We investigate the obstacle problem for a class of nonlinear and noncoercive parabolic variational inequalities whose model is a Leray–Lions type operator having singularities in the coefficients of the lower order terms. We prove the existence of a solution to the obstacle problem satisfying a Lewy-Stampacchia type inequality.
Citation: Fernando Farroni, Gioconda Moscariello, Gabriella Zecca. Lewy-Stampacchia inequality for noncoercive parabolic obstacle problems[J]. Mathematics in Engineering, 2023, 5(4): 1-23. doi: 10.3934/mine.2023071
We investigate the obstacle problem for a class of nonlinear and noncoercive parabolic variational inequalities whose model is a Leray–Lions type operator having singularities in the coefficients of the lower order terms. We prove the existence of a solution to the obstacle problem satisfying a Lewy-Stampacchia type inequality.
[1] | A. Alvino, Sulla disuguaglianza di Sobolev in Spazi di Lorentz, Boll. Un. Mat. It. A (5), 14 (1977), 148–156. |
[2] | H. W. Alt, S. Luckhaus, Quasi-linear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311–341. http://doi.org/10.1007/BF01176474 doi: 10.1007/BF01176474 |
[3] | A. Bensoussan, J. Lions, Applications of variational inequalities in stochastic control, Amsterdam-New York: North-Holland Publishing, 1982. |
[4] | V. Bögelein, F. Duzaar, G. Mingione, Degenerate problems with irregular obstacles, J. Reine Angew. Math., 650 (2011), 107–160. https://doi.org/10.1515/crelle.2011.006 doi: 10.1515/crelle.2011.006 |
[5] | H. Brézis, Problémes unilatéraux, J. Math. Pures Appl. (9), 51 (1972), 1–168. |
[6] | M. Carozza, C. Sbordone, The distance to $L^\infty$ in some function spaces and applications, Differential Integral Equations, 10 (1997), 599–607. https://doi.org/10.57262/die/1367438633 doi: 10.57262/die/1367438633 |
[7] | F. Donati, A penalty method approach to strong solutions of some nonlinear parabolic unilateral problems, Nonlinear Anal., 6 (1982), 585–597. https://doi.org/10.1016/0362-546X(82)90050-5 doi: 10.1016/0362-546X(82)90050-5 |
[8] | W. Fang, K. Ito, Weak solutions for diffusion-convection equations, Appl. Math. Lett., 13 (2000), 69–75. https://doi.org/10.1016/S0893-9659(99)00188-3 doi: 10.1016/S0893-9659(99)00188-3 |
[9] | F. Farroni, G. Moscariello, A nonlinear parabolic equation with drift term, Nonlinear Anal., 177 (2018), 397–412. https://doi.org/10.1016/j.na.2018.04.021 doi: 10.1016/j.na.2018.04.021 |
[10] | F. Farroni, L. Greco, G. Moscariello, G. Zecca, Noncoercive quasilinear elliptic operators with singular lower order terms, Calc. Var., 60 (2021), 83. https://doi.org/10.1007/s00526-021-01965-z doi: 10.1007/s00526-021-01965-z |
[11] | F. Farroni, L. Greco, G. Moscariello, G. Zecca, Nonlinear evolution problems with singular coefficients in the lower order terms, Nonlinear Differ. Equ. Appl., 28 (2021), 38. https://doi.org/10.1007/s00030-021-00698-4 doi: 10.1007/s00030-021-00698-4 |
[12] | F. Farroni, L. Greco, G. Moscariello, G. Zecca, Noncoercive parabolic obstacle problems, preprint. |
[13] | N. Gigli, S. Mosconi, The abstract Lewy–Stampacchia inequality and applications, J. Math. Pure. Appl., 104 (2015), 258–275. https://doi.org/10.1016/j.matpur.2015.02.007 doi: 10.1016/j.matpur.2015.02.007 |
[14] | L. Greco, G. Moscariello, G. Zecca, An obstacle problem for noncoercive operators, Abstr. Appl. Anal., 2015 (20105), 890289. https://doi.org/10.1155/2015/890289 |
[15] | O. Guibé, A. Mokrane, Y. Tahraoui, G. Vallet, Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem, Adv. Nonlinear Anal., 9 (2020), 591–612. https://doi.org/10.1515/anona-2020-0015 doi: 10.1515/anona-2020-0015 |
[16] | D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, New York: Academic Press, 1980. https://doi.org/10.1137/1.9780898719451 |
[17] | J. Korvenpää, T. Kuusi, G. Palatucci, The obstacle problem for nonlinear integro-differential operators, Calc. Var., 55 (2016), 63. https://doi.org/10.1007/s00526-016-0999-2 doi: 10.1007/s00526-016-0999-2 |
[18] | T. Kuusi, G. Mingione, K. Nyström, Sharp regularity for evolutionary obstacle problems, interpolative geometries and removable sets, J. Math. Pure. Appl., 101 (2014), 119–151. https://doi.org/10.1016/j.matpur.2013.03.004 doi: 10.1016/j.matpur.2013.03.004 |
[19] | H. Lewy, G. Stampacchia, On the regularity of the solution of a variational inequality, Commun. Pure Appl. Math., 22 (1969), 153–188. https://doi.org/10.1002/cpa.3160220203 doi: 10.1002/cpa.3160220203 |
[20] | J.-L. Lions, G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493–519. https://doi.org/10.1002/cpa.3160200302 |
[21] | J. Leray, J. L. Lions, Quelques résultats de Visik sur le problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97–107. https://doi.org/10.24033/bsmf.1617 doi: 10.24033/bsmf.1617 |
[22] | G. Mingione, G. Palatucci, Developments and perspectives in nonlinear potential theory, Nonlinear Anal., 194 (2020), 111452. https://doi.org/10.1016/j.na.2019.02.006 doi: 10.1016/j.na.2019.02.006 |
[23] | A. Mokrane, F. Murat, A proof of the Lewy-Stampacchia's inequality by a penalization method, Potential Anal., 9 (1998), 105–142. https://doi.org/10.1023/A:1008649609888 doi: 10.1023/A:1008649609888 |
[24] | R. O'Neil, Convolutions operators and $L(p, q)$ spaces, Duke Math. J., 30 (1963), 129–142. https://doi.org/10.1215/S0012-7094-63-03015-1 doi: 10.1215/S0012-7094-63-03015-1 |
[25] | J.-F. Rodrigues, Obstacle problems in mathematical physics, Amsterdam: North-Holland Publishing Co., 1987. |
[26] | R. Servadei, E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091–1126. https://doi.org/10.4171/RMI/750 doi: 10.4171/RMI/750 |
[27] | R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Providence, RI: American Mathematical Society, 1997. |