In recent years there has been intense interest in the vanishing discount problem for Hamilton-Jacobi equations. In the case of the scalar equation, B. Ziliotto has recently given an example of the Hamilton-Jacobi equation having non-convex Hamiltonian in the gradient variable, for which the full convergence of the solutions does not hold as the discount factor tends to zero. We give here an explicit example of nonlinear monotone systems of Hamilton-Jacobi equations having convex Hamiltonians in the gradient variable, for which the full convergence of the solutions fails as the discount factor goes to zero.
Citation: Hitoshi Ishii. The vanishing discount problem for monotone systems of Hamilton-Jacobi equations: a counterexample to the full convergence[J]. Mathematics in Engineering, 2023, 5(4): 1-10. doi: 10.3934/mine.2023072
In recent years there has been intense interest in the vanishing discount problem for Hamilton-Jacobi equations. In the case of the scalar equation, B. Ziliotto has recently given an example of the Hamilton-Jacobi equation having non-convex Hamiltonian in the gradient variable, for which the full convergence of the solutions does not hold as the discount factor tends to zero. We give here an explicit example of nonlinear monotone systems of Hamilton-Jacobi equations having convex Hamiltonians in the gradient variable, for which the full convergence of the solutions fails as the discount factor goes to zero.
[1] | Q. Chen, W. Cheng, H. Ishii, K. Zhao, Vanishing contact structure problem and convergence of the viscosity solutions, Commun. Part. Diff. Eq., 44 (2019), 801–836. http://doi.org/10.1080/03605302.2019.1608561 doi: 10.1080/03605302.2019.1608561 |
[2] | M. G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67. http://doi.org/10.1090/S0273-0979-1992-00266-5 doi: 10.1090/S0273-0979-1992-00266-5 |
[3] | A. Davini, A. Fathi, R. Iturriaga, M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions, Invent. Math., 206 (2016), 29–55. http://doi.org/10.1007/s00222-016-0648-6 doi: 10.1007/s00222-016-0648-6 |
[4] | A. Davini, M. Zavidovique, Convergence of the solutions of discounted Hamilton-Jacobi systems, Adv. Calc. Var., 14 (2021), 193–206. http://doi.org/10.1515/acv-2018-0037 doi: 10.1515/acv-2018-0037 |
[5] | H. Ishii, An example in the vanishing discount problem for monotone systems of Hamilton-Jacobi equations, arXiv: 2006.02769. |
[6] | H. Ishii, L. Jin, The vanishing discount problem for monotone systems of Hamilton-Jacobi equations: part 2–-nonlinear coupling, Calc. Var., 59 (2020), 140. http://doi.org/10.1007/s00526-020-01768-8 doi: 10.1007/s00526-020-01768-8 |
[7] | H. Ishii, S. Koike, Viscosity solutions for monotone systems of second-order elliptic PDEs, Commun. Part. Diff. Eq., 16 (1991), 1095–1128. http://doi.org/10.1080/03605309108820791 doi: 10.1080/03605309108820791 |
[8] | H. Ishii, H. Mitake, H. V. Tran, The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus, J. Math. Pure. Appl., 108 (2017), 125–149. http://doi.org/10.1016/j.matpur.2016.10.013 doi: 10.1016/j.matpur.2016.10.013 |
[9] | H. Ishii, H. Mitake, H. V. Tran, The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems, J. Math. Pure. Appl., 108 (2017), 261–305. http://doi.org/10.1016/j.matpur.2016.11.002 doi: 10.1016/j.matpur.2016.11.002 |
[10] | H. Ishii, A. Siconolfi, The vanishing discount problem for Hamilton-Jacobi equations in the Euclidean space, Commun. Part. Diff. Eq., 45 (2020), 525–560. http://doi.org/10.1080/03605302.2019.1710845 doi: 10.1080/03605302.2019.1710845 |
[11] | B. Ziliotto, Convergence of the solutions of the discounted Hamilton-Jacobi equation: a counterexample, J. Math. Pure. Appl., 128 (2019), 330–338. http://doi.org/10.1016/j.matpur.2019.04.005 doi: 10.1016/j.matpur.2019.04.005 |