Citation: Edith Debroas, Carine Ali, Dominique Duval. Dexamethasone enhances glutamine synthetase activity and reduces N-methyl-D-aspartate neurotoxicity in mixed cultures of neurons and astrocytes[J]. AIMS Molecular Science, 2015, 2(2): 175-189. doi: 10.3934/molsci.2015.2.175
[1] | Kenneth H. Karlsen, Süleyman Ulusoy . On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11(1): 181-201. doi: 10.3934/nhm.2016.11.181 |
[2] | Piotr Biler, Grzegorz Karch, Jacek Zienkiewicz . Morrey spaces norms and criteria for blowup in chemotaxis models. Networks and Heterogeneous Media, 2016, 11(2): 239-250. doi: 10.3934/nhm.2016.11.239 |
[3] | José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska . Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15(3): 369-387. doi: 10.3934/nhm.2020023 |
[4] | Panpan Xu, Yongbin Ge, Lin Zhang . High-order finite difference approximation of the Keller-Segel model with additional self- and cross-diffusion terms and a logistic source. Networks and Heterogeneous Media, 2023, 18(4): 1471-1492. doi: 10.3934/nhm.2023065 |
[5] | Raul Borsche, Axel Klar, T. N. Ha Pham . Nonlinear flux-limited models for chemotaxis on networks. Networks and Heterogeneous Media, 2017, 12(3): 381-401. doi: 10.3934/nhm.2017017 |
[6] | Elisabeth Logak, Isabelle Passat . An epidemic model with nonlocal diffusion on networks. Networks and Heterogeneous Media, 2016, 11(4): 693-719. doi: 10.3934/nhm.2016014 |
[7] | Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711 |
[8] | Toyohiko Aiki, Kota Kumazaki . Uniqueness of solutions to a mathematical model describing moisture transport in concrete materials. Networks and Heterogeneous Media, 2014, 9(4): 683-707. doi: 10.3934/nhm.2014.9.683 |
[9] | Junjie Wang, Yaping Zhang, Liangliang Zhai . Structure-preserving scheme for one dimension and two dimension fractional KGS equations. Networks and Heterogeneous Media, 2023, 18(1): 463-493. doi: 10.3934/nhm.2023019 |
[10] | Jinyi Sun, Weining Wang, Dandan Zhao . Global existence of 3D rotating magnetohydrodynamic equations arising from Earth's fluid core. Networks and Heterogeneous Media, 2025, 20(1): 35-51. doi: 10.3934/nhm.2025003 |
In this paper, we consider the global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity,
$ {∂tv+Λαv=−∇⋅(vm∇ϕ),t>0,x∈RN,∂tw+Λαw=∇⋅(wm∇ϕ),t>0,x∈RN,Δϕ=v−w,t>0,x∈RN,v(x,0)=v0(x),w(x,0)=w0(x),x∈RN, $
|
(1.1) |
where $ m\geq 1 $ is an integer, $ v(x, t), w(x, t) $ are the densities of negatively and positively charged particles, $ \phi(x, t) $ is the electric potential determined by the Poisson equation $ \Delta\phi = v-w $. The difficulties mainly come from higher-order nonlinear couplings.
By the fundamental solution of Laplacian:
$ ΦN(x)={−12|x|,N=1,−12πln|x|,N=2,1N(N−2)ω(N)|x|N−2,N≥3, $
|
(1.2) |
where $ \omega(N) $ denotes the volume of the unit ball in $ \mathbb{R}^N $, the electric potential $ \phi $ can be expressed by the convolution:
$ ϕ=(−Δ)−1(w−v)=ΦN∗(w−v)=∫RNΦN(x−y)(w−v)(y)dy. $
|
(1.3) |
$ \Lambda = \sqrt{-\Delta} $ is the Calderón-Zygmund operator, and the fractional Laplacian $ \Lambda^{\alpha} = (-\Delta)^{\frac{\alpha}{2}} $ with $ 1 < \alpha < 2N $ is a non-local fractional differential operator defined as Eq (1.4)
$ Λαv(x)=F−1|ξ|αFv(ξ), $
|
(1.4) |
where $ \mathcal{F} $ and $ \mathcal{F}^{-1} $ are the Fourier transform and its inverse [1].
In probabilistic terms, replacing the Laplacian $ \Delta $ with its fractional power $ -\Lambda^{\alpha} = -(-\Delta)^{\frac{\alpha}{2}} $, it leads to interesting and largely open questions of extensions of results for Brownian motion driven stochastic equations to those driven by Lévy $ \alpha- $stable flights.
In the physical literature, such fractal anomalous diffusions have been recently enthusiastically embraced by a slew of investigators in the context of hydrodynamics, acoustics, trapping effects in surface diffusion, statistical mechanics, relaxation phenomena, and biology [2].
An important technical difficulty is that the densities of the semigroups generated by $ -\Lambda^{\alpha} = -(-\Delta)^{\frac{\alpha}{2}} $ do not decay rapidly in $ x\in \mathbb{R}^{N} $ as is the case of the heat semigroup $ S(t) = e^{t\Delta} $ $ (\alpha = 2) $, the Gauss-Weierstrass kernel $ K_{t}(x) = \mathcal{F}^{-1}(e^{-t|\xi|^{2}}) $ decays exponentially while the densities $ \mathcal{F}^{-1}(e^{-t|\xi|^{\alpha}})(0 < \alpha < 2) $ of non-Gaussian Lévy $ \alpha- $stable semigroups $ S_{\alpha}(t) = e^{-t(-\Delta)^{\frac{\alpha}{2}}} $ have only an algebraic decay rate $ |x|^{-N-\alpha} $.
For a more general nonlinear term in Eq (1.1), the motivation is the Keller-Segel model [3,4], a prototype of cross-diffusion models related to pattern formation, it describes the time and space dynamics of the density of cells (or organisms) $ n(t, x) $ interacting with a chemoattractant $ S(t, x) $ according to the following system:
$ {∂tn=∇x⋅(Dn(n,s)∇xn−χ(n,s)n∇xs)+F(n,s),∂ts=Ds(n,s)Δs+G(n,s), $
|
(1.5) |
where $ F $ and $ G $ are the source terms related to interactions [5]. The positive definite nonlinear terms $ D_{n}(n, s) $ and $ D_{s}(n, s) $ are the diffusivity of the chemoattractant and of the cells, respectively. In many applications the cross-diffusion function $ \chi(n, s) $ has a complicated structure, and even it has a very simple structure, for example, a polynomial $ \chi(n, s) = n^{m} $, it fails to satisfy a global Lipschitz condition.
For $ m = 1 $, Eq (1.1) becomes a fractional drift-diffusion system Eq (1.6),
$ {∂tv+Λαv=−∇⋅(v∇ϕ),t>0,x∈RN,∂tw+Λαw=∇⋅(w∇ϕ),t>0,x∈RN,Δϕ=v−w,t>0,x∈RN,v(x,0)=v0(x),w(x,0)=w0(x),x∈RN, $
|
(1.6) |
Zhao-Liu [6] established global well-posedness and asymptotic stability of mild solutions for the Cauchy problem Eq (1.5) with small initial data in critical Besov spaces, and proved the regularizing-decay rate estimates which imply that mild solutions are analytic in space variables. Ogawa-Yamamoto [7] considered the global existence and asymptotic behavior of solutions for the Cauchy problem Eq (1.5), they showed that the time- global existence of the solutions with large initial data in Lebesgue space $ L^{p}(\mathbb{R}^N) $ and Sobolev space $ W^{\alpha, p}(\mathbb{R}^N) $ and obtained the asymptotic expansion of the solution up to the second terms as $ t\rightarrow +\infty $.
For $ \alpha = 2 $, Eq (1.6) corresponds to the usual drift-diffusion system,
$ {∂tv−Δv=−∇⋅(v∇ϕ),t>0,x∈RN,∂tw−Δw=∇⋅(w∇ϕ),t>0,x∈RN,Δϕ=v−w,t>0,x∈RN,v(x,0)=v0(x),w(x,0)=w0(x),x∈RN, $
|
(1.7) |
it has been studied widely [8,9,10,11,12,13,14]. Karch [15] considered the Cauchy problem of a scalar equation with a bilinear operator $ B $
$ {∂tu=Δu+B(u,u),t>0,x∈RN,u(x,0)=u0(x),x∈RN. $
|
For $ w = 0 $, Eq (1.6) corresponds to the generalized Keller-Segel model of chemotaxis:
$ {∂tv+Λαv=−∇⋅(v∇ϕ),t>0,x∈RN,Δϕ=v,t>0,x∈RN,v(x,0)=v0(x),x∈RN. $
|
(1.8) |
For $ 1 < \alpha < 2 $, Escudero [16] proved that Eq (1.8) admits a one-dimensional global solution (the same result also holds for $ \alpha = 2 $), Biler-Karch [17] studied the Blowup solutions to generalized Keller-Segel model, and Biler-Wu [18] considered two-dimensional chemotaxis models with fractional diffusion. For $ \alpha = 2 $, Biler-Boritchev-Karch et al., considered the concentration phenomena [19] and gave sharp Sobolev estimates for concentration of solution [20] to the diffusive aggregation model:
$ ∂tv−εΔv=−∇⋅(v∇K∗v) $
|
with the Poisson kernel function $ K $ from the equation $ \Delta\phi = v $.
Wu-Zheng [21] considered the parabolic-parabolic system corresponding to the parabolic-elliptic system Eq (1.8), the Keller-Segel system with fractional diffusion generalizing the Keller-Segel model of chemotaxis
$ {∂tu+Λαu=±∇⋅(u∇ϕ),t>0,x∈RN,ε∂tϕ+Λαϕ=u,t>0,x∈RN,u(x,0)=u0(x),v(x,0)=v0(x),x∈RN, $
|
(1.9) |
for initial data $ (u_{0}, v_{0}) $ in the critical Fourier-Herz space $ \dot{B}^{2-2\alpha}_{q}(\mathbb{R}^N)\times \dot{B}^{2-\alpha}_{q}(\mathbb{R}^N) $ with $ 2\leq q\leq \infty $ for $ \varepsilon > 0 $ and $ 1 < \alpha\leq 2 $.
For the fractional evolution equations with higher order nonlinearity, Miao-Yuan-Zhang [22] studied the Cauchy problem for the semilinear fractional power dissipative equation
$ {∂tu+Λαu=F(u),t>0,x∈RN,u(x,0)=u0(x),x∈RN, $
|
(1.10) |
with the nonlinear term $ F(u) = f(u) $ or $ F(u) = Q(D)f(u) $, where $ Q(D) $ is a homogeneous pseudo differential operator and $ f(u) = |u|^{b}u $ or $ |u|^{b_{1}}u+|u|^{b_{2}}u $ with $ b > 0, b_{1} > 0 $ and $ b_{2} > 0 $. For example, the equation in Eq (1.10) contains the semilinear fractional power dissipative equation $ \partial_t u+\Lambda^{\alpha}u = \pm |u|^{b}u $, the generalized convection-diffusion equation $ \partial_t u+\Lambda^{\alpha}u = a\cdot\nabla(|u|^{b}u) $, and so on.
Following the idea of Karch [15], due to the fractional heat semigroup $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $ and the well-known Duhamel principle, we rewrite the system Eq (1.1) as a system of integral equations
$ {v(t)=Sα(t)v0+B(v,⋯,v,w),w(t)=Sα(t)w0+B(w,⋯,w,v), $
|
(1.11) |
where
$ B(v,⋯,v⏟m,w)=∫t0Sα(t−τ)∇⋅(vm∇ϕ)(τ)dτ,ϕ=(−Δ)−1(w−v). $
|
(1.12) |
A solution of Eq (1.11) and Eq (1.12) is called a mild solution of Eq (1.1).
Inspired by the contributions summarized in the above items, we aim to extend the results to the system Eq (1.1) with higher-order nonlinear terms $ \nabla\cdot(v^m \nabla \phi) $ and $ \nabla\cdot(w^m \nabla \phi) $. The goal of this article is to prove the global well-posedness of mild solutions to the Cauchy problem Eq (1.1) with small initial data in critical Besov spaces. When $ m = 1 $ in the higher order nonlinear term $ \nabla\cdot(v^m \nabla \phi) $, we recover the result proved in [6]. The outline of the rest of the article is as follows. In Section 2 we give the definition of homogeneous Besov space by the fractional heat semigroup operator and present some useful estimates. In Section 3 we establish the global existence and uniqueness of the mild solution. In Section 4 we discuss the asymptotic stability of the mild solution. In Section 5 we give the regularizing-decay rate estimates of the mild solution. In Section 6 we consider a fractional drift diffusion system with a generalized electric potential equation and we also give the global existence and asymptotic stability of the mild solution.
Let $ \mathcal{S}(\mathbb{R}^N) $ be the Schwartz space and $ \mathcal{S}'(\mathbb{R}^N) $ be its dual. Now, we introduce a definition of the homogeneous Besov space by the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $.
Definition 2.1. [6] Let $ l > 0 $ and $ 1\leq p\leq \infty $. Define
$ ˙B−lp,∞(RN)={f∈S′(RN):Sαf∈C((0,+∞),Lp),supt>0tlα||Sαf||Lp<∞} $
|
(2.1) |
with the norm
$ ||f||˙B−lp,∞(RN)=supt>0tlα||Sα(t)f||Lp. $
|
(2.2) |
$ (\dot{B}^{-l}_{p, \infty}(\mathbb{R}^N), ||\cdot||_{\dot{B}^{-l}_{p, \infty}}) $ is a Banach space.
If $ (v(x, t), w(x, t)) $ is a solution of the Cauchy problem Eq (1.1), for any $ \lambda > 0 $, denote
$ vλ(x,t)=λαmv(λx,λαt),wλ(x,t)=λαmw(λx,λαt), $
|
(2.3) |
$ (v_{\lambda}(x, t), w_{\lambda}(x, t)) $ is also a solution of the Cauchy problem Eq (1.1) with the initial data
$ (v_{\lambda}(x, 0), w_{\lambda}(x, 0)) = (\lambda^{\frac{\alpha}{m}}v_{0}(\lambda x), \lambda^{\frac{\alpha}{m}}w_{0}(\lambda x)), $ |
then $ (v_{\lambda}(x, t), w_{\lambda}(x, t)) $ is called a self-similar solution to Eq (1.1). We can verify that $ \dot{B}^{-\frac{\alpha}{m}+\frac{n}{p}}_{p, \infty}(\mathbb{R}^n) $ is a critical space, i.e., the self-similar solution is invariant under the norm $ ||\cdot||_{\dot{B}^{-\frac{\alpha}{m}+\frac{n}{p}}_{p, \infty}} $, which defined in [6], for initial data $ (v_{0}(x), w_{0}(x)) $ of the system Eq (1.1). In the case the index $ s_c: = \frac{n}{p}-\frac{\alpha}{m} $ provides the minimal regularity for the initial data to ensure the well-posedness of the Cauchy problem Eq (1.1). In order to find a critical space for the solutions of the Cauchy problem Eq (1.1), we define some time-weighted space-time space.
Let $ X $ be a Banach space and $ I $ be a finite or infinite interval. We define the time-weighted space-time Banach space,
$ Cσ(I;X)={f∈C(I;X):supt>0t1σ||f(t)||X<∞} $
|
(2.4) |
with the norm $ ||f||_{C_{\sigma}(I; X)} = \sup_{t > 0}t^{\frac{1}{\sigma}}||f(t)||_{X} $. The corresponding homogeneous time-weighted space-time Banach space,
$ ˙Cσ(I;X)={f∈Cσ(I;X):limt↓0t1σ||f(t)||X=0}. $
|
(2.5) |
We denote $ C_{*}([0, \infty); X) $ by the set of bounded maps from $ [0, \infty) $ to $ X $ which are continuous for $ t > 0 $ and weakly continuously for $ t = 0 $.
For initial data $ (v_{0}(x), w_{0}(x)) $ in critical homogeneous Besov space $ \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ with minimal regularity, we want to find a mild solution of the Cauchy problem Eq (1.1) and discuss the global existence of mild solution in the following critical space,
$ X=C∗([0,∞),˙B−αm+Npp,∞(RN))∩Cmαpαp−mN([0,∞),Lp(RN)) $
|
(2.6) |
with the norm
$ ||u||X=supt>0||u(t)||˙B−αm+Npp,∞(RN)+supt>0t1m−Nαp||u(t)||Lp(RN). $
|
(2.7) |
For the Laplacian operator $ \Delta $ and the Calderón-Zygmund operator $ \Lambda = \sqrt{-\Delta} $, we have the following classical Hardy-Littlewood-Sobolev inequality.
Lemma 2.2. [23,24] Let $ 1 < p < N $, the nonlocal operator $ (-\Delta)^{-\frac{1}{2}} $ is bounded from $ L^{p}(\mathbb{R}^N) $ to $ L^{\frac{Np}{N-p}}(\mathbb{R}^N) $, i.e., $ \forall f\in L^{p}(\mathbb{R}^N) $,
$ ||(−Δ)−12f||LNpN−p(RN)≤C(N,p)||f||Lp(RN), $
|
(2.8) |
$ ||∇(−Δ)−1f||LNpN−p(RN)≤C(N,p)||f||Lp(RN). $
|
(2.9) |
For the fractional power operator $ \Lambda^{\alpha} = (-\Delta)^{\frac{\alpha}{2}} $ and the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we first consider the Cauchy problem for the homogeneous linear fractional heat equation
$ {∂tu+Λαu=0,t>0,x∈RN,u(x,0)=u0(x),x∈RN. $
|
(2.10) |
By the Fourier transform the solution can be written as:
$ u(t,x)=F−1(e−t|ξ|αFu0(ξ))=F−1(e−t|ξ|α)∗u0(x)=Kt(x)∗u0(x)=Sα(t)u0(x), $
|
(2.11) |
where the fractional heat kernel Eq (2.12),
$ Kt(x)=(2π)−N2∫RNeixξe−t|ξ|αdξ=t−NαK(xt−1α), $
|
(2.12) |
the function $ K(x)\in L^{\infty}(\mathbb{R}^N)\cap C_{0}(\mathbb{R}^N) $, where $ C_{0}(\mathbb{R^{N}}) $ denotes the space of functions $ f\in C(\mathbb{R}^{N}) $ satisfying that $ \lim_{|x|\rightarrow \infty}f(x) = 0 $.
For the semigroup operator $ S_{\alpha}(t) $ we have $ L^{p}-L^{q} $ estimates
Lemma 2.3. [9] Let $ 1\leq p\leq q\leq\infty $. Then, $ \forall f\in L^{p}(\mathbb{R}^N) $,
$ ||Sα(t)f||Lq≤C(N,α)t−Nα(1p−1q)||f||Lp, $
|
(2.13) |
$ ||ΛγSα(t)f||Lq≤C(N,α)t−γα−Nα(1p−1q)||f||Lp, $
|
(2.14) |
for $ \alpha > 0 $ and $ \gamma > 0 $.
Following the work of Kato [25,26] and Lemarie-Rieusset [23] for the Navier-Stokes problem, Miao-Yuan [27] gave a general existence and uniqueness result for an abstract operator equation via a contraction argument.
Lemma 2.4. [27] Let $ X $ be a Banach space and $ B: X\times X\times\cdots\times X\rightarrow X $ be a $ (m+1)- $linear continuous operator satisfying
$ ||B(u1,u2,⋯,um+1)||X≤K||u1||X||u2||X⋯||um+1||X, $
|
(2.15) |
$ \forall u_{1}, u_{2}, \cdots, u_{m+1}\in X $ for some constant $ K > 0 $. Let $ \varepsilon > 0 $ be such that $ (m+1)(2\varepsilon)^{m}K < 1 $. Then for every $ y\in X $ with $ ||y||_{X}\leq \varepsilon $ the equation
$ u=y+B(u,u,⋯,u) $
|
(2.16) |
has a unique solution $ u\in X $ satisfying that $ ||u||_{X}\leq 2\varepsilon $. Moreover, the solution $ u $ depends continuously on $ y $ in the sense that, if $ ||y||_{X}\leq \varepsilon $ and $ v = y_{1}+B(v, v, \cdots, v) $, $ ||v||_{X}\leq 2\varepsilon $, then
$ ||u−v||X≤11−(m+1)(2ε)mK||y−y1||X. $
|
(2.17) |
We will use the Lemma to prove the global-in-time existence and uniqueness of the mild solutions to the Cauchy problem Eq (1.1) in the mixed time-space Besov space.
In this section we give the global existence and uniqueness of mild solution to the Cauchy problem Eq (1.1).
Theorem 3.1. Let $ N\geq2 $ be a positive integer, $ 1 < \alpha\leq 2N $ and
$ max{1,mNα}<p<min{N,m(m+1)Nα}. $
|
(3.1) |
If $ (v_{0}, w_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, there exists $ \varepsilon > 0 $ such that if $ ||(v_{0}, w_{0})||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}}\leq\varepsilon $, the Cauchy problem Eq (1.1) has a unique global mild solution $ (v, w)\in \mathcal{X} $ such that $ ||(v, w)||_{\mathcal{X}}\leq2\varepsilon $. Moreover, the solution depends continuously on initial data in the following sense: let $ (\tilde{v}, \tilde{w})\in \mathcal{X} $ be the solution of Eq (1.1) with initial data $ (\tilde{v}_{0}, \tilde{w}_{0}) $ such that $ ||(\tilde{v}_{0}, \tilde{w}_{0})||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)}\leq\varepsilon $, then there is a constant $ C $ such that
$ ||(v−˜v,w−˜w)||X≤C||(v0−˜v0,w0−˜w0)||˙B−αm+Npp,∞(RN). $
|
For the integral system Eqs (1.11) and (1.12) we first consider the term $ S_{\alpha}(t)v_{0} = e^{-t\Lambda^{\alpha}}v_{0} $.
Lemma 3.2. Let $ v_{0}(x)\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ and Eq (3.1) hold true. Then $ S_{\alpha}(t)v_{0}\in \mathcal{X} $ and
$ ||Sα(t)v0||X≤C(N,α)||v0||˙B−αm+Npp,∞(RN). $
|
(3.2) |
Proof. According to the definition of the norm $ ||\cdot||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)} $ and $ L^{p}-L^{q} $ estimates for the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we have
$ ||Sα(t)v0||˙B−αm+Npp,∞(RN)=sups>0s1m−Nαp||Sα(s)Sα(t)v0||Lp=sups>0s1m−Nαp||Sα(t)Sα(s)v0||Lp≤C(N,α)sups>0s1m−Nαp||Sα(s)v0||Lp=C(N,α)||v0||˙B−αm+Npp,∞(RN), $
|
and
$ supt>0t1m−Nαp||Sα(t)v0||Lp=||v0||˙B−αm+Npp,∞(RN). $
|
Therefore, we have
$ Sα(t)v0∈L∞((0,∞),˙B−αm+Npp,∞(RN)),t1m−NαpSα(t)v0∈L∞((0,∞),Lp(RN)). $
|
Moreover, following the method of [23] (Proposition 4.4, P33) we obtain that
$ Sα(t)v0∈C∗([0,∞),˙B−αm+Npp,∞(RN)). $
|
On the other hand, from $ v_{0}(x)\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ and Definition 2.1, we have
$ Sα(t)v0∈C((0,∞),Lp(RN)),t1m−NαpSα(t)v0∈C((0,∞),Lp(RN)). $
|
Hence, we have $ S_{\alpha}(t)v_{0}\in \mathcal{X} $ and Eq (3.2) holds true.
Lemma 3.3. Let $ (v, w)\in \mathcal{X} $ and Eq (3.1) hold true. Then $ B(v, \cdots, v, w)\in \mathcal{X} $ and
$ ||B(v,⋯,v,w)||X≤C(N,α,p)||v||mX||v−w||X. $
|
(3.3) |
Proof. According to the definition of the norm $ ||\cdot||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)} $, we have
$ ||B(v,⋯,v,w)(t)||˙B−αm+Npp,∞(RN)=sups>0s1m−Nαp||Sα(s)B(v,⋯,v,w)(t)||Lp, $
|
by the expression Eq (1.12) of $ B(v, \cdots, v, w)(t) $, that is,
$ B(v,⋯,v⏟m,w)=−∫t0Sα(t−τ)∇⋅(vm∇ϕ)(τ)dτ,ϕ=(−Δ)−1(w−v), $
|
(3.4) |
hence, by the Minkowski inequality, we get
$ ||B(v,⋯,v,w)(t)||˙B−αm+Npp,∞(RN)=sups>0s1m−Nαp||Sα(s)∫t0Sα(t−τ)∇⋅(vm∇ϕ)(τ)dτ||Lp≤∫t0sups>0s1m−Nαp||Sα(s)Sα(t−τ)∇⋅(vm∇ϕ)(τ)||Lpdτ. $
|
(3.5) |
For $ 0 < s\leq t-\tau $, using the $ L^{p}-L^{q} $ estimates Eq (2.13) and Eq (2.14) for the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we have
$ sup0<s≤t−τs1m−Nαp||Sα(s)Sα(t−τ)∇⋅(vm∇ϕ)(τ)||Lp≤C(N,α)(t−τ)1m−Nαp||Sα(t−τ)∇⋅(vm∇ϕ)(τ)||Lp=C(N,α)(t−τ)1m−Nαp||∇⋅Sα(t−τ)(vm∇ϕ)(τ)||Lp≤C(N,α,p)(t−τ)1m−Nαp(t−τ)−mNαp||(vm∇ϕ)](τ)||LNp(m+1)N−p≤C(N,α,p)(t−τ)1m−(m+1)Nαp||v||mLp||∇ϕ(τ)||LNpN−p, $
|
the last inequality comes from the Hölder inequality for the product $ v\cdot v\cdots v\cdot (v-w) $ and $ \frac{m}{p}+\frac{N-p}{Np} = \frac{(m+1)N-p}{Np} $. Using the classical Hardy-Littlewood-Sobolev inequality Eq (2.8) and Eq (2.9), we have Eq (3.6):
$ sup0<s≤t−τs1m−Nαp||Sα(s)Sα(t−τ)∇⋅[vm∇(−Δ)−1(v−w)](τ)||Lp≤C(N,α,p)(t−τ)1m−(m+1)Nαp||v(τ)||mLp||(v−w)(τ)||Lp. $
|
(3.6) |
For $ s > t-\tau $, using the $ L^{p}-L^{q} $ estimates Eq (2.13) and Eq (2.14) for the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we have
$ sups>t−τs1m−Nαp||Sα(s)Sα(t−τ)∇⋅(vm∇ϕ)(τ)||Lp=sups>t−τs1m−Nαp||Sα(t+s−τ)∇⋅(vm∇ϕ)(τ)||Lp≤C(N,α)sups>t−τs1m−Nαp(t+s−τ)−mNαp||vm∇ϕ(τ)||LNp(m+1)N−p≤C(N,α)sups>t−τs1m−Nαp(t+s−τ)−mNαp||v||mLp||∇ϕ(τ)||LNpN−p. $
|
From the condition Eq (3.1): $ \max\{1, \frac{mN}{\alpha}\} < p < \min\{N, \frac{m(m+1)N}{\alpha}\} $ and $ s > t-\tau $, the function $ f(s) = s^{\frac{1}{m}-\frac{N}{\alpha p}}(t+s-\tau)^{-\frac{mN}{\alpha p}} $ has the maximum
$ maxs>t−τf(s)=f(1m−Nαp(m+1)Nαp−1m(t−τ))=C(t−τ)1m−(m+1)Nαp, $
|
where $ C $ is a constant, by Eq (2.9) we have
$ sups>t−τs1m−Nαp||Sα(s)Sα(t−τ)∇⋅[vm∇(−Δ)−1(v−w)](τ)||Lp≤C(N,α,p)(t−τ)1m−(m+1)Nαp||v(τ)||mLp||(v−w)(τ)||Lp. $
|
(3.7) |
Together with Eq (3.6) and Eq (3.7) we have:
$ sups>0s1m−Nαp||Sα(s)Sα(t−τ)∇⋅[vm∇(−Δ)−1(v−w)](τ)||Lp≤C(N,α,p)(t−τ)1m−(m+1)Nαp||v(τ)||mLp||(v−w)(τ)||Lp. $
|
(3.8) |
Putting Eq (3.8) into Eq (3.5), we have
$ ||B(v,⋯,v,w)(t)||˙B−αm+Npp,∞(RN)≤C(N,α,p)∫t0(t−τ)1m−(m+1)Nαp||v(τ)||mLp||(v−w)(τ)||Lpdτ≤C(N,α,p)supτ>0(τ1m−Nαp||v(τ)||Lp)msupτ>0(τ1m−Nαp||(v−w)(τ)||Lp)×∫t0(t−τ)1m−(m+1)Nαpτ(m+1)Nαp−1m−1dτ≤C(N,α,p)||v||mX||v−w||X∫t0(t−τ)1m−(m+1)Nαpτ(m+1)Nαp−1m−1dτ≤C(N,α,p)||v||mX||v−w||X, $
|
in the last inequality we use the fact that the Beta function
$ ∫t0(t−τ)1m−(m+1)Nαpτ(m+1)Nαp−1m−1dτ=B(m+1m−(m+1)Nαp,(m+1)Nαp−1m) $
|
converges to a constant, since the condition Eq (3.1) implies that
$ m+1m−(m+1)Nαp=m+1mp(p−mNα)>0,(m+1)Nαp−1m=1mp(m(m+1)Nα−p)>0. $
|
Therefore, we have
$ ||B(v,⋯,v,w)(t)||˙B−αm+Npp,∞(RN)≤C(N,α,p)||v||mX||v−w||X. $
|
(3.9) |
Next, we consider the estimate of $ ||B(v, \cdots, v, w)(t)||_{L^{p}} $. From Eq (1.12) we have
$ ||B(v,⋯,v,w)(t)||Lp=||∫t0Sα(t−τ)∇⋅(vm∇ϕ)(τ)dτ||Lp≤C(N,α)∫t0(t−τ)−mNαp||vm∇(−Δ)−1(v−w)](τ)||LNp(m+1)N−pdτ≤C(N,α)∫t0(t−τ)−mNαp||v||mLp||∇(−Δ)−1(v−w)](τ)||LNpN−pdτ≤C(N,α,p)||v||mX||v−w||X∫t0(t−τ)−mNαpτ−1m−1+(m+1)Nαpdτ≤C(N,α,p)||v||mX||v−w||Xt−1m+Nαp, $
|
thus,
$ supt>0t1m−Nαp||B(v,⋯,v,w)(t)||Lp≤C(N,α,p)||v||mX||v−w||X. $
|
(3.10) |
In order to prove that $ B(v, \cdots, v, w)\in \mathcal{X} $, it suffices to prove that $ B(v, \cdots, v, w) $ is continuous for $ t > 0 $ and weakly continuous for $ t = 0 $ in $ \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, and it is continuous for $ t\geq0 $ in $ L^{p}(\mathbb{R}^N) $.
For any $ 0 < t_{1} < t_{2} $, due to Eq (3.4) we have
$ B(v,⋯,v,w)(t2)−B(v,⋯,v,w)(t1)=∫t10[Sα(t2−τ)−Sα(t1−τ)]∇⋅[vm∇(−Δ)−1(v−w)](τ)dτ+∫t2t1Sα(t2−τ)∇⋅[vm∇(−Δ)−1(v−w)](τ)dτ:=I(t1,t2)+II(t1,t2). $
|
(3.11) |
Similar to the estimate of $ ||B(v, \cdots, v, w)(t)||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)} $, we have
$ ||II(t1,t2)||˙B−αm+Npp,∞(RN)=sups>0s1m−Nαp||Sα(s)II(t1,t2)||Lp≤∫t2t1sups>0s1m−Nαp||Sα(s)Sα(t2−τ)∇⋅[vm∇(−Δ)−1(v−w)](τ)||Lpdτ≤C(N,α,p)||v||mX||v−w||X∫t2t1(t2−τ)1m−(m+1)Nαpτ(m+1)Nαp−1m−1dτ≤C(N,α,p)||v||mX||v−w||Xt−1−1m+(m+1)Nαp1∫t2t1(t2−τ)1m−(m+1)Nαpdτ≤C(N,α,p)||v||mX||v−w||Xt−1−1m+(m+1)Nαp1(t2−t1)1+1m−(m+1)Nαp, $
|
the condition Eq (3.1) implies that $ 1+\frac{1}{m}-\frac{(m+1)N}{\alpha p} > 0 $, hence as $ t_{2}\rightarrow t_{1} $,
$ ||II(t1,t2)||˙B−αm+Npp,∞(RN)=sups>0s1m−Nαp||Sα(s)II(t1,t2)||Lp→0. $
|
(3.12) |
According to the property of semigroup,
$ Sα(t2−τ)−Sα(t1−τ)=[Sα(t2−t1)−I]Sα(t1−τ), $
|
(3.13) |
for $ \phi = (-\Delta)^{-1}(w-v) $ we get
$ ||I(t1,t2)||˙B−αm+Npp,∞(RN)=sups>0s1m−Nαp||Sα(s)I(t1,t2)||Lp≤∫t10sups>0s1m−Nαp||Sα(s)[Sα(t2−t1)−I]Sα(t1−τ)∇⋅(vm∇ϕ)(τ)||Lpdτ=∫t10sups>0s1m−Nαp||∫t2−t10ΛαSα(μ)Sα(s)Sα(t1−τ)∇⋅(vm∇ϕ)(τ)dμ||Lpdτ=∫t10sups>0s1m−Nαp||∫t2−t10∇Sα(μ)ΛαSα(s)Sα(t1−τ)(vm∇ϕ)(τ)dμ||Lpdτ≤∫t10sups>0s1m−Nαp∫t2−t10||∇Sα(μ)ΛαSα(s)Sα(t1−τ)(vm∇ϕ)(τ)||Lpdμdτ, $
|
(3.14) |
by the $ L^{p}-L^{q} $ estimates Eq (2.13) and Eq (2.14) for the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we have
$ ∫t2−t10||∇Sα(μ)ΛαSα(s)Sα(t1−τ)(vm∇ϕ)(τ)||Lpdμ≤C(N,α)∫t2−t10μ−mNαpdμ||ΛαSα(s)Sα(t1−τ)(vm∇ϕ)(τ)||LNp(m+1)N−p=C(N,α)(t2−t1)1−mNαp||ΛαSα(s)Sα(t1−τ)(vm∇ϕ)(τ)||LNp(m+1)N−p. $
|
(3.15) |
For $ 0 < s\leq t_{1}-\tau $, we have
$ sup0<s≤t1−τs1m−Nαp||ΛαSα(s)Sα(t1−τ)(vm∇ϕ)(τ)||LNp(m+1)N−p=sup0<s≤t1−τs1m−Nαp||Sα(s)ΛαSα(t1−τ)(vm∇ϕ)(τ)||LNp(m+1)N−p≤C(N,α)sup0<s≤t1−τs1m−Nαp(t1−τ)−1||(vm∇ϕ)(τ)||LNp(m+1)N−p≤C(N,α)(t1−τ)1m−Nαp−1||v||mLp||∇ϕ||LNpN−p≤C(N,α,p)(t1−τ)1m−Nαp−1||v||mLp||v−w||Lp. $
|
(3.16) |
For $ s > t_{1}-\tau $, we have
$ sups>t1−τs1m−Nαp||ΛαSα(s)Sα(t1−τ)(vm∇ϕ)(τ)||LNp(m+1)N−p=sups>t1−τs1m−Nαp||ΛαSα(t1−τ+s)(vm∇ϕ)(τ)||LNp(m+1)N−p≤C(N,α)sups>t1−τs1m−Nαp(t1−τ+s)−1||vm∇ϕ||LNp(m+1)N−p≤C(N,α,p)(t1−τ)1m−Nαp−1||v||mLp||v−w||Lp. $
|
(3.17) |
Putting Eqs (3.15)–(3.17) into Eq (3.14), we have
$ ||I(t1,t2)||˙B−αm+Npp,∞(RN)≤C(t2−t1)1−mNαp∫t10(t1−τ)1m−Nαp−1||v(τ)||mLp||(v−w)(τ)||Lpdτ≤C(t2−t1)1−mNαpsupτ>0(τ1m−Nαp||v(τ)||Lp)msupτ>0(τ1m−Nαp||(v−w)(τ)||Lp)×∫t10(t1−τ)1m−Nαp−1τ(m+1)Nαp−1m−1dτ≤C(t2−t1)1−mNαp||v||mX||v−w||XBtmNαp−11, $
|
(3.18) |
where $ C = C(N, \alpha, p) $ the Beta function $ B = \mathcal{B}(\frac{1}{m}-\frac{N}{\alpha p}, \frac{(m+1)N}{\alpha p}-\frac{1}{m}) $ converges due to the condition Eq (3.1), thus we have
$ ||I(t1,t2)||˙B−αm+Npp,∞(RN)≤C||v||mX||v−w||X(t2−t1)1−mNαptmNαp−11, $
|
(3.19) |
that is,
$ ||I(t1,t2)||˙B−αm+Npp,∞(RN)=sups>0s1m−Nαp||Sα(s)I(t1,t2)||Lp→0ast2→t1. $
|
(3.20) |
Putting Eq (3.12) and Eq (3.20) into Eq (3.11) we have
$ ||B(v,⋯,v,w)(t1)−B(v,⋯,v,w)(t2)||˙B−αm+Npp,∞(RN)→0ast2→t1. $
|
(3.21) |
This means that $ B(v, \cdots, v, w) $ is continuous for $ t > 0 $ in $ \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $.
Similarly, we can prove that $ B(v, \cdots, v, w) $ is weakly continuous for $ t = 0 $ in $ \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ and it is continuous for $ t\geq0 $ in $ L^{p}(\mathbb{R}^N) $. Therefore, we have
$ B(v,⋯,v,w)∈C∗([0,∞),˙B−αm+Npp,∞(RN))∩Cmαpαp−mN([0,∞),Lp(RN)), $
|
(3.22) |
that is, $ B(v, \cdots, v, w)\in \mathcal{X} $ and Eq (3.3) holds true, i.e.,
$ ||B(v,⋯,v,w)||X≤C(N,α,p)||v||mX||v−w||X. $
|
(3.23) |
This ends the proof of Lemma 3.3.
The proof of Theorem 3.1. Now for the integral system Eq (1.11) and Eq (1.12) from the Cauchy problem Eq (1.1), we have
$ (v(t),w(t))=Sα(t)(v0,w0)+(B(v,⋯,v,w),B(w,⋯,w,v)), $
|
(3.24) |
in Lemma 3.2 and Lemma 3.3 we deal with the terms $ S_{\alpha}(t)(v_{0}, w_{0}) $ and
$ B(v,⋯,v,w)=∫t0Sα(t−τ)∇⋅[vm∇(−Δ)−1(v−w)](τ)dτ,B(w,⋯,w,v)=∫t0Sα(t−τ)∇⋅[wm∇(−Δ)−1(w−v)](τ)dτ, $
|
respectively. For the Banach space $ \mathcal{X} $ and multi-linear operator $ B(v, \cdots, v, w) $, which satisfies the estimate Eq (3.23), following the Lemma 2.4, for every $ (v_{0}, w_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, there exists $ \varepsilon > 0 $ such that $ (m+1)(2\varepsilon)^{m}C(N, \alpha, p) < 1 $, then Eq (3.24) has a unique solution $ (v, w)\in \mathcal{X} $ such that $ ||(v, w)||_{X}\leq 2\varepsilon $. Therefore, the Cauchy problem Eq (1.1) has a unique global-in-time mild solution in the mixed time-space Besov space. This completes the proof of Theorem 3.1.
Theorem 4.1. Let $ N $ be a positive integer, $ 1 < \alpha\leq 2N $ and Eq (3.1) hold true and $ (v, w) $ and $ (\tilde{v}, \tilde{w}) $ be two mild solutions of the Cauchy problem Eq (1.1) described in Theorem 3.1 corresponding to initial conditions $ (v_{0}, w_{0}) $ and $ (\tilde{v}_{0}, \tilde{w}_{0}) $, respectively. If $ (v_{0}, w_{0}), (\tilde{v}_{0}, \tilde{w}_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ such that
$ limt→∞||Sα(t)(v0−˜v0,w0−˜w0)||˙B−αm+Npp,∞(RN)=0, $
|
(4.1) |
then, we have the following asymptotic stability
$ limt→∞(||(v−˜v,w−˜w)||˙B−αm+Npp,∞(RN)+tαm−Np||(v−˜v,w−˜w)||Lp(RN))=0. $
|
(4.2) |
Proof. Since $ (v_{0}, w_{0}), (\tilde{v}_{0}, \tilde{w}_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, by Theorem 3.1, there exists a constant $ \varepsilon > 0 $ such that if $ ||(v_{0}, w_{0}), (\tilde{v}_{0}, \tilde{w}_{0})||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}}\leq\varepsilon $, then the mild solutions $ (v, w) $ and $ (\tilde{v}, \tilde{w}) $ satisfy that $ ||(v, w), (\tilde{v}, \tilde{w})||_{\mathcal{X}}\leq2\varepsilon $. From Eq (1.11) and Eq (1.12) we have
$ {v−˜v=Sα(t)(v0−˜v0)+m−1∑k=0Bk(v−˜v,v,˜v,v−w)+Bm(˜v,(v−˜v)−(w−˜w)),w−˜w=Sα(t)(w0−˜w0)+m−1∑k=0Bk(w−˜w,w,˜w,w−v)+Bm(˜w,(w−˜w)−(v−˜v)), $
|
where
$ Bk(v−˜v,v,˜v,v−w)=B(v−˜v,v,⋯,v⏟k,˜v,⋯,˜v⏟m−1−k,v−w)=∫t0Sα(t−τ)∇⋅[(v−˜v)vk˜vm−1−k∇(−Δ)−1(v−w)](τ)dτ, $
|
(4.3) |
$ Bm(˜v,(v−˜v)−(w−˜w))=B(˜v,⋯,˜v⏟m,(v−˜v)−(w−˜w))=∫t0Sα(t−τ)∇⋅[˜vm∇(−Δ)−1((v−˜v)−(w−˜w))](τ)dτ. $
|
(4.4) |
By the definition of $ \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)- $norm, we have
$ ||v−˜v||˙B−αm+Npp,∞(RN)≤||Sα(t)(v0−˜v0)||˙B−αm+Npp,∞(RN)+m−1∑k=0Ik+Im, $
|
(4.5) |
where
$ (Ik,Im)=||(Bk(v−˜v,v,˜v,v−w),B(˜v,(v−˜v)−(w−˜w)))||˙B−αm+Npp,∞(RN). $
|
For a constant $ \theta\in (0, 1) $ determined in later we have
$ Ik=sups>0s1m−Nαp||Sα(s)∫t0Sα(t−τ)∇⋅[(v−˜v)vk˜vm−1−k∇(−Δ)−1(v−w)](τ)dτ||Lp≤∫t0sups>0s1m−Nαp||Sα(s)Sα(t−τ)∇⋅[(v−˜v)vk˜vm−1−k∇(−Δ)−1(v−w)](τ)||Lpdτ≤(∫θt0+∫tθt)sups>0s1m−Nαp||Sα(t+s−τ)∇⋅[(v−˜v)vk˜vm−1−k∇(−Δ)−1(v−w)]||Lpdτ:=Ik1+Ik2. $
|
(4.6) |
In the procedure of estimate of Eq (3.5), instead of the product $ v\cdot v\cdots v\cdot (v-w) $ with $ m+1 $ exponents such that $ \frac{m}{p}+\frac{N-p}{Np} = \frac{(m+1)N-p}{Np} $, use the Hölder inequality for the product $ (v-\tilde{v})v^k\tilde{v}^{m-1-k}(v-w) $ with $ m+1 $ exponents such that $ \frac{1}{p}+\frac{k}{p}+\frac{m-1-k}{p}+\frac{N-p}{Np} = \frac{(m+1)N-p}{Np} $, we can prove that
$ Ik1≤C∫θt0(t−τ)1m−(m+1)Nαp||v−˜v||Lp||v||kLp||˜v||m−1−kLp||v−w||Lpdτ≤Cεm∫θ0(1−η)1m−(m+1)Nαpη−1−1m+(m+1)Nαp(tη)1m−Nαp||v(tη)−˜v(tη)||Lpdη, $
|
(4.7) |
and
$ Ik2≤C∫tθt(t−τ)1m−(m+1)Nαp||v−˜v||Lp||v||kLp||˜v||m−1−kLp||v−w||Lpdτ≤Cεm∫tθt(t−τ)1m−(m+1)Nαpτ−1−1m+(m+1)Nαp(τ1m−Nαp||v−˜v||Lp)dτ≤Cεm[supθt≤τ≤tτ1m−Nαp||v(τ)−˜v(τ)||Lp]. $
|
(4.8) |
Together Eq (4.7) with Eq (4.8) we have
$ Ik≤Cεm∫θ0(1−η)1m−(m+1)Nαpη−1−1m+(m+1)Nαp((tη)1m−Nαp||v(tη)−˜v(tη)||Lp)dη+Cεm[supθt≤τ≤tτ1m−Nαp||v(τ)−˜v(τ)||Lp],k=1,2,⋯,m−1. $
|
(4.9) |
Similarly we have
$ Im≤Cεm∫θ0(1−η)1m−(m+1)Nαpη1+1m−(m+1)Nαp((tη)1m−Nαp||((v−˜v)(tη),(w−˜w)(tη))||Lp)dη+Cεm[supθt≤τ≤tτ1m−Nαp||((v−˜v)(τ),(w−˜w)(τ))||Lp]. $
|
(4.10) |
We next consider the term $ ||v-\tilde{v}||_{L^{p}(\mathbb{R}^N)} $:
$ ||v−˜v||Lp(RN)≤||Sα(t)(v0−˜v0)||Lp(RN)+m−1∑k=0Jk+Jm, $
|
(4.11) |
where
$ (Jk,Jm)=||(Bk(v−˜v,v,˜v,v−w),B(˜v,(v−˜v)−(w−˜w)))||Lp(RN). $
|
For the first term we have
$ t1m−Nαp||Sα(t)(v0−˜v0)||Lp(RN)≤21m−Nαpsupt>0(t2)1m−Nαp||Sα(t2)(v0−˜v0)||Lp(RN)≤21m−Nαp||Sα(t)(v0−˜v0)||˙B−αm+Npp,∞(RN). $
|
(4.12) |
For the term $ J_{k} $ and $ \phi = (-\Delta)^{-1}(w-v) $, we have
$ Jk=||∫t0Sα(t−τ)∇⋅[(v−˜v)vk˜vm−1−k∇ϕ](τ)dτ||Lp≤C(∫θt0+∫tθt)(t−τ)−mNαp||v−˜v||Lp||v||kLp||˜v||m−1−kLp||∇ϕ||LNpN−pdτ≤C(∫θt0+∫tθt)(t−τ)−mNαp||v−˜v||Lp||v||kLp||˜v||m−1−kLp||v−w||Lpdτ≤Cεm(∫θt0+∫tθt)(t−τ)−mNαpτ−1−1m+(m+1)Nαp(τ1m−Nαp||v−˜v||Lp)dτ≤Cεmt−1m+Nαp∫θ0(1−η)−mNαpη−1−1m+(m+1)Nαp((tη)1m−Nαp||v(tη)−˜v(tη)||Lp)dη+Cεmt−1m+Nαp[supθt≤τ≤tτ1m−Nαp||v(τ)−˜v(τ)||Lp],k=1,2,⋯,m−1. $
|
(4.13) |
Similarly, for the term $ J_{m} $ we have
$ Jm≤Cεmt−1m+Nαp∫θ0(1−η)−mNαpη1+1m−(m+1)Nαp((tη)1m−Nαp||((v−˜v)(tη),(w−˜w)(tη))||Lp)dη+Cεmt−1m+Nαp[supθt≤τ≤tτ1m−Nαp||((v−˜v)(τ),(w−˜w)(τ))||Lp]. $
|
(4.14) |
Together Eq (4.5) with Eq (4.11) we have
$ ||v−˜v||˙B−αm+Npp,∞(RN)+t1m−Nαp||v−˜v||Lp(RN)≤C||Sα(t)(v0−˜v0)||˙B−αm+Npp,∞(RN)+Cεm∫θ0(1−η)1m−(m+1)Nαpη1+1m−(m+1)Nαp((tη)1m−Nαp||((v−˜v)(tη),(w−˜w)(tη))||Lp)dη+Cεm∫θ0(1−η)−mNαpη1+1m−(m+1)Nαp((tη)1m−Nαp||((v−˜v)(tη),(w−˜w)(tη))||Lp)dη+Cεm[supθt≤τ≤tτ1m−Nαp||((v−˜v)(τ),(w−˜w)(τ))||Lp]. $
|
(4.15) |
For $ w-\tilde{w} $ we can get the same estimate similar to Eq (4.15).
For the convenience we denote
$ Q(θ)=∫θ0(1−η)1m−(m+1)Nαpη−1−1m+(m+1)Nαpdη+∫θ0(1−η)−mNαpη−1−1m+(m+1)Nαpdη,F(t)=||Sα(t)(v0−˜v0,w0−˜w0)||˙B−αm+Npp,∞(RN),G(t)=||v−˜v||˙B−αm+Npp,∞(RN)+t1m−Nαp||v−˜v||Lp(RN). $
|
Due to the condition Eq (3.1), $ \max\{1, \frac{mN}{\alpha}\} < p < \min\{N, \frac{m(m+1)N}{\alpha}\} $, we have
$ 1+1m−(m+1)Nαp=m+1mp(p−mNα)>0,−1m+(m+1)Nαp=1mp(m(m+1)Nα−p)>0,1−mNαp=1p(p−mNα)>0, $
|
then, we obtain that $ Q(\theta) $ converges and $ \lim\limits_{\theta\rightarrow 0}Q(\theta) = 0 $.
Due to the condition Eq (4.1) we have $ \lim\limits_{t\rightarrow +\infty}F(t) = 0 $ and $ F(t)\in L^{\infty}[0, +\infty) $. Passing the limit in Eq (4.15) we get
$ M=lim supt→+∞G(t)≤C(N,α,p)εm(Q(θ)+1)M, $
|
(4.16) |
Choosing $ \theta $ and $ \varepsilon $ small enough such that $ Q(\theta) < 1 $ and $ 2C(N, \alpha, p)\varepsilon^{m} < 1 $ respectively, then Eq (4.16) implies that $ M = 0 $. That is, Eq (4.2) holds true. The proof is complete.
In this section we consider the regularizing decay rate estimates of the mild solutions to the system Eq (1.1). Compared to the case $ m = 1 $, the main difficulty is caused by the power-law nonlinearity term $ v^{m} $ as $ m > 1 $ in the first two equations of Eq (1.1). To overcome this difficulty, we will apply multiple Leibniz's rule. For the regularizing-decay rate estimates of mild solutions to the Navier-Stokes equations, we refer the reader to [6,28,29,30].
In what follows, for $ x = (x_{1}, \cdots, x_{N})\in\mathbb{R}^{N} $ and $ \beta = (\beta_{1}, \cdots, \beta_{N})\in\mathbb{N}^{N}_{0} $, where $ \mathbb{N}_{0} = \mathbb{N}\bigcup{\{0\}} $ and $ \mathbb{N} = \{1, 2, \cdots\} $, we denote $ \partial^{\beta}_{x} = \partial^{\beta_{1}}_{x_{1}} \cdots \partial^{\beta_{N}}_{x_{N}} $ and $ |\beta| = \beta_{1}+\cdots+\beta_{N} $.
We first describe the main result on regularizing-decay rate estimates of the mild solutions to the system Eq (1.1).
Theorem 5.1. Let $ N\geq2 $ be a positive integer, $ 1 < \alpha\leq 2N $. Assume that $ p $ satisfies Eq (3.1) and $ (v_{0}, w_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, and $ (v, w) $ is the mild solution to the system Eq (1.1) with initial data $ (v_{0}, w_{0}) $. Furthermore, assume that there exist two positive constants $ M_{1} $ and $ M_{2} $ such that
$ sup0≤t<T‖(v(t),w(t))‖˙B−αm+Npp,∞(RN)≤M1, $
|
(5.1) |
$ sup0<t<Tt1m−Nαp‖(v(t),w(t))‖Lp(RN)≤M2. $
|
(5.2) |
Then, there exist two positive constants $ K_{1} $ and $ K_{2} $ depending only on $ M_{1} $, $ M_{2} $, $ N $, $ \alpha $, $ m $ and $ p $, such that
$ ‖(∂βxv(t),∂βxw(t))‖Lq(RN)≤K1(K2|β|)2|β|t−|β|α−1m+Nαq $
|
(5.3) |
for all $ p\leq q \leq \infty $, $ t\in(0, T) $ and $ \beta\in\mathbb{N}^{N}_{0} $.
Remark 1. In fact, Eq (5.3) is equivalent to the claim
$ ‖(∂βxv(t),∂βxw(t))‖Lq≤K1(K2|β|)2|β|−δt−|β|α−1m+Nαq $
|
(5.4) |
for some $ \delta\in(1, 2] $ and sufficiently large constants $ K_{1} $ and $ K_{2} $.
Let us first prepare the refined $ L^{p}-L^{q} $ estimate for semigroup operator $ S_{\alpha}(t) $.
Lemma 5.2. Let $ 1\leq p\leq q\leq \infty $. Then for any $ f\in\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^{N}) $, we have
$ ‖∂βxSα(t)f‖Lq(RN)≤C|β|0|β||β|αt−|β|α−1m+Nαq‖f‖˙B−αm+Npp,∞(RN) $
|
(5.5) |
for all $ t > 0, \beta\in\mathbb{N}^{N}_{0} $, and $ C_{0} $ is a constant depending only on $ N $ and $ \alpha $.
Proof. As $ S_{\alpha}(t) $ is the convolution operator with fractional heat kernel $ K_{t}(x) = \mathcal{F}^{-1}(e^{-t|\xi|^{\alpha}}) $, by scaling we see that
$ Kt(x)=(2π)−n2∫RNeix⋅ξe−t|ξ|αdξ=t−NαK(xt−1α), $
|
where $ K(x) = (2\pi)^{-\frac{n}{2}}\int_{\mathbb{R}^{N}}e^{ix\cdot\xi}e^{-|\xi|^{\alpha}}d\xi $. It is clear that [22] (Lemma 2.2)
$ ∇K(x)∈Lp(RN),∇Kt(x)∈Lp(RN),∀t∈(0,∞),∀p∈[1,∞], $
|
thus, the Young inequality implies that
$ ‖∂xSα(t)f‖Lq≤‖∂xKt(x)‖L1‖f‖Lq≤C0(N,α)t−1α‖f‖Lq. $
|
(5.6) |
By the semigroup property of $ S_{\alpha}(t) $ and the commutativity between semigroup and differential operators, we get
$ ∂βxSα(t)f=N∏i=1(∂xiSα(t2|β|))βiSα(t2)f. $
|
(5.7) |
Combining Eq (5.6) and Eq (5.7), and using Definition 2.1, we obtain
$ ‖∂βxSα(t)f‖Lq(RN)≤N∏i=1‖∂xiSα(t2|β|)‖βiL(Lq,Lq)‖Sα(t2)f‖Lq≤(C0(N,α)(t2|β|)−1α)|β|(t4)−Nα(1p−1q)‖Sα(t4)f‖Lp≤C0(N,α)|β||β||β|αt−|β|α−1m+Nαqsupt>0(t4)1m−Nαp‖Sα(t4)f‖Lp≤C0(N,α)|β||β||β|αt−|β|α−1m+Nαq‖f‖˙B−αm+Npp,∞(RN), $
|
where $ \|\mathbf{T}\|_{\mathcal{L}(L^{p}, L^{q})} $ denotes the norm of linear operator $ \mathbf{T} $ from $ L^{p} $ to $ L^{q} $. This proves the Lemma 5.2.
Next we recall some useful results.
Lemma 5.3. [31,Lemma 2.1] Let $ \delta > \frac{1}{2} $. Then there exists a positive constant $ C $ depending only on $ \delta $, such that
$ ∑α<β(βα)|α||α|−δ|β−α||β−α|−δ≤C(δ)|β||β|−δ,∀β∈NN0. $
|
(5.8) |
Here the notation $ \alpha < \beta $ means that $ \alpha_{i} < \beta_{i}, \forall i\in \mathbb{N} $, $ \left(βα
Lemma 5.4. [28] Let $ \psi_{0} $ be a measurable and locally bounded function in $ (0, \infty) $ and $ \{\psi_{j}\}^{\infty}_{j = 1} $ be a sequence of measurable functions in $ (0, \infty) $. Assume that $ \alpha\in\mathbb{R} $ and $ \mu, \nu > 0 $ satisfying $ \mu+\nu = 1 $. Let $ B_{\eta} > 0 $ be a number depending on $ \eta\in(0, 1) $ and $ B_{\eta} $ be non-increasing with respect to $ \eta $. Assume that there is a positive constant $ \sigma $ such that
$ 0≤ψ0(t)≤Bηt−α+σ∫t(1−η)t(t−τ)−μτ−νψ0(τ)dτ, $
|
(5.9) |
$ 0≤ψj+1(t)≤Bηt−α+σ∫t(1−η)t(t−τ)−μτ−νψj(τ)dτ $
|
(5.10) |
for all $ j\geq 0 $, $ t > 0 $ and $ \eta\in(0, 1) $. Let $ \eta_{0} $ be a unique positive number such that
$ I(η0)=min{12σ,I(1)}withI(η)=∫11−η(1−τ)−μτ−α−νdτ. $
|
Then, for any $ 0 < \eta\leq\eta_{0} $, we have
$ ψj(t)≤2Bηt−α,∀j≥0,t>0. $
|
We now prove the Theorem 5.1. Following the idea in Giga-Sawada [28], we first prove the Remark 1, a variant of Theorem 5.1 under extra regularity assumption.
Proposition 1. Under the same assumptions in Theorem 5.1. Assume further that
$ (∂βxv(t),∂βxw(t))∈C((0,T),Lq(RN)) $
|
(5.11) |
for all $ p\leq q\leq\infty $ and $ \beta\in\mathbb{N}^{N}_{0} $. Then for any $ \delta\in (1, 2] $, there exist two positive constants $ K_{1} $ and $ K_{2} $ depending only on $ M_{1} $, $ M_{2} $, $ N $, $ \alpha $, $ m $ and $ p $, such that
$ ‖(∂βxv(t),∂βxw(t))‖Lq≤K1(K2|β|)2|β|−δt−|β|α−1m+Nαq $
|
(5.12) |
for all $ p\leq q \leq \infty $, $ t\in(0, T) $ and $ \beta\in\mathbb{N}^{N}_{0} $.
Proof. We split the proof into the following two steps by an induction $ |\beta| = m $.
Step 1. We will prove Eq (5.12) for $ m = 0 $. Equation (5.2) implies that Eq (5.12) is trivial if $ q = p $, thus it suffices to consider $ q\in (p, \infty] $. Let $ \eta\in(0, 1) $ be a constant to be determined later, we take $ L^{q}- $norm of the first equation in Eq (1.11) and split the time integral into two parts as follows:
$ ‖v(t)‖Lq≤‖Sα(t)v0‖Lq+(∫t(1−η)0+∫tt(1−η))‖Sα(t−τ)∇⋅[vm∇(−△)−1(w−v)(τ)]‖Lqdτ:=E1+E2+E3. $
|
(5.13) |
We will estimate term by term.
For $ E_{1} $, by Lemma 5.2 and Eq (5.1), one can easily see that
$ E1≤C1(N,α)t−αm+Nαq‖v0‖˙B−1m+Npp,∞≤C1(N,α,M1)t−1m+Nαq. $
|
(5.14) |
For $ E_{2} $ and $ E_{3} $, by Lemma 2.2, Lemma 2.3 and Eq (5.2), we have
$ E2=∫t(1−η)0‖Sα(t−τ)∇⋅[vm∇(−△)−1(w−v)(τ)]‖Lqdτ≤C2(N,α,p)∫t(1−η)0(t−τ)−(m+1)Nαp+Nαq‖v(τ)‖mLp‖(v(τ),w(τ))‖Lpdτ≤C2(N,α,p)Mm+12∫t(1−η)0(t−τ)−(m+1)Nαp+Nαqτ−1−1m+(m+1)Nαpdτ≤C2(N,α,p,M2)η−1−1mt−1m+Nαq, $
|
(5.15) |
$ E3=∫tt(1−η)‖Sα(t−τ)∇⋅[vm∇(−△)−1(w−v)(τ)]‖Lqdτ≤C3(N,α,p)∫tt(1−η)(t−τ)−mNαp‖v(τ)‖Lq‖v(τ)‖m−1Lp‖(v(τ),w(τ))‖Lpdτ≤C3(N,α,p,M2)∫tt(1−η)(t−τ)−mNαpτ−1+mNαp‖v(τ)‖Lqdτ. $
|
(5.16) |
Combining Eqs (5.14)–(5.16), and setting $ \bar{B}_{\eta} = C_{1}(N, \alpha, M_{1})+C_{2}(N, \alpha, p, M_{2})\eta^{-1-\frac{1}{m}} $, the inequality Eq (5.13) yields that
$ ‖v(t)‖Lq≤ˉBηt−1m+Nαq+C3∫tt(1−η)(t−τ)−mNαpτ−1+mNαp‖v(τ)‖Lqdτ. $
|
(5.17) |
The estimate for $ w(t) $ can be done analogously as Eq (5.17). Hence, we have
$ ‖(v(t),w(t))‖Lq≤Bηt−1m+Nαq+C4∫tt(1−η)(t−τ)−mNαpτ−1+mNαp‖(v(τ),w(τ))‖Lqdτ, $
|
(5.18) |
where $ B_{\eta} = 2\bar{B}_{\eta} $ and $ C_{4} = 2C_{3}(N, \alpha, p, M_{2}) $.
By applying Lemma 5.4, we get the desired estimate Eq (5.12) for $ |\beta| = k = 0 $ with $ K_{1} = 2B_{\eta_{0}} $ for some $ \eta_{0} = \eta_{0}(N, \alpha, p, m, M_{1}, M_{2})\in(0, 1) $.
Step 2. Next we prove Eq (5.12) for $ |\beta| = k\geq1 $. Due to the appearance of nonlocal function $ \phi $, we use a different argument to prove Eq (5.12) for $ p\leq q < N $ and $ N\leq q\leq\infty $, thus we split the proof into the following two cases.
Case 1: $ p\leq q < N $. In this case, we first differentiate the first equation of Eq (1.11) to obtain the identity
$ ∂βxv(t)=∂βxSα(t)v0−∫t0∂βxSα(t−τ)∇⋅[vm∇(−Δ)−1(w−v)(τ)]dτ. $
|
(5.19) |
We take the $ L^{q}- $norm of $ \partial^{\beta}_{x}v $, for some $ \eta\in(0, 1) $ to be chosen later, we split the time integral into the following two parts:
$ ‖∂βxv(t)‖Lq≤‖∂βxSα(t)v0‖Lq+(∫t(1−η)0+∫tt(1−η))‖∂βxSα(t−τ)∇⋅[vm∇(−Δ)−1(w−v)(τ)]‖Lqdτ:=F1+F2+F3. $
|
(5.20) |
We next estimate $ F_{i}(i = 1, 2, 3) $ term by term.
For $ F_{1} $, Lemma 5.2 implies that
$ F1≤Ck0kkαt−kα−1m+nαq‖v0‖˙B−αm+npp,∞≤M1Ck0kkαt−kα−1m+nαq. $
|
(5.21) |
For $ F_{2} $, using Lemma 5.2, Lemma 2.3 and Eq (5.2), we have
$ F2=∫t(1−η)0‖∂βxSα(t−τ)∇⋅[vm∇(−Δ)−1(w−v)(τ)]‖Lqdτ≤C5(N,α)∫t(1−η)0(t−τ2)−1α‖∂βxSα(t−τ2)[vm∇(−Δ)−1(w−v)(τ)]‖Lqdτ≤C5(N,α)∫t(1−η)0(t−τ2)−1αN∏i=1‖∂xiSα(t−τ4k)‖kiL(Lq,Lq)×‖Sα(t−τ4)[vm∇(−Δ)−1(w−v)(τ)]‖Lqdτ≤C5(N,α)∫t(1−η)0(t−τ2)−1α[C0(t−τ4k)−1α]k(t−τ4)−(m+1)N−pαp+Nαq×‖vm∇(−Δ)−1(w−v)(τ)‖LNp(m+1)N−pdτ≤C5(N,α,p)Ck0kkα∫t(1−η)0(t−τ4)−kα−Nα(m+1p−1q)‖v(τ)‖mLp‖(v(τ),w(τ))‖Lpdτ≤C5(N,α,p)Mm+12Ck0kkα∫t(1−η)0(t−τ4)−kα−Nα(m+1p−1q)τ−1−1m+(m+1)Nαpdτ≤C5(N,α,p,M2)Ck0kkαη−kα−1−1mt−kα−1m+Nαq, $
|
(5.22) |
where $ k = k_{1}+k_{2}+\dots+ k_{N} $ and $ k_{i} = |\beta_{i}|(i = 1, 2, \dots, N) $.
Using Leibniz's rule, we split $ F_{3} $ into the following three parts:
$ F3=∫tt(1−η)‖∂βxSα(t−τ)∇⋅[vm∇(−Δ)−1(w−v)(τ)]‖Lqdτ≤C6(N,α)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)∂βx[vm∇(−Δ)−1(w−v)(τ)]‖Lqdτ≤C6(N,α)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)[(∂βxvm)∇(−Δ)−1(w−v)(τ)]‖Lqdτ+C6(N,α)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)⋅∑0<γ<β(βγ)(∂γxvm)(∂β−γx∇(−Δ)−1(w−v)(τ))‖Lqdτ+C6(N,α)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)[vm∂βx∇(−Δ)−1(w−v)(τ)]‖Lqdτ:=F31+F32+F33. $
|
(5.23) |
Here, the notation $ \gamma < \beta $ means that $ \gamma\leq\beta $ and $ |\gamma| < |\beta| $.
Now, we establish the estimates for $ F_{3j}(j = 1, 2, 3) $. For $ F_{31} $, using Leibniz's rule again, we can split $ F_{31} $ into two parts as follows:
$ F31=C7(N,α)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)[(∂βxvm)∇(−Δ)−1(w−v)]‖Lqdτ=C7(N,α)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)[∑β(βmβm−1)(βm−1βm−2)…(β2β1)×(∂β1xv)(∂β2−β1xv)…(∂βm−βm−1xv)+mvm−1(∂βxv)∇(−Δ)−1(w−v)]‖Lqdτ=C7(N,α)∑βm∏i=1(βiβi−1)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)⋅m∏i=1(∂βi−βi−1xv)∇(−Δ)−1(w−v)(τ)‖Lqdτ+C7(N,α,m)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)vm−1(∂βxv)∇(−Δ)−1(w−v)‖Lqdτ:=G1+G2, $
|
(5.24) |
where we denote $ \sum_{\beta} = \sum_{0 = \beta_{0}\leq\beta_{1}\leq\dots\leq\beta_{m-1} < \beta_{m} = \beta} $.
For $ G_{2} $, using Lemma 2.2, Lemma 2.3 and Eq (5.2), we have
$ G2≤C8(N,α,m,p)∫tt(1−η)(t−τ2)−mNαp‖v‖m−1Lp‖∂βxv‖Lq‖(v(τ),w(τ))‖Lpdτ≤C8(N,α,m,p)Mm2∫tt(1−η)(t−τ)−mNαpτ−1+mNαp‖∂βxv‖Lqdτ. $
|
(5.25) |
For $ G_{1} $, using Lemma 2.2, Lemma 2.3, Lemma 5.3, Eq (5.2) and Eq (5.12), we have
$ G1≤C9(N,α,p)∑βm∏i=1(βiβi−1)∫tt(1−η)(t−τ)−(m−1)Nαq−Nαp×m∏i=1‖∂βi−βi−1xv‖Lq‖(v(τ),w(τ))‖Lpdτ≤C9(N,α,p)M2∑βm∏i=1(βiβi−1)∫tt(1−η)(t−τ)−(m−1)Nαq−Nαp×m∏i=1[K1(K2|βi−βi−1|2|βi−βi−1|−δ)τ−|βi−βi−1|α−1m+Nαq]τ−1m+Nαpdτ≤C9(N,α,p,M2)∑βm∏i=1(βiβi−1)m∏i=1[K1(K2|βi−βi−1|2|βi−βi−1|−δ)]×∫tt(1−η)(t−τ)−(m−1)Nαq−Nαpτ−kα−1+mNαq−1m+Nαpdτ≤C9(N,α,p,M2)(C(δ))2(m−1)k2k−δKm1K2k−mδ2I(η)t−kα−1m+Nαq, $
|
(5.26) |
where
$ I(η)=∫11−η(1−τ)−(m−1)Nαq−Nαpτ−kα−1+mNαq−1m+Nαpdτ. $
|
(5.27) |
For $ F_{32} $, using the same arguments as $ G_{1} $, we have
$ F32≤C10(N,α)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)[∑0<γ<β(βγ)(∂γxvm)×(∂β−γx∇(−Δ)−1(w−v)(τ))]‖Lqdτ≤C10(N,α)∑0<γ<β(βγ)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)(∂γxvm)×(∂β−γx∇(−Δ)−1(w−v)(τ))‖Lqdτ=C10(N,α)∑0<γ<β(βγ)∫tt(1−η)(t−τ2)−1α‖Sα(t−τ2)[∑γm∏i=1(γiγi−1)×m∏j=1(∂γj−γj−1xvm)](∂β−γx∇(−Δ)−1(w−v)(τ))‖Lqdτ≤C10(N,α)∑0<γ<β(βγ)∑γm∏i=1(γiγi−1)∫tt(1−η)(t−τ2)−1α×‖Sα(t−τ2)m∏j=1(∂γj−γj−1xvm)(∂β−γx∇(−Δ)−1(w−v)(τ))‖Lqdτ, $
|
according to the property of semigroup we get
$ F32≤C10(N,α,p)∑0<γ<β(βγ)∑γm∏i=1(γiγi−1)∫tt(1−η)(t−τ)−N(m−1)αq−Nαp×m∏j=1‖∂γj−γj−1xv‖Lq‖∂β−γx(v(τ),w(τ))‖Lpdτ≤C10(N,α,p)∑0<γ<β(βγ)∑γm∏i=1(γiγi−1)∫tt(1−η)(t−τ)−N(m−1)αq−Nαp×m∏j=1[K1(K2|γj−γj−1|)2|γj−γj−1|−δτ−|γj−γj−1|α−1m+Nαq]×[K1(K2|β−γ|)2|β−γ|−δτ−|β−γ|α−1m+Nαp]dτ≤C10(N,α,p)(C(δ))mKm+11K2k−(m+1)δ2k2k−δI(η)t−kα−1m+Nαq, $
|
(5.28) |
where $ \sum_{\gamma} $ is defined the same as that in estimating $ F_{31} $ and $ I(\eta) $ is defined in Eq (5.27).
For $ F_{33} $, analogously we have
$ F33≤C11∫tt(1−η)(t−τ)−N(m−1)αq−Nαp‖v‖mq‖∂βx∇(−△)−1(w−v)(τ)‖LNpN−pdτ≤C11(N,α)∫tt(1−η)(t−τ)−N(m−1)αq−Nαp‖v‖mq‖∂β−1x(v(τ),w(τ))‖LNpN−pdτ≤C11(N,α)∫tt(1−η)(t−τ)−N(m−1)αq−Nαp[K1τ−1m+Nαq]m×[K1(K2(k−1))2(k−1)−δτk−1α−1m+N(N−p)αNp]dτ≤C11(N,α)Km+11K2(k−1)−δ2k2k−δI(η)t−kα−1m+Nαq, $
|
(5.29) |
where $ I(\eta) $ is defined in Eq (5.27).
Combining the above estimates Eqs (5.20)$ - $(5.29) and setting $ \bar{B}_{\eta} $ by
$ ˉBη=M1Ck0kkα+C5Ck0kkαη−kα−1−1m+C12k2k−δI(η), $
|
and
$ C12=C9Km1K2k−mδ2+C10Km+11K2k−(m+1)δ2+C11Km+11K2(k−1)−δ2, $
|
(5.30) |
we obtain
$ ‖∂βxv(t)‖Lq≤ˉBηt−kα−1m+Nαq+C8∫tt(1−η)(t−τ)−mNαpτ−1+mNαp‖∂βxv(τ)‖Lqdτ. $
|
(5.31) |
Similarly, we can deal with $ \partial^{\beta}_{x}w(t) $. Hence, we conclude that
$ ‖(∂βxv(t),∂βxw(t))‖Lq≤Bηt−kα−1m+Nαq+C13∫tt(1−η)(t−τ)−mNαpτ−1+mNαp‖(∂βxv(τ),∂βxw(τ))‖Lqdτ, $
|
(5.32) |
where $ B_{\eta} = 2\bar{B}_{\eta} $ and $ C_{13} = 2C_{8}(N, \alpha, m, p) $.
Let $ \eta_{k} = \frac{1}{2k} $. It is clear that $ I(\eta_{k}) $ is strictly monotone decreasing in $ k $ and $ I(\eta_{k})\rightarrow 0 $ as $ k\rightarrow \infty $. Choosing $ k_{0} $ sufficiently large, such that $ I(\frac{1}{2k})\leq\frac{1}{2C_{13}} $ for all $ k\geq k_{0} $, applying Lemma 5.4, we get
$ ‖(∂βxv(t),∂βxw(t))‖Lq≤2B12kt−kα−1m+Nαq $
|
(5.33) |
for all $ t > 0 $ and $ |\beta| = k $. Note that from Eq (5.33), we can choose $ K_{1} $ and $ K_{2} $ sufficiently large such that Eq (5.12) holds for all $ \beta $ satisfying $ |\beta|\leq k_{0} $. Hence, it suffices to prove that it is possible to choose $ K_{1} $ and $ K_{2} $ such that $ 2B_{\frac{1}{2k}}\leq K_{1}(K_{2}k)^{2k-\delta} $ for all $ k > k_{0} $. Since
$ I(12k)=∫11−12k(1−τ)−(m−1)Nαq−Nαpτ−kα−1+mNαq−1m+Nαpdτ≤(1−12k)−kα−1−1m≤e12α(1−12k)−1−1m≤16, $
|
we can calculate $ 2B_{\frac{1}{2k}} $ as follows:
$ 2B12k=4ˉB12k≤4[M1Ck0kkα+C5Ck0kkα(2k)kα+1+1m+16C12k2k−δ]≤4[M1Ck0+2kα+1+1mC5Ck0k1+1m+δ+16C12]k2k−δ. $
|
Obviously, there exists a constant $ C_{14} > C_{0} $ such that $ C^{k}_{0}+2^{\frac{k}{\alpha}+1+\frac{1}{m}}C_{0}^{k}k^{1+\frac{1}{m}+\delta}\leq C_{14}^{2k-\delta} $. Hence,
$ 2B12k≤4[(M1+C5)C2k−δ14+16C12]k2k−δ, $
|
(5.34) |
where $ C_{12} $ is defined in Eq (5.30).
Choosing $ K_{1}: = 8(M_{1}+C_{5}) $ and $ K_{2}: = \max\{C_{14}, 32(C_{9}+C_{10})K_{1}, 32C_{11}K_{1}^{\frac{m}{2}}\} $, we obtain Eq (5.12). This completes the proof of Proposition 1 for $ p\leq q < N $.
Case 2: $ N\leq q\leq\infty $. Now we are in a position to establish the estimate of $ \|\partial^{\beta}_{x}v(t)\|_{L^{q}} $ for $ N\leq q\leq\infty $. For $ p $ satisfying Eq (3.1), using the Gagliardo-Nirenberg inequality [32], we have
$ ‖∂βxv(t)‖Lq≤C(N,p)‖∂βxv(t)‖θLp‖∂2x∂βxv(t)‖1−θLp,θ=1−N2p+N2q. $
|
(5.35) |
Now, from Eq (5.35) and the result of Case 1 we see that
$ ‖∂βxv(t)‖Lq≤C(N,p)[K1(K2k)2k−δt−kα−1m+Nαp]θ[K1(K2(k+2))2(k+2)−δt−k+2α−1m+Nαp]1−θ≤C(N,p)K1(K2(k+2))2k+4−δt−kα−1m+Nαq. $
|
(5.36) |
It is clear that there exists a constant $ C_{15}\geq2 $ such that $ k^{4}\leq C_{15}^{2k-\delta} $, thus we have
$ (K2(k+2))2k+4−δ=K42k4(1+2k)2k+4−δ(K2k)2k−δ≤81e4K42(C15K2k)2k−δ. $
|
Hence, we can choose $ K_{1} $ and $ K_{2} $ sufficiently large such that Eq (5.12) holds for all $ p\leq q\leq\infty $. This completes the proof of Proposition 1.
Finally, let us show that under the assumptions of Theorem 5.1, the mild solution $ (v(t), w(t)) $ of Eq (1.1) always satisfies the regularity condition Eq (5.12).
Proposition 2. Under the assumptions of Theorem 5.1, the mild solution $ (v(t), $ $ w(t)) $ satisfies that
$ t|β|α+1m−Nαq‖(∂βxv(t),∂βxw(t))‖Lq≤˜K1(˜K2|β|)2|β|−δ $
|
(5.37) |
for all $ p\leq q\leq\infty $, $ t\in(0, T) $ and $ \beta\in\mathbb{N}^{N}_{0} $, where $ \tilde{K}_{1} $ and $ \tilde{K}_{2} $ are constants depending only on $ M_{1}, M_{2}, m, N, \alpha, p $ and $ \delta $.
Proof. Since the mild solution $ (v(t), w(t)) $ is the limit function of the sequence $ (v_{j}(t), w_{j}(t)) $ of appropriate Picard iterations as follows:
$ (v1(t),w1(t))=(Sα(t)v0,Sα(t)w0),forj≥2,vj(t)=Sα(t)v0+∫t0Sα(t−τ)∇⋅[vmj−1∇(−Δ)−1(vj−1−wj−1)](τ)dτ,wj(t)=Sα(t)w0+∫t0Sα(t−τ)∇⋅[wmj−1∇(−Δ)−1(wj−1−vj−1)](τ)dτ. $
|
Step 1. We first show that
$ supj≥1sup0<t<Tt1m−Nαp‖(vj(t),wj(t))‖Lp≤M2. $
|
(5.38) |
When $ j = 1 $, following from Eq (5.1) we have
$ ‖(v1,w1)‖Lp=‖(Sα(t)v0,Sα(t)w0)‖Lp≤t−1m+Nαpsup0<t<Tt1m−Nαp‖(Sα(t)v0,Sα(t)w0)‖Lp≤t−1m+Nαp‖(v0,w0)‖˙B−αm+Npp,∞≤M1t−1m+Nαp. $
|
(5.39) |
Hence Eq (5.38) holds for $ j = 1 $.
When $ j\geq2 $, using Lemma 2.2 and Lemma 2.3, we have
$ ‖vj(t)‖Lp≤‖Sα(t)v0‖Lp+∫t0‖Sα(t−τ)∇⋅[vmj−1∇(−Δ)−1(vj−1−wj−1)]‖Lp(τ)dτ≤M1t−1m+Nαp+C(N,α,p)∫t0(t−τ)−mNαp‖vj−1(τ)‖mLp‖(vj−1(τ),wj−1(τ))‖Lpdτ≤M1t−1m+Nαp+C(N,α,p)[sup0<s<Ts1m−Nαp‖(vj−1(s),wj−1(s))‖Lp]m+1t−1m+NαpB, $
|
where $ B = \int^{1}_{0}(1-\tau)^{-\frac{mN}{\alpha p}}\tau^{-1-\frac{1}{m}+\frac{(m+1)N}{\alpha p}}d\tau = \mathcal{B}(1-\frac{mN}{\alpha p}, -\frac{1}{m}+\frac{(m+1)N}{\alpha p}) $ is the standard Beta function which is obviously finite.
For $ w_{j}(t) $ we have the analogous estimate. Then, for $ j = 2, 3, \cdots $, we get
$ ‖(vj(t),wj(t))‖Lp≤C(N,α,p,m,M1,B)t−1m+Nαp:=M2t−1m+Nαp, $
|
(5.40) |
where the constant $ C(N, \alpha, p, m, M_{1}, B) $ is always finite. Therefore Eq (5.38) holds true.
Step 2. To apply the Lemma 5.4, we need to show that $ \|(\partial^{\beta}_{x}v_{1}(t), \partial^{\beta}_{x}w_{1}(t))\|_{L^{q}} $ is locally bounded in $ (0, T) $. Using Lemma 2.3 and Eq (5.1), we have
$ ‖∂βxv1(t)‖Lq=‖∂βxSα(t2)Sα(t2)v0‖Lq≤C(N,α)(t2)−|β|α−Nα(1p−1q)‖Sα(t2)v0‖Lp≤C(N,α)(t2)−|β|α−Nα(1p−1q)(t2)−1m+Nαpsupt>0(t2)1m−Nαp‖Sα(t2)v0‖Lp≤C(N,α)M1(t2)−|β|α−1m+Nαq. $
|
Similarly, we have a similar estimate on $ w_{j}(t) $. Then $ \|(\partial^{\beta}_{x}v_{1}(t), \partial^{\beta}_{x}w_{1}(t))\|_{L^{q}} $ is locally bounded in $ (0, T) $.
Step 3. Similarly to the proof of Proposition 1, let $ \psi_{j}(t) = \|\partial^{\beta}_{x}v_{j}(t)\|_{L^{q}} $, for all $ j\geq1 $ and $ t\in(0, T) $, we have
$ ψj+1(t)≤ˉBηt−|β|α−1m+Nαq+C8∫tt(1−η)(t−τ)−mNαpτ−1+mNαpψj(τ)dτ. $
|
(5.41) |
Using Lemma 5.4 (the version of sequences), we can choose appropriate constants $ \tilde{K}_{1} $ and $ \tilde{K}_{2} $ such that
$ ψj(t)≤˜K1(˜K2|β|)2|β|−δt−|β|α−1m+Nαq. $
|
(5.42) |
For $ w_{j}(t) $ we have the similar estimate. Hence we complete the proof of Proposition 2.
The proof of Theorem 5.1. Now Theorem 5.1 follows immediately from Proposition 1 and Proposition 2. We complete the proof of Theorem 5.1.
In this section, we consider a fractional drift diffusion system with generalized electric potential equation
$ {∂tv+Λαv=∇⋅(vm∇ϕ),t>0,x∈RN,∂tw+Λαw=∇⋅(wm∇ϕ),t>0,x∈RN,ϕ=K(v−w)(x)=c∫RNb(x,y)(v−w)(y)dy,t>0,x∈RN,v(x,0)=v0(x),w(x,0)=w0(x),x∈RN, $
|
(6.1) |
where $ c $ is a constant and $ b(x, y) $ is the kernel function of nonlocal linear integral operator $ \mathcal{K} $.
For $ \mathcal{K} = (-\Delta)^{-1} $ which comes from the Poisson equation $ \Delta\phi = v-w $, Eq (6.1) becomes the fractional drift diffusion system Eq (1.1). For instance,
$ K(u)(x)=c∫RN(x−y)u(y)|x−y|−Ndy, $
|
(6.2) |
where $ c $ is a constant. If $ c < 0 $, the equation $ u_{t} = \Delta u+\nabla\cdot(u\nabla \mathcal{K}(u)) $ models the Brownian diffusion of charge carriers interacting via Coulomb forces. If $ c > 0 $, the operator $ \mathcal{K} $ reflects the mutual gravitational attraction of particles. Furthermore, Biler-Woyczynski [33] considered the equation $ u_{t} = \Lambda^{\alpha} u+\nabla\cdot(u\nabla \mathcal{K}(u)) $.
We also give the global existence and asymptotic stability of the mild solution to the Cauchy problem Eq (6.1).
Theorem 6.1. Let $ N $ be a positive integer, $ 1 < \alpha\leq 2N $ and Eq (3.1) hold true. Assume that $ (v_{0}, w_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $. If the derivative of kernel function $ b(x, y) $ satisfies
$ |Db(x,y)|≤C|x−y|−N+1, $
|
(6.3) |
then there exists $ \varepsilon > 0 $ such that if $ ||(v_{0}, w_{0})||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}}\leq\varepsilon $, the Cauchy problem Eq (6.1) has a unique global mild solution $ (v, w)\in \mathcal{X} $ such that $ ||(v, w)||_{\mathcal{X}}\leq2\varepsilon $. Moreover, the solution depends continuously on initial data in the following sense: let $ (\tilde{v}, \tilde{w})\in \mathcal{X} $ be the solution of Eq (6.1) with initial data $ (\tilde{v}_{0}, \tilde{w}_{0}) $ such that $ ||(\tilde{v}_{0}, \tilde{w}_{0})||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)}\leq\varepsilon $, then there is a constant $ C $ such that
$ ||(v−˜v,w−˜w)||X≤C||(v0−˜v0,w0−˜w0)||˙B−αm+Npp,∞(RN). $
|
(6.4) |
Proof. After a few modifications of the proof to Theorem 3.1, we can prove this theorem. Here we just give the main difference in the proof.
By the fractional heat semigroup $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we rewrite the system Eq (6.1) as a system of integral equations
$ {v(t)=Sα(t)v0+B(v,⋯,v,w),w(t)=Sα(t)w0+B(w,⋯,w,v), $
|
(6.5) |
where
$ B(v,⋯,v⏟m,w)=∫t0Sα(t−τ)∇⋅[vm∇K(v−w)](τ)dτ. $
|
(6.6) |
Similar to Eqs (3.4)–(3.8), we have
$ ||B(v,⋯,v,w)(t)||˙B−αm+Npp,∞(RN)=sups>0s1m−Nαp||Sα(s)∫t0Sα(t−τ)∇⋅[vm∇K(v−w)](τ)dτ||Lp≤∫t0sups>0s1m−Nαp||Sα(s)Sα(t−τ)∇⋅[vm∇K(v−w)](τ)||Lpdτ≤C(N,α)∫t0(t−τ)1m−(m+1)Nαp||vm∇K(v−w)(τ)||LNp(m+1)N−pdτ≤C(N,α)∫t0(t−τ)1m−(m+1)Nαp||v(τ)||mLp||∇K(v−w)(τ)||LNpN−pdτ, $
|
(6.7) |
due to the condition Eq (6.3): $ |Db(x, y)|\leq C|x-y|^{-N+1} $, use Hardy-Littlewood-Sobolev inequality for the integral $ \int_{\mathbb{R}^{N}}|x-y|^{-N+1}|v-w|dy $, we have
$ ||∇K(v−w)||LNpN−p≤C(N,p)||v−w||Lp. $
|
(6.8) |
then
$ ||B(v,⋯,v,w)(t)||˙B−αm+Npp,∞(RN)≤C(N,α,p)supτ>0(τ1m−Nαp||v(τ)||Lp)msupτ>0(τ1m−Nαp||(v−w)(τ)||Lp)⋅∫t0(t−τ)1m−(m+1)Nαpτ(m+1)Nαp−1m−1dτ≤C(N,α,p)||v||mX||v−w||X∫t0(t−τ)1m−(m+1)Nαpτ(m+1)Nαp−1m−1dτ≤C(N,α,p)||v||mX||v−w||X, $
|
(6.9) |
therefore, we have
$ ||B(v,⋯,v,w)(t)||˙B−αm+Npp,∞(RN)≤C(N,α,p)||v||mX||v−w||X. $
|
(6.10) |
Similarly, we have
$ supt>0t1m−Nαp||B(v,⋯,v,w)(t)||Lp≤C(N,α,p)||v||mX||v−w||X. $
|
(6.11) |
Following the main estimates Eq (6.10) and Eq (6.11) and the proof of Theorem 3.1, the Cauchy problem Eq (6.1) has a unique global-in-time mild solution in the mixed time-space Besov space. This completes the proof of Theorem 6.1.
Using the same method we can prove that the mild solution of the Cauchy problem Eq (6.1) has the following asymptotic stability.
Theorem 6.2. Let $ N\geq2 $ be a positive integer, $ 1 < \alpha\leq 2N $, Eq (3.1) and Eq (6.3) hold true. Assume that $ (v, w) $ and $ (\tilde{v}, \tilde{w}) $ are two mild solutions of the Cauchy problem Eq (6.1) described in Theorem 6.1 corresponding to initial conditions $ (v_{0}, w_{0}) $ and $ (\tilde{v}_{0}, \tilde{w}_{0}) $, respectively. If $ (v_{0}, w_{0}), (\tilde{v}_{0}, \tilde{w}_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ such that
$ limt→∞||Sα(t)(v0−˜v0,w0−˜w0)||˙B−αm+Npp,∞(RN)=0, $
|
(6.12) |
then, we have the following asymptotic stability
$ limt→∞(||(v−˜v,w−˜w)||˙B−αm+Npp,∞(RN)+tαm−Np||(v−˜v,w−˜w)||Lp(RN))=0. $
|
(6.13) |
Theorem 6.3. Let $ N\geq2 $ be a positive integer, $ 1 < \alpha\leq 2N $, Eq (3.1) and Eq (6.3) hold true. Assume that $ (v_{0}, w_{0})\in\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, and $ (v, w) $ is the mild solution to the system Eq (6.1) with initial data $ (v_{0}, w_{0}) $. Furthermore, assume that there exist two positive constants $ M_{1} $ and $ M_{2} $ such that
$ sup0≤t<T‖(v(t),w(t))‖˙B−αm+Npp,∞(RN)≤M1, $
|
(6.14) |
$ sup0<t<Tt1m−Nαp‖(v(t),w(t))‖Lp(RN)≤M2. $
|
(6.15) |
Then, there exist two positive constants $ K_{1} $ and $ K_{2} $ depending only on $ M_{1} $, $ M_{2} $, $ N $, $ \alpha $, $ m $ and $ p $, such that
$ ‖(∂βxv(t),∂βxw(t))‖Lq(RN)≤K1(K2|β|)2|β|t−|β|α−1m+Nαq $
|
(6.16) |
for all $ p\leq q \leq \infty $, $ t\in(0, T) $ and $ \beta\in\mathbb{N}^{N}_{0} $.
The authors are grateful to the anonymous referees for helpful comments and suggestions that greatly improved the presentation of this paper. The research of C. Gu is partially supported by the CSC under grant No. 202006160118. The research of C. Gu and Y. Tang is supported by the NNSF of China (Nos. 12171442 and 11971188).
The authors have no conflicts in this paper.
[1] |
Scully JL, Otten U (1995) Glucocorticoids, neurotrophins and neurodegeneration. J Steroid Mol Biol 52: 391-401. doi: 10.1016/0960-0760(94)00190-W
![]() |
[2] |
Reagan LP, Mc Ewen BS (1997) Controversies surrounding glucocorticoid-mediated cell death in the hippocampus. J Chem Neuroanat 13: 149-167. doi: 10.1016/S0891-0618(97)00031-8
![]() |
[3] |
De Kloet ER, Oitzl MS, Joëls M (1999) Stress and cognition: are corticosteroids good or bad guys. Trends Neurosci 22: 422-426. doi: 10.1016/S0166-2236(99)01438-1
![]() |
[4] | Abraham IM, Harkany T, Horvath KM, et al. (2001) Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection? J Neuroendocrinol 13: 749-760. |
[5] |
Sapolsky RM, Pulsinelli WA (1985) Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 229: 1397-1400. doi: 10.1126/science.4035356
![]() |
[6] | Adachi N, Cheng J, Liu K, et al. (1998) Dexamethasone aggravates ischemic-induced neuronal damage by facilitating the onset of anoxic depolarisation and the increase in the intracellular Ca++ concentration in gerbil hippocampus. J Cereb Blood Flow Metab 18: 274-280. |
[7] | Semba J, Miyoshi R, Kito S (1996) Nicotine protects against the dexamethasone potentiation of kainic acid- induced neurotoxicity in cultured hippocampal neurons. Brain Res 753: 335-338. |
[8] |
Mc Intosh LJ, Sapolsky RM (1996) Glucocorticoids increase the accumulation of reactive oxygen species and enhance adriamycin-induced toxicity in neuronal culture. Exptl Neurol 141: 201-2016. doi: 10.1006/exnr.1996.0154
![]() |
[9] |
Mutsaers HA, Tofighi R (2012) Dexamethasone enhances oxidative stress-induced cell death in murine neural stem cells. Neurotox Res 22: 127-137. doi: 10.1007/s12640-012-9308-9
![]() |
[10] | Goodman Y, Bruce A, Cheng B, et al. (1996) Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury and amyloid beta-peptide toxicity in hippocampal neurons. J Neurochem 66: 1836-1844. |
[11] | Brooke S, Howard S, Sapolsky R (1998) Energy dependency of glucocorticoid exacerbation of gp120 neurotoxicity. J Neurochem 71: 1187-1193. |
[12] |
Noguchi KK, Walls KC, Wozniak DF, et al. (2008) Acute neonatal glucocorticoid exposure produces selective and rapid cerebellar neural progenitors cell apoptotic death. Cell Death Differ 15: 1582-1592. doi: 10.1038/cdd.2008.97
![]() |
[13] |
Sloviter RL, Valiquette G, Abrams GM, et al. (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243: 535- 538. doi: 10.1126/science.2911756
![]() |
[14] |
Gould E, Tanapat P, Cameron HA (1997) Adrenal steroids suppress granule cell death in the developping dentate gyrus through an NMDA receptor-dependent mechanism. Brain Res Dev 103: 91-93. doi: 10.1016/S0165-3806(97)00079-5
![]() |
[15] |
Huang J, Strafaci JA, Azmitia EC (1997) 5HT1A receptor agonists reverse adrenalectomy-induced loss of granule neuronal morphology in the rat dentate gyrus. Neurochem Res 22: 1329-1337. doi: 10.1023/A:1022062921438
![]() |
[16] |
Unlap T, Jope RS (1995) Inhibition of NF-kB DNA binding activity by glucocorticoids in rat brain. Neurosci Lett 198: 41-44. doi: 10.1016/0304-3940(95)11963-W
![]() |
[17] |
Macaya A, Munell F, Ferrer I, et al. (1998) Cell death and associated c-jun induction in perinatal hypoxia-ischemia: effect of the neuroprotective drug dexamethasone. Mol Brain Res 56: 29-37. doi: 10.1016/S0169-328X(98)00024-2
![]() |
[18] |
Bertorelli R, Adami M, di Santo E, et al. (1998) MK 801 and dexamethasone reduce both Tumor Necrosis Factor levels and infarct volume after focal ischemia in the rat brain. Neurosci Lett 246: 41-44. doi: 10.1016/S0304-3940(98)00221-3
![]() |
[19] |
Funder JW (1994) Corticoid receptors and the central nervous system. J Steroid Biochem Mol Biol 49:381-384. doi: 10.1016/0960-0760(94)90283-6
![]() |
[20] |
Kawata M, Yuri K, Ozawa H, et al. (1998) Steroid hormones and their receptors in the brain. J Steroid Biochem Mol Biol 65: 273-280. doi: 10.1016/S0960-0760(98)00026-0
![]() |
[21] | de Kloet ER, Vreugdenhil E, Oitzl MS, et al. (1998) Brain corticosteroid balance in health and disease. Endocrine Rev 19: 269-301. |
[22] |
Mc Leod MR, Johansson IM, Söderström I, et al. (2003) Mineralocorticoid receptor expression and increased survival following neuronal injury. Europ J Neurosci 17: 1549-1555. doi: 10.1046/j.1460-9568.2003.02587.x
![]() |
[23] |
Montaron M, Piazza P, Aurousseau C, et al. (2003) Implication of corticosteroid receptors in the regulation of hippocampal structural plasticity. Eur J Neurosci 18: 3105-3111. doi: 10.1111/j.1460-9568.2003.03048.x
![]() |
[24] |
Virgin CE, Ha TP, Packen DR, et al. (1991) Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. J Neurochem 57:1422-1428. doi: 10.1111/j.1471-4159.1991.tb08309.x
![]() |
[25] |
Wang S, Lim G, Zeng Q, et al. (2005) Central glucocorticoid receptors modulate the expression and function of spinal NMDA receptors after peripheral nerve injury. J Neurosci 25: 488-495. doi: 10.1523/JNEUROSCI.4127-04.2005
![]() |
[26] |
Mangat HS, Islam A, Heigensköld C, et al. (1998) Long-term adrenalectomy decreases NMDA receptors in rat hippocampus. Neuroreport 9: 2011-2014. doi: 10.1097/00001756-199806220-00018
![]() |
[27] |
Relton JK, Strijbos PJML, O'Shaughnessy CT, et al. (1991) Lipocortin-1 is an endogenous inhibitor of ischemic damage in the cat brain. J Exptl Med 174: 305-310. doi: 10.1084/jem.174.2.305
![]() |
[28] |
Yamagata K, Andreason K, Kaufmann WE, et al. (1993) Expression of a mitogen-inducible cyclo-oxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11:371-86. doi: 10.1016/0896-6273(93)90192-T
![]() |
[29] | Weber CM, Eke BC, Maines MD (1994) Corticosterone regulates heme oxygenase-2 and NO synthase transcription and protein expression in rat brain. J Neurochem 63: 953-962. |
[30] |
Gorovitz R, Avidan N, Avisar N, et al. (1997) Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proc Natl Acad Sci U S A 94: 7024-7029. doi: 10.1073/pnas.94.13.7024
![]() |
[31] | Almeida OFX, Condé GL, Crochemore C, et al. (2000) Subtle shifts in the ratio between pro and antiapoptotic molecules after the activation of corticosteroid receptors decide neuronal fate. FASEB J 14:779-790. |
[32] |
Golde S, Coles A, Lindquist J, et al. (2003) Decreased iNOS synthesis mediates dexamethasone-induced protection of neurons from inflammatory injury in vitro. Europ J Neurosci 18: 2527-2537. doi: 10.1046/j.1460-9568.2003.02917.x
![]() |
[33] |
Bertorelli R, Adami M, Di Santo E, et al. (1998) MK801 and dexamethasone reduce both tumor necrosis factor levels and infarct volume after focal cerebral ischemai in the rat brain. Neurosci Lett 246: 41-44. doi: 10.1016/S0304-3940(98)00221-3
![]() |
[34] | Felszeghy K, Banisadr G, Rostène W, et al. (2004) Dexamethasone downregulates chemokine receptor CXCR4 and exerts neuroprotection against hypoxia/ischemia-induced brain injury in neonatal rats. Neuro Immunomodul 11: 404-413. |
[35] |
Chen YZ, Qiu J (1999) Pleiotropic signaling pathways in rapid, non genomic, actions of glucocorticoids. Mol Cell Biol Res Comm 2: 145-149. doi: 10.1006/mcbr.1999.0163
![]() |
[36] | Hammes S (2003) The further redefining of steroid-mediated signaling. Proc Natl Acad Sci U S A 10:2168-2170. |
[37] |
Xiao L, Feng C, Chen Y (2010) Glucocorticoid rapidly enhances NMDA-evoked neurotoxicity by attenuating the NR2A-containing NMDA receptor-mediated ERK ½ activation. Mol Endocrinol 24:497-510. doi: 10.1210/me.2009-0422
![]() |
[38] |
Heidinger V, Hicks D, Sahel J, et al. (1999) Ability of retinal Müller glial cells to protect neurons against excitotoxicity in vitro depends upon maturation and neuron-glia interactions. Glia 25: 229-239. doi: 10.1002/(SICI)1098-1136(19990201)25:3<229::AID-GLIA3>3.0.CO;2-C
![]() |
[39] | Vardimon L (2000) Neuroprotection by glutamine synthetase. IMAJ 2: 46-51. |
[40] | Labow BI, Souba WW, Abcouwer SF (2001) Mechanisms governing the expression of the enzymes of glutamine metabolism, glutaminase and glutamine synthetase. J Nutr 131: 2467-2474. |
[41] | Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27: 737-743. |
[42] |
Gras G, Porcheray F, Samah B, et al. (2006) The glutamate-glutamine cycle as an inducible, protective face of macrophage activation. J Leukoc Biol 80: 1067-1075. doi: 10.1189/jlb.0306153
![]() |
[43] | Markowitz AJB, White MG, Kolson DL, et al. (2007) Cellular interplay between neurons and glia: toward a comprehensive mechanism for excitotoxic neuronal loss in neurodegeneration. Cellscience 4: 111-146. |
[44] |
Kruchkova Y, Ben-Dror I, Herschkovitz A, et al. (2001) Basic fibroblast growth factor: a potential inhibitor of glutamine synthetase expression in injured neural tissue. J Neurochem 77: 1641-1649. doi: 10.1046/j.1471-4159.2001.00390.x
![]() |
[45] |
Shaked I, Ben-Dror I, Vardimon L (2002) Glutamine synthetase enhances the clearance of extracellular glutamate by the neural retina. J Neurochem 83: 574-580. doi: 10.1046/j.1471-4159.2002.01168.x
![]() |
[46] |
Zou J, Wang YX, Dou FF, et al. (2010) Glutamine synthetase down regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem Int 56: 577-584. doi: 10.1016/j.neuint.2009.12.021
![]() |
[47] |
Juurlink BHJ, Schousboe A, Jorgensen OS, et al. (1981) Induction by hydrocortisone of glutamine synthetase in mouse primary astrocyte cultures. J Neurochem 36: 136-142. doi: 10.1111/j.1471-4159.1981.tb02388.x
![]() |
[48] | Rose K, Goldberg M, Choi D (1993) Cytotoxicity in murine neocortical cell cultures. In Tyson CA, Frazier JM. In vitro biological methods.. San Diego Academics, USA. pp 46-60 |
[49] |
Koh J, Choi D (1987) Quantitative determination of glutamate-mediated cortical neuronal injury in cell culture by lactate deshydrogenase efflux assay. J Neurosci Methods 20: 83-90. doi: 10.1016/0165-0270(87)90041-0
![]() |
[50] | Harmon J, Thompson B (1982) Glutamine synthetase induction by glucocorticoid in the glucocorticoidsensitive human leukemic cell line CEM-C7. J Cell Sci 110: 155-160. |
[51] |
Tanigami H, Rebel A, Martin LJ, et al. (2005) Effect of glutamine synthetase inhibition on astrocytes swelling and altered astroglial protein expression during hyperammonemia in rats. Neurosci 131:437-449. doi: 10.1016/j.neuroscience.2004.10.045
![]() |
[52] |
Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 121:799-817. doi: 10.1007/s00702-014-1180-8
![]() |
[53] |
Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105-111. doi: 10.1002/ana.410190202
![]() |
[54] | Le Verche V, Ikiz B, Jacquier A, et al. (2011) Glutamate pathway implication in amyotrophic lateral sclerosis: what is the signal in the noise? J Rec Lig Channel Res 4: 1-22. |
[55] |
Rothstein JD, Dykes-Hosberg M, Pardo CA, et al. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in exitotoxicity and clearance of glutamate. Neuron 16: 675-686. doi: 10.1016/S0896-6273(00)80086-0
![]() |
[56] | Buisson A, Nicole O, Docagne F, et al. (1998) Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of Transforming Growth Factor β1. FASEB J 12: 1683-1691. |
[57] |
Eid T, Ghosh A, Wang Y, et al. (2008) Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain 131: 2061-2070. doi: 10.1093/brain/awn133
![]() |
[58] |
Zschocke J, Bayatti N, Clement AM, et al. (2005) Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem 280:34924-34932. doi: 10.1074/jbc.M502581200
![]() |
[59] | Fan Z, Sehm T, Rauh M, et al. (2014) dexamethasone alleviates tumor-associated brain damage and angiogenesis. PloS ONE 9: e93264 |
[60] |
Nichols NR, Agolley D, Zieba M, et al. (2005) Glucocorticoid regulation of glial responses during hippocampal neurodegeneration and regeneration. Brain Res Rev 48: 287-301. doi: 10.1016/j.brainresrev.2004.12.019
![]() |
[61] | Abraham I, Veenema AH, Nyakas C, et al. (1997) Effect of corticosterone and adrenalectomy on NMDA-induced cholinergic cell death in rat magnocellular nucleus basalis. J Neuroendocrinol 9:713-720. |
[62] |
Kurkowska-Jastrzebska I, Litwin T, Joniec I, et al. (2004) Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson's disease. Internat Immunopharmacol 4: 1307-1318. doi: 10.1016/j.intimp.2004.05.006
![]() |
1. | Yongqiang Zhao, Yanbin Tang, Approximation of solutions to integro-differential time fractional wave equations in $ L^{p}- $space, 2023, 18, 1556-1801, 1024, 10.3934/nhm.2023045 | |
2. | Junlong Chen, Yanbin Tang, Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure, 2023, 18, 1556-1801, 1118, 10.3934/nhm.2023049 | |
3. | Yongqiang Zhao, Yanbin Tang, Critical behavior of a semilinear time fractional diffusion equation with forcing term depending on time and space, 2024, 178, 09600779, 114309, 10.1016/j.chaos.2023.114309 | |
4. | Caihong Gu, Yanbin Tang, Well-posedness of Cauchy problem of fractional drift diffusion system in non-critical spaces with power-law nonlinearity, 2024, 13, 2191-950X, 10.1515/anona-2024-0023 | |
5. | Yongqiang Zhao, Yanbin Tang, Approximation of solutions to integro-differential time fractional order parabolic equations in $L^{p}$-spaces, 2023, 2023, 1029-242X, 10.1186/s13660-023-03057-2 |