role of Logistic Source, 2009, 41, 0036-1410, 1533, 10.1137/090751542
    71. Kevin J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, 2019, 481, 00225193, 162, 10.1016/j.jtbi.2018.06.019
    72. Arran Hodgkinson, Laurent Le Cam, Dumitru Trucu, Ovidiu Radulescu, Spatio-Genetic and phenotypic modelling elucidates resistance and re-sensitisation to treatment in heterogeneous melanoma, 2019, 466, 00225193, 84, 10.1016/j.jtbi.2018.11.037
    73. Akisato Kubo, Hiroki Hoshino, 2015, Chapter 28, 978-3-319-12576-3, 233, 10.1007/978-3-319-12577-0_28
    74. Christian Engwer, Thomas Hillen, Markus Knappitsch, Christina Surulescu, Glioma follow white matter tracts: a multiscale DTI-based model, 2015, 71, 0303-6812, 551, 10.1007/s00285-014-0822-7
    75. Steinar Evje, An integrative multiphase model for cancer cell migration under influence of physical cues from the microenvironment, 2017, 165, 00092509, 240, 10.1016/j.ces.2017.02.045
    76. Vasiliki Bitsouni, Dumitru Trucu, Mark A J Chaplain, Raluca Eftimie, Aggregation and travelling wave dynamics in a two-population model of cancer cell growth and invasion, 2018, 1477-8599, 10.1093/imammb/dqx019
    77. Antonino Amoddeo, Bernardo Spagnolo, Moving mesh partial differential equations modelling to describe oxygen induced effects on avascular tumour growth, 2015, 2, 2331-1940, 1050080, 10.1080/23311940.2015.1050080
    78. Jiashan Zheng, Yifu Wang, Boundedness of solutions to a quasilinear chemotaxis–haptotaxis model, 2016, 71, 08981221, 1898, 10.1016/j.camwa.2016.03.014
    79. Pia Domschke, Dumitru Trucu, Alf Gerisch, Mark A. J. Chaplain, Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns, 2014, 361, 00225193, 41, 10.1016/j.jtbi.2014.07.010
    80. Anita Häcker, A mathematical model for mesenchymal and chemosensitive cell dynamics, 2012, 64, 0303-6812, 361, 10.1007/s00285-011-0415-7
    81. Liangchen Wang, Chunlai Mu, Xuegang Hu, Ya Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, 2017, 40, 01704214, 3000, 10.1002/mma.4216
    82. Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu, Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix, 2022, 19, 1551-0018, 6157, 10.3934/mbe.2022288
    83. Youshan Tao, Michael Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis—haptotaxis model, 2014, 144, 0308-2105, 1067, 10.1017/S0308210512000571
    84. Ensil Kang, Jihoon Lee, GLOBAL SOLUTIONS TO CHEMOTAXIS-HAPTOTAXIS TUMOR INVASION SYSTEM WITH TISSUE RE-ESTABLISHMENT, 2015, 28, 1226-3524, 161, 10.14403/jcms.2015.28.1.161
    85. Yifu Wang, Yuanyuan Ke, Large time behavior of solution to a fully parabolic chemotaxis–haptotaxis model in higher dimensions, 2016, 260, 00220396, 6960, 10.1016/j.jde.2016.01.017
    86. Noorehan Yaacob, Sharidan Shafie, Takashi Suzuki, Mohd Ariff Admon, 2021, 2423, 0094-243X, 020037, 10.1063/5.0075754
    87. Elisabeth Logak, Chao Wang, The singular limit of a haptotaxis model with bistable growth, 2012, 11, 1553-5258, 209, 10.3934/cpaa.2012.11.209
    88. Jiashan Zheng, Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, 2017, 37, 1553-5231, 627, 10.3934/dcds.2017026
    89. Shuyan Qiu, Chunlai Mu, Yafeng Li, Boundedness and Stability in a Chemotaxis-Growth Model with Indirect Attractant Production and Signal-Dependent Sensitivity, 2020, 169, 0167-8019, 341, 10.1007/s10440-019-00301-0
    90. Federica Bubba, Benoit Perthame, Daniele Cerroni, Pasquale Ciarletta, Paolo Zunino, A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion, 2022, 15, 1937-1632, 2053, 10.3934/dcdss.2022044
    91. Viviana Niño-Celis, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa, Convergence and positivity of Finite Element methods for a haptotaxis model of tumoral invasion, 2021, 89, 08981221, 20, 10.1016/j.camwa.2021.02.007
    92. Feng Dai, Bin Liu, A New Result for Global Solvability of a Two Species Cancer Invasion Haptotaxis Model with Tissue Remodeling, 2022, 54, 0036-1410, 1, 10.1137/19M1309870
    93. Hai-Yang Jin, Tian Xiang, Negligibility of haptotaxis effect in a chemotaxis–haptotaxis model, 2021, 31, 0218-2025, 1373, 10.1142/S0218202521500287
    94. Sulasri Suddin, Fajar Adi-Kusumo, Lina Aryati, Sining Zheng, Reaction-Diffusion on a Spatial Mathematical Model of Cancer Immunotherapy with Effector Cells and IL-2 Compounds’ Interactions, 2021, 2021, 1687-9651, 1, 10.1155/2021/5535447
    95. Hui Tang, Yunfei Yuan, Optimal control for a chemotaxis–haptotaxis model in two space dimensions, 2022, 2022, 1687-2770, 10.1186/s13661-022-01661-7
    96. Guoqiang Ren, Bin Liu, Global classical solvability in a three‐dimensional haptotaxis system modeling oncolytic virotherapy, 2021, 44, 0170-4214, 9275, 10.1002/mma.7354
    97. Dumitru Trucu, Pia Domschke, Alf Gerisch, Mark A. J. Chaplain, 2016, Chapter 5, 978-3-319-42678-5, 275, 10.1007/978-3-319-42679-2_5
    98. Nikolaos Sfakianakis, Anotida Madzvamuse, Mark A. J. Chaplain, A Hybrid Multiscale Model for Cancer Invasion of the Extracellular Matrix, 2020, 18, 1540-3459, 824, 10.1137/18M1189026
    99. Pan Zheng, Chunlai Mu, Xiaojun Song, On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion, 2015, 36, 1078-0947, 1737, 10.3934/dcds.2016.36.1737
    100. Yen Nguyen Edalgo, Ashlee Ford Versypt, Mathematical Modeling of Metastatic Cancer Migration through a Remodeling Extracellular Matrix, 2018, 6, 2227-9717, 58, 10.3390/pr6050058
    101. Elisabetta Rocca, Luca Scarpa, Andrea Signori, Parameter identification for nonlocal phase field models for tumor growth via optimal control and asymptotic analysis, 2021, 31, 0218-2025, 2643, 10.1142/S0218202521500585
    102. Michael Winkler, Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, 2018, 112, 00217824, 118, 10.1016/j.matpur.2017.11.002
    103. Joseph Malinzi, Innocenter Amima, Mathematical analysis of a tumour-immune interaction model: A moving boundary problem, 2019, 308, 00255564, 8, 10.1016/j.mbs.2018.12.009
    104. Hui Wang, Pan Zheng, Qualitative behavior of solutions for a chemotaxis-haptotaxis system with gradient-dependent flux-limitation, 2022, 0003-6811, 1, 10.1080/00036811.2022.2158820
    105. Peter Y. H. Pang, Yifu Wang, Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis–haptotaxis, 2019, 29, 0218-2025, 1387, 10.1142/S0218202519500246
    106. W. Domgno Kuipou, A. Mohamadou, Management of invasive cells in soft biological tissues through modulated nonlinear excitations: Long-range effects, 2022, 110, 10075704, 106360, 10.1016/j.cnsns.2022.106360
    107. Yen T. Nguyen Edalgo, Anya L. Zornes, Ashlee N. Ford Versypt, A hybrid discrete–continuous model of metastatic cancer cell migration through a remodeling extracellular matrix, 2019, 65, 0001-1541, 10.1002/aic.16671
    108. Sashikumaar Ganesan, Shangerganesh Lingeshwaran, Galerkin finite element method for cancer invasion mathematical model, 2017, 73, 08981221, 2603, 10.1016/j.camwa.2017.04.006
    109. Feng Dai, Bin Liu, Global weak solutions in a three-dimensional two-species cancer invasion haptotaxis model without cell proliferation, 2022, 63, 0022-2488, 091501, 10.1063/5.0097126
    110. MIKHAIL KOLEV, BARBARA ZUBIK-KOWAL, NUMERICAL VERSUS EXPERIMENTAL DATA FOR PROSTATE TUMOUR GROWTH, 2011, 19, 0218-3390, 33, 10.1142/S0218339011003774
    111. JAN KELKEL, CHRISTINA SURULESCU, A MULTISCALE APPROACH TO CELL MIGRATION IN TISSUE NETWORKS, 2012, 22, 0218-2025, 1150017, 10.1142/S0218202511500175
    112. Youshan Tao, Michael Winkler, Dominance of chemotaxis in a chemotaxis–haptotaxis model, 2014, 27, 0951-7715, 1225, 10.1088/0951-7715/27/6/1225
    113. Zhen Chen, Youshan Tao, Large-Data Solutions in a Three-Dimensional Chemotaxis-Haptotaxis System with Remodeling of Non-diffusible Attractant: The Role of Sub-linear Production of Diffusible Signal, 2019, 163, 0167-8019, 129, 10.1007/s10440-018-0216-8
    114. J.J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A.M. Vargas, Solving a chemotaxis–haptotaxis system in 2D using Generalized Finite Difference Method, 2020, 80, 08981221, 762, 10.1016/j.camwa.2020.05.008
    115. Akisato Kubo, Yuto Miyata, Hidetoshi Kobayashi, Hiroki Hoshino, Naoki Hayashi, Nonlinear Evolution Equations and Its Application to a Tumour Invasion Model, 2016, 06, 2160-0368, 878, 10.4236/apm.2016.612066
    116. Lu Peng, Dumitru Trucu, Ping Lin, Alastair Thompson, Mark A. J. Chaplain, A Multiscale Mathematical Model of Tumour Invasive Growth, 2017, 79, 0092-8240, 389, 10.1007/s11538-016-0237-2
    117. Sounak Sadhukhan, P. K. Mishra, A multi-layered hybrid model for cancer cell invasion, 2022, 60, 0140-0118, 1075, 10.1007/s11517-022-02514-2
    118. Mark A. J. Chaplain, 2007, 0470025069, 10.1002/9780470025079.chap60.pub2
    119. Chunhua Jin, Global classical solutions and convergence to a mathematical model for cancer cells invasion and metastatic spread, 2020, 269, 00220396, 3987, 10.1016/j.jde.2020.03.018
    120. Chunhua Jin, Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms, 2018, 50, 00246093, 598, 10.1112/blms.12160
    121. Jahn O. Waldeland, Steinar Evje, A multiphase model for exploring tumor cell migration driven by autologous chemotaxis, 2018, 191, 00092509, 268, 10.1016/j.ces.2018.06.076
    122. Feng Dai, Bin Liu, Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production, 2020, 269, 00220396, 10839, 10.1016/j.jde.2020.07.027
    123. N. Bellomo, N. Outada, J. Soler, Y. Tao, M. Winkler, Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision, 2022, 32, 0218-2025, 713, 10.1142/S0218202522500166
    124. Dan Li, Chunlai Mu, Pan Zheng, Boundedness and large time behavior in a quasilinear chemotaxis model for tumor invasion, 2018, 28, 0218-2025, 1413, 10.1142/S0218202518500380
    125. Masaaki Mizukami, Hirohiko Otsuka, Tomomi Yokota, Global existence and boundedness in a chemotaxis–haptotaxis system with signal-dependent sensitivity, 2018, 464, 0022247X, 354, 10.1016/j.jmaa.2018.04.002
    126. Johannes Lankeit, Michael Winkler, Facing Low Regularity in Chemotaxis Systems, 2020, 122, 0012-0456, 35, 10.1365/s13291-019-00210-z
    127. Peng Feng, Zhewei Dai, Dorothy Wallace, On a 2D Model of Avascular Tumor with Weak Allee Effect, 2019, 2019, 1110-757X, 1, 10.1155/2019/9581072
    128. Zhe Jia, Zuodong Yang, Global boundedness to a chemotaxis–haptotaxis model with nonlinear diffusion, 2020, 103, 08939659, 106192, 10.1016/j.aml.2019.106192
    129. Szabolcs Suveges, Kismet Hossain-Ibrahim, J. Douglas Steele, Raluca Eftimie, Dumitru Trucu, Mathematical Modelling of Glioblastomas Invasion within the Brain: A 3D Multi-Scale Moving-Boundary Approach, 2021, 9, 2227-7390, 2214, 10.3390/math9182214
    130. N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, 2015, 25, 0218-2025, 1663, 10.1142/S021820251550044X
    131. Christian Stinner, Christina Surulescu, Aydar Uatay, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, 2016, 26, 0218-2025, 2163, 10.1142/S021820251640011X
    132. J. Fan, K. Zhao, A Note on a 3D Haptotaxis Model of Cancer Invasion, 2013, 1687-1200, 10.1093/amrx/abt004
    133. M. Akhmouch, M. Benzakour Amine, A time semi-exponentially fitted scheme for chemotaxis-growth models, 2017, 54, 0008-0624, 609, 10.1007/s10092-016-0201-4
    134. Guoqiang Ren, Jinlong Wei, Analysis of a two-dimensional triply haptotactic model with a fusogenic oncolytic virus and syncytia, 2021, 72, 0044-2275, 10.1007/s00033-021-01572-0
    135. Youshan Tao, Mingjun Wang, Global solution for a chemotactic–haptotactic model of cancer invasion, 2008, 21, 0951-7715, 2221, 10.1088/0951-7715/21/10/002
    136. Zhi-An Wang, Wavefront of an angiogenesis model, 2012, 17, 1531-3492, 2849, 10.3934/dcdsb.2012.17.2849
    137. Meng Liu, Yuxiang Li, Global solvability of a chemotaxis-haptotaxis model in the whole 2-d space, 2023, 20, 1551-0018, 7565, 10.3934/mbe.2023327
    138. Gülnihal Meral, Christina Surulescu, Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion, 2013, 408, 0022247X, 597, 10.1016/j.jmaa.2013.06.017
    139. Feng Dai, Bin Liu, Global Solvability and Optimal Control to a Haptotaxis Cancer Invasion Model with Two Cancer Cell Species, 2021, 84, 0095-4616, 2379, 10.1007/s00245-020-09712-0
    140. Chunhua Jin, Global Strong Solution and Periodic Dynamic Behavior to Chaplain–Lolas Model, 2022, 1040-7294, 10.1007/s10884-022-10210-w
    141. Tian Xiang, Finite time blow-up in the higher dimensional parabolic-elliptic-ODE minimal chemotaxis-haptotaxis system, 2022, 336, 00220396, 44, 10.1016/j.jde.2022.07.015
    142. Jiashan Zheng, Yuanyuan Ke, Large time behavior of solutions to a fully parabolic chemotaxis–haptotaxis model in N dimensions, 2019, 266, 00220396, 1969, 10.1016/j.jde.2018.08.018
    143. William Domgno Kuipou, A. Mohamadou, Management of Invasive Cells in Soft Biological Tissues Through Modulated Nonlinear Excitations: Long-Range Effects, 2021, 1556-5068, 10.2139/ssrn.3941676
    144. Khadijeh Baghaei, Mohammad Bagher Ghaemi, Mahmoud Hesaaraki, Global Existence of Classical Solutions to a Cancer Invasion Model, 2012, 03, 2152-7385, 382, 10.4236/am.2012.34059
    145. Youshan Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, 2011, 12, 14681218, 418, 10.1016/j.nonrwa.2010.06.027
    146. Long Lei, Zhongping Li, Boundedness in a quasilinear chemotaxis–haptotaxis model of parabolic–parabolic–ODE type, 2019, 2019, 1687-2770, 10.1186/s13661-019-1255-4
    147. Vasiliki Bitsouni, Mark A. J. Chaplain, Raluca Eftimie, Mathematical modelling of cancer invasion: The multiple roles of TGF-β pathway on tumour proliferation and cell adhesion, 2017, 27, 0218-2025, 1929, 10.1142/S021820251750035X
    148. Yao Nie, Jia Yuan, Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces, 2020, 196, 0362546X, 111782, 10.1016/j.na.2020.111782
    149. Xueyan Tao, Yuanwei Qi, Shulin Zhou, Mathematical analysis of a tumor invasion model—global existence and stability, 2021, 61, 14681218, 103297, 10.1016/j.nonrwa.2021.103297
    150. Mingjun Wang, Minghao Li, 2008, Global Mild Solution for a Chemotaxis-Haptotaxis Model of Tumor Invasion, 978-0-7695-3498-5, 613, 10.1109/ISCSCT.2008.276
    151. Mikhail K. Kolev, Miglena N. Koleva, Lubin G. Vulkov, An Unconditional Positivity-Preserving Difference Scheme for Models of Cancer Migration and Invasion, 2022, 10, 2227-7390, 131, 10.3390/math10010131
    152. Peter Y. H. Pang, Yifu Wang, Global boundedness of solutions to a chemotaxis–haptotaxis model with tissue remodeling, 2018, 28, 0218-2025, 2211, 10.1142/S0218202518400134
    153. Luis Almeida, Gissell Estrada-Rodriguez, Lisa Oliver, Diane Peurichard, Alexandre Poulain, Francois Vallette, Treatment-induced shrinking of tumour aggregates: a nonlinear volume-filling chemotactic approach, 2021, 83, 0303-6812, 10.1007/s00285-021-01642-x
    154. Sashikumaar Ganesan, Shangerganesh Lingeshwaran, A biophysical model of tumor invasion, 2017, 46, 10075704, 135, 10.1016/j.cnsns.2016.10.013
    155. Yuanyuan Ke, Jiashan Zheng, A note for global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant, 2018, 31, 0951-7715, 4602, 10.1088/1361-6544/aad307
    156. Yifu Wang, Boundedness in the higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion, 2016, 260, 00220396, 1975, 10.1016/j.jde.2015.09.051
    157. Katsutaka Kimura, Hiroki Hoshino, Akisato Kubo, 2015, Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model, 1-60133-018-9, 733, 10.3934/proc.2015.0733
    158. Linnea C. Franssen, Tommaso Lorenzi, Andrew E. F. Burgess, Mark A. J. Chaplain, A Mathematical Framework for Modelling the Metastatic Spread of Cancer, 2019, 81, 0092-8240, 1965, 10.1007/s11538-019-00597-x
    159. W. Domgno Kuipou, A. Mohamadou, E. Kengne, Cellular transport through nonlinear mechanical waves in fibrous and absorbing biological tissues, 2021, 152, 09600779, 111321, 10.1016/j.chaos.2021.111321
    160. Sina Anvari, Shruti Nambiar, Jun Pang, Nima Maftoon, Computational Models and Simulations of Cancer Metastasis, 2021, 28, 1134-3060, 4837, 10.1007/s11831-021-09554-1
    161. Rui Li, Bei Hu, A parabolic–hyperbolic system modeling the growth of a tumor, 2019, 267, 00220396, 693, 10.1016/j.jde.2019.01.020
    162. J. Ignacio Tello, Dariusz Wrzosek, Predator–prey model with diffusion and indirect prey-taxis, 2016, 26, 0218-2025, 2129, 10.1142/S0218202516400108
    163. L. Shangerganesh, V. N. Deiva Mani, S. Karthikeyan, Existence of solutions of cancer invasion parabolic system with integrable data, 2020, 31, 1012-9405, 1359, 10.1007/s13370-020-00801-5
    164. Arran Hodgkinson, Dumitru Trucu, Matthieu Lacroix, Laurent Le Cam, Ovidiu Radulescu, Computational Model of Heterogeneity in Melanoma: Designing Therapies and Predicting Outcomes, 2022, 12, 2234-943X, 10.3389/fonc.2022.857572
    165. Haiyan Xu, Limin Zhang, Chunhua Jin, Global solvability and large time behavior to a chemotaxis–haptotaxis model with nonlinear diffusion, 2019, 46, 14681218, 238, 10.1016/j.nonrwa.2018.09.019
    166. Robyn Shuttleworth, Dumitru Trucu, Cell-Scale Degradation of Peritumoural Extracellular Matrix Fibre Network and Its Role Within Tissue-Scale Cancer Invasion, 2020, 82, 0092-8240, 10.1007/s11538-020-00732-z
    167. S. I. Kaykanat, A. K. Uguz, The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery, 2023, 17, 1932-1058, 021502, 10.1063/5.0130769
    168. Chunhua Jin, Uniform boundedness and eventual Hölder continuity to a cancer invasion model with remodeling of ECM and nonlinear diffusion, 2023, 0022-2526, 10.1111/sapm.12577
    169. Akisato Kubo, Hiroki Hoshino, 2023, Chapter 49, 978-3-031-36374-0, 647, 10.1007/978-3-031-36375-7_49
    170. TONG LI, ZHI-AN WANG, NONLINEAR STABILITY OF LARGE AMPLITUDE VISCOUS SHOCK WAVES OF A GENERALIZED HYPERBOLIC–PARABOLIC SYSTEM ARISING IN CHEMOTAXIS, 2010, 20, 0218-2025, 1967, 10.1142/S0218202510004830
    171. D. Burini, N. Chouhad, Cross-diffusion models in complex frameworks from microscopic to macroscopic, 2023, 33, 0218-2025, 1909, 10.1142/S0218202523500458
    172. Ying-Yuan Mi, Cui Song, Zhi-Cheng Wang, Global existence of a diffusive predator–prey model with prey-stage structure and prey-taxis, 2023, 74, 0044-2275, 10.1007/s00033-023-01975-1
    173. Shahin Heydari, Petr Knobloch, Thomas Wick, Flux-corrected transport stabilization of an evolutionary cross-diffusion cancer invasion model, 2024, 499, 00219991, 112711, 10.1016/j.jcp.2023.112711
    174. THOMAS HILLEN, KEVIN J. PAINTER, MICHAEL WINKLER, CONVERGENCE OF A CANCER INVASION MODEL TO A LOGISTIC CHEMOTAXIS MODEL, 2013, 23, 0218-2025, 165, 10.1142/S0218202512500480
    175. Nikolay A. Kudryashov, Sofia F. Lavrova, Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies, 2023, 11, 2227-7390, 3203, 10.3390/math11143203
    176. Xianyun Jiang, Huijun Jiang, Zhonghuai Hou, Nonlinear chemical reaction induced abnormal pattern formation of chemotactic particles, 2023, 19, 1744-683X, 3946, 10.1039/D2SM01433E
    177. Zhongjian Wang, Jack Xin, Zhiwen Zhang, A DeepParticle method for learning and generating aggregation patterns in multi-dimensional Keller–Segel chemotaxis systems, 2024, 460, 01672789, 134082, 10.1016/j.physd.2024.134082
    178. Poonam Rani, Jagmohan Tyagi, A quasilinear chemotaxis-haptotaxis system: Existence and blow-up results, 2024, 402, 00220396, 180, 10.1016/j.jde.2024.04.034
    179. Yuanlin Chen, Tian Xiang, Negligibility of haptotaxis on global dynamics in a chemotaxis-haptotaxis system with indirect signal production, 2024, 409, 00220396, 1, 10.1016/j.jde.2024.06.034
    180. Tao Youshan, A probe into research of complex chemotaxis models, 2023, 1674-7216, 10.1360/SSM-2022-0179
    181. Muhammad Akmal Ramlee, Nuha Loling Othman, Takashi Suzuki, Invadopodia Formation in Cancer Cell: The Mathematical and Computational Modelling Based on Free Boundary Problem, 2023, 11, 2227-7390, 3044, 10.3390/math11143044
    182. Zhan Jiao, Irena Jadlovská, Tongxing Li, Combined effects of nonlinear diffusion and gradient-dependent flux limitation on a chemotaxis–haptotaxis model, 2024, 75, 0044-2275, 10.1007/s00033-023-02134-2
    183. Fatemeh Asadi-Mehregan, Pouria Assari, Mehdi Dehghan, Simulation of the cancer cell growth and their invasion into healthy tissues using local radial basis function method, 2024, 163, 09557997, 56, 10.1016/j.enganabound.2024.02.015
    184. ANNA MARCINIAK-CZOCHRA, MARIYA PTASHNYK, BOUNDEDNESS OF SOLUTIONS OF A HAPTOTAXIS MODEL, 2010, 20, 0218-2025, 449, 10.1142/S0218202510004301
    185. Dimitrios Katsaounis, Mark A. J. Chaplain, Nikolaos Sfakianakis, Stochastic differential equation modelling of cancer cell migration and tissue invasion, 2023, 87, 0303-6812, 10.1007/s00285-023-01934-4
    186. Bengisen Pekmen, Ummuhan Yirmili, Numerical and statistical approach on chemotaxis-haptotaxis model for cancer cell invasion of tissue, 2024, 4, 2767-8946, 195, 10.3934/mmc.2024017
    187. ANI JAIN, PARIMITA ROY, ENDEAVORING THE ROLE OF OBESITY IN EXTRACELLULAR MATRIX DEGRADATION LEADING TO METASTASIS, 2024, 32, 0218-3390, 407, 10.1142/S0218339024500153
    188. Guoqiang Ren, Boundedness of solutions to a chemotaxis–haptotaxis model with nonlocal terms, 2024, 31, 1021-9722, 10.1007/s00030-023-00908-1
    189. MARK A. J. CHAPLAIN, MIROSŁAW LACHOWICZ, ZUZANNA SZYMAŃSKA, DARIUSZ WRZOSEK, MATHEMATICAL MODELLING OF CANCER INVASION: THE IMPORTANCE OF CELL–CELL ADHESION AND CELL–MATRIX ADHESION, 2011, 21, 0218-2025, 719, 10.1142/S0218202511005192
    190. S. Angelin Shena, J. Manimaran, K. Sethukumarasamy, L. Shangerganesh, Convergence of BDF2-Galerkin finite element scheme for cancer invasion model, 2024, 1951-6355, 10.1140/epjs/s11734-024-01272-6
    191. Chunhua Jin, Critical exponent to a cancer invasion model with nonlinear diffusion, 2024, 65, 0022-2488, 10.1063/5.0143786
    192. V.S. Aswin, J. Manimaran, Nagaiah Chamakuri, Space-time adaptivity for a multi-scale cancer invasion model, 2023, 146, 08981221, 309, 10.1016/j.camwa.2023.07.005
    193. Jiashan Zheng, Yuanyuan Ke, Boundedness and large time behavior of solutions of a higher-dimensional haptotactic system modeling oncolytic virotherapy, 2023, 33, 0218-2025, 1875, 10.1142/S0218202523500446
    194. Muhammad Amsyar Hamidi, Nur Azura Noor Azhuan, Noorehan Yaacob, Takashi Suzuki, Mohd Ariff Admon, 2024, 3080, 0094-243X, 020019, 10.1063/5.0194718
    195. Hong-Bing Chen, Bifurcation and Stability of a Haptotaxis Mathematical Model for Complex MAP, 2024, 34, 0218-1274, 10.1142/S0218127424501475
    196. Chunhua Jin, Global well‐posedness and long‐time behavior in a tumor invasion model with cross‐diffusion, 2024, 152, 0022-2526, 1133, 10.1111/sapm.12673
    197. Xiaobing Ye, Liangchen Wang, Boundedness and asymptotic stability in a chemotaxis model with indirect signal production and logistic source, 2022, 2022, 1072-6691, 58, 10.58997/ejde.2022.58
    198. Siying Li, Jinhuan Wang, Optimal mass on the parabolic-elliptic-ODE minimal chemotaxis-haptotaxis in R2 , 2023, 98, 0031-8949, 095223, 10.1088/1402-4896/aceba0
    199. Chun Hua Jin, Global Solvability, Pattern Formation and Stability to a Chemotaxis-haptotaxis Model with Porous Medium Diffusion, 2023, 39, 1439-8516, 1597, 10.1007/s10114-023-1184-0
    200. Jinhuan Wang, Haomeng Chen, Mengdi Zhuang, Global boundedness of weak solutions to a chemotaxis–haptotaxis model with p-Laplacian diffusion, 2023, 74, 0044-2275, 10.1007/s00033-023-02113-7
    201. Chun Wu, Qualitative behavior of solutions for a chemotaxis-haptotaxis model with flux limitation, 2024, 0, 2163-2480, 0, 10.3934/eect.2024054
    202. Mario Fuest, Shahin Heydari, Petr Knobloch, Johannes Lankeit, Thomas Wick, Global existence of classical solutions and numerical simulations of a cancer invasion model, 2023, 57, 2822-7840, 1893, 10.1051/m2an/2023037
    203. Beibei Ai, Zhe Jia, The Global Existence and Boundedness of Solutions to a Chemotaxis–Haptotaxis Model with Nonlinear Diffusion and Signal Production, 2024, 12, 2227-7390, 2577, 10.3390/math12162577
    204. ZUZANNA SZYMAŃSKA, CRISTIAN MORALES RODRIGO, MIROSŁAW LACHOWICZ, MARK A. J. CHAPLAIN, MATHEMATICAL MODELLING OF CANCER INVASION OF TISSUE: THE ROLE AND EFFECT OF NONLOCAL INTERACTIONS, 2009, 19, 0218-2025, 257, 10.1142/S0218202509003425
    205. Hongbing Chen, Fengling Jia, Global Solution and Stability of a Haptotaxis Mathematical Model for Complex MAP, 2024, 12, 2227-7390, 1116, 10.3390/math12071116
    206. Poonam Rani, Jagmohan Tyagi, Finite-time blow-up in the higher dimensional parabolic-parabolic-ODE minimal chemotaxis-haptotaxis system, 2025, 423, 00220396, 133, 10.1016/j.jde.2024.12.030
    207. Simone Fagioli, Emanuela Radici, Licia Romagnoli, On a chemotaxis model with nonlinear diffusion modelling multiple sclerosis, 2025, 6, 2662-2963, 10.1007/s42985-024-00307-w
    208. Ling Liu, Boundedness and global existence in a higher-dimensional parabolic-elliptic-ODE chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, 2025, 549, 0022247X, 129473, 10.1016/j.jmaa.2025.129473
    209. Mubashir Qayyum, Sidra Nayab, Imran Siddique, Abdullatif Ghallab, Analysis of time-fractional cancer-tumor immunotherapy model using modified He-Laplace algorithm, 2025, 15, 2045-2322, 10.1038/s41598-024-82170-8
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8795) PDF downloads(342) Cited by(208)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog