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1. Introduction

The aim of this paper is to study a nonlinear and noncoercive parabolic variational inequality with
constraint and homogeneous Dirichlet boundary condition. The Lewy-Stampacchia inequality
associated with it is addressed. After the first results of H. Lewy and G. Stampacchia [19] concerning
inequalities in the context of superharmonic problems, there is by now a large literature concerning
the theory of elliptic obstacle problems as well as of elliptic variational inequalities. We refer
to [3, 16, 25] for a classical overview. For a more recent treatment related to nonlinear elliptic
operators see also [23]. The obstacle problem for nonlocal and nonlinear operators has been cosidered
in [17, 26]. An abstract and general version of the Lewy-Stampacchia inequality is given in [13].
Concerning the parabolic case, first existence results related to problems with time independent
obstacles have been treated in [20] in the linear case and in [5] for the more general parabolic
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problems. The case of obstacles functions regular in time has been considered in [2, 5]. Existence and
regularity theory for solutions of parabolic inequalities involving degenerate operators in divergence
form have been established in [4, 18]. More recently in [15], the Authors prove Lewy-Stampacchia
inequality for parabolic problems related to pseudomonotone type operators. In this paper we study a
variational parabolic inequality for noncoercive operators that present singularities in the coeffcients
of the lower order terms in the same spirit of [9, 12, 14].

Let us state the functional setting and the assumptions on the data.
Let Ω ⊂ RN , N > 2, be a bounded open Lipschitz domain and let ΩT := Ω × (0,T ) be the parabolic

cylinder over Ω of height T > 0. We shall denote by ∇v and ∂tv (or vt) the spatial gradient and the time
derivative of a function v respectively. We consider the class

Wp(0,T ) :=
{
v ∈ Lp(0,T,W1,p

0 (Ω)) : vt ∈ Lp′
(
0,T,W−1,p′(Ω)

)}
, (1.1)

where
2N

N + 2
< p < N. (1.2)

and p′ is the conjugate exponent of p, i.e., 1
p + 1

p′ = 1. In (1.1), Lp(0,T,W1,p
0 (Ω)) and

Lp′
(
0,T,W−1,p′(Ω)

)
denote parabolic Banach spaces defined according to (2.7).

Given a measurable function ψ : ΩT∪Ω×{0} → R, we are interested in finding functions u : ΩT → R

in the convex subset Kψ(ΩT ) of Wp(0,T ) defined as

Kψ(ΩT ) :=
{
v ∈ Wp (0,T ) : v > ψ a.e. in ΩT

}
and satisfying the following variational inequality∫ T

0
〈ut, v − u〉 dt +

∫
ΩT

A(x, t, u,∇u) · ∇(v − u) dxdt >
∫ T

0
〈 f , v − u〉 dt ∀v ∈ Kψ(ΩT ), (1.3)

where
f ∈ Lp′(0,T,W−1,p′(Ω)) (1.4)

and 〈·, ·〉 denotes the duality between W−1,p′(Ω) and W1,p
0 (Ω). The vector field

A = A(x, t, u, ξ) : ΩT × R × R
N → RN

is a Carathéodory function, i.e., A measurable w.r.t. (x, t) ∈ ΩT for all (u, ξ) ∈ R × RN and continuous
w.r.t. (u, ξ) ∈ R × RN for a.e. (x, t) ∈ ΩT , and such that for a.e. (x, t) ∈ ΩT and for any u ∈ R and
ξ, η ∈ RN ,

A(x, t, u, ξ) · ξ > α|ξ|p − (b(x, t)|u|)p
− H(x, t) (1.5)[

A(x, t, u, ξ) − A(x, t, u, η)
]
· (ξ − η) > 0 if ξ , η (1.6)

|A(x, t, u, ξ)| 6 β|ξ|p−1 +
(
b̃(x, t)|u|

)p−1
+ K(x, t) (1.7)

hold true. Here α, β are positive constants, while H, K, b and b̃ are nonnegative measurable functions
defined on ΩT such that H ∈ L1(ΩT ), K ∈ Lp′(ΩT ) and

b, b̃ ∈ L∞
(
0,T, LN,∞(Ω)

)
, (1.8)
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where LN,∞(Ω) is the Marcinkiewicz space. For definitions of LN,∞(Ω) and L∞
(
0,T, LN,∞(Ω)

)
see

Sections 2.2 and 2.3, respectively.
We assume that the obstacle function fulfills

ψ ∈ C0
(
[0,T ], L2(Ω)

)
∩ Lp

(
0,T,W1,p(Ω)

)
(1.9)

ψ 6 0 a.e. in ∂Ω × (0,T ) (1.10)

ψt ∈ Lp′(ΩT ) (1.11)

ψ(·, 0) ∈ W1,p
0 (Ω). (1.12)

For
u0 ∈ L2(Ω) (1.13)

we impose the following compatibility condition

u0 > ψ(·, 0) a.e. in Ω. (1.14)

In the following, we will refer to a function u ∈ Kψ(ΩT ) satisfying (1.3) and such that u(·, 0) = u0 as a
solution to the variational inequality in the strong form with initial value u0. Under previous
assumptions the existence of a solution in the weak form can be proved, see [12]. However the
existence of a solution in the sense stated above is not guaranteed even in simpler cases. Then we
assume that the source term and the obstacle function are such that

g := f − ψt + div A(x, t, ψ,∇ψ) = g+ − g− with g+, g− ∈ Lp′(0,T,W−1,p′(Ω))+. (1.15)

Here Lp′(0,T,W−1,p′(Ω))+ denotes the non-negative elements of Lp′(0,T,W−1,p′(Ω)). Following the
terminology of [7] or [15], (1.15) is equivalent to say that g is an element of the order dual
Lp(0,T,W1,p

0 (Ω))∗ defined as

Lp(0,T,W1,p
0 (Ω))∗ := {g = g+ − g−, g± ∈ Lp′(0,T,W−1,p′(Ω))+}.

Then, our main result reads as follows

Theorem 1.1. Let (1.2) and (1.4)–(1.15) be in charge. Assume further that

Db := distL∞(0,T,LN,∞(Ω)) (b, L∞(ΩT )) <
α1/p

S N,p
, (1.16)

where S N,p = ω−1/N
N

p
N−p and ωN denotes the measure of the unit ball of RN . Then, there exists at least

a solution u ∈ Kψ(ΩT ) of the strong form of the variational inequality (1.3) satisfying u(·, 0) = u0.
Moreover, the following Lewy-Stampacchia inequality holds

0 ≤ ∂tu − div A(x, t, u,∇u) − f ≤ g− = ( f − ∂tψ + div A(x, t, ψ,∇ψ))− . (1.17)

In (1.16), Db denotes the distance of b from L∞(ΩT ) in the space L∞(0,T, LN,∞(Ω)) defined in (2.8)
below.
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Assumptions (1.8) on the coefficients of the lower order terms allow us to consider diffusion models
in which the boundedness of the convective field with respect to the spatial variable is too restrictive
(see [8]). The corresponding bounded case has been treated in [15].

We discuss condition (1.16) through an example. It’s easy to verify that the operator

A(x, t, u, ξ) = |ξ|p−2ξ + e−t|u|p−2u
(
γ

|x|
+

1
γ

arctan |x|
)p−1 x
|x|

satisfies (1.5)–(1.8). According to (2.2) and (2.3) below, we get that

Db =

(
1 −

1
p

)1/p

ω1/N
N γ

and so (1.16) holds true whenever γ is small enough. On the other hand, we notice that (1.16) does not
imply smallness of the norm of the coefficient b. Indeed

‖b‖L∞(0,T,LN,∞(Ω)) >
C
γ

for a constant C independent of γ.
Theorem 1.1 also applies in the case b and b̃ lie in a functional subspace of weak–LN in which

bounded functions are dense. For more details see also [10]. For other examples of operators satisfying
conditions above we refer to [12].

We remark that for f , ψt, div A(x, t, ψ,∇ψ) ∈ Lp′(ΩT ) condition (1.15) is satisfied. Then,
Theorem 1.1 is comparable with the existence result of Lemma 3.1 in [4]. In order to prove our result,
we consider a sequence of suitable penalization problems for which an existence result holds true
(see [12]). Then we are able to construct a solution u to (1.3) as limit of solutions of such problems
despite the presence of unbounded coefficients in the lower order terms.

2. Preliminary results

In this section we provide the notation and several preliminary results that will be fundamental in
the sequel.

2.1. Notation

The symbol C (or C1,C2, . . . ) will denote positive constant, possibly varying from line to line.
For the dependence of C upon parameters, we will simply write C = C(·, . . . , ·). The positive and
the negative part of a real number z will be denoted by z+ and z−, respectively, and are defined by
z+ := max{z, 0} and z− := −min{z, 0}. Given z1, z2 ∈ R, we often use the notation z1 ∧ z2 and z1 ∨ z2 in
place of min{z1, z2} and max{z1, z2} respectively.

2.2. Lorentz spaces

Let Ω be a bounded domain in RN . For any 1 < p < ∞ and 1 ≤ q < ∞, the Lorentz space Lp,q(Ω) is
the set of real measurable functions f on Ω such that

‖ f ‖qLp,q := p
∫ ∞

0

[
λ f (k)

] q
p kq−1 dk < ∞.
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Here λ f (k) := |{x ∈ Ω : | f (x)| > k}| is the distribution function of f . When p = q, the Lorentz space
Lp,p(Ω) coincides with the Lebesgue space Lp(Ω). When q = ∞, the space Lp,∞(Ω) is the set of
measurable functions f on Ω such that

‖ f ‖p
Lp,∞ := sup

k>0
kpλ f (k) < ∞.

This set coincides with the Marcinkiewicz space weak-Lp(Ω). The expressions above do not define
a norm in Lp,q or Lp,∞ respectively, in fact triangle inequality generally fails. Nevertheless, they are
equivalent to a norm, which make Lp,q(Ω) and Lp,∞(Ω) Banach spaces when endowed with them. An
important role in the potential theory is played by these spaces as pointed out in [22].

For 1 ≤ q < p < r ≤ ∞, the following inclusions hold

Lr(Ω) ⊂ Lp,q(Ω) ⊂ Lp,r(Ω) ⊂ Lp,∞(Ω) ⊂ Lq(Ω).

For 1 < p < ∞, 1 ≤ q ≤ ∞ and 1
p + 1

p′ = 1, 1
q + 1

q′ = 1, if f ∈ Lp,q(Ω), g ∈ Lp′,q′(Ω) we have the
Hölder–type inequality ∫

Ω

| f (x)g(x)| dx ≤ ‖ f ‖Lp,q ‖g‖Lp′ ,q′ . (2.1)

Since L∞(Ω) is not dense in Lp,∞(Ω), for f ∈ Lp,∞(Ω) in [6] the Authors stated the following

distLp,∞(Ω)( f , L∞(Ω)) := inf
g∈L∞(Ω)

‖ f − g‖Lp,∞(Ω). (2.2)

As already observed in [10, 11], we have

distLp,∞(Ω)( f , L∞(Ω)) = lim
m→+∞

‖ f χ{| f |>m}‖Lp,∞ (2.3)

and
distLp,∞(Ω)( f , L∞(Ω)) = lim

m→+∞
‖ f − Tm f ‖Lp,∞ ,

where, for all m > 0, Tm is the truncation operator at levels ±m, i.e.,

Tmy := min{m,max{−m, y}} for y ∈ R . (2.4)

Another useful estimate is provided by the following sort of triangle inequality

‖ f + ε g‖Lp,∞ 6 (1 +
√
ε) ‖ f ‖Lp,∞ +

√
ε(1 +

√
ε) ‖g‖Lp,∞ (2.5)

which holds true for f , g ∈ Lp,∞(Ω) and ε > 0.
For 1 ≤ q < ∞, any function in Lp,q(Ω) has zero distance to L∞(Ω). Indeed, L∞(Ω) is dense in

Lp,q(Ω), the latter being continuously embedded into Lp,∞(Ω).
Assuming that 0 ∈ Ω, b(x) = γ/|x| belongs to LN,∞(Ω), γ > 0. For this function, we have

distLN,∞(Ω)(b, L∞(Ω)) = γω1/N
N .

The Sobolev embedding theorem in Lorentz spaces [1, 24] reads as

Theorem 2.1. Let us assume that 1 < p < N, 1 ≤ q ≤ p, then every function u ∈ W1,1
0 (Ω) verifying

|∇u| ∈ Lp,q(Ω) actually belongs to Lp∗,q(Ω), where p∗ := N p
N−p is the Sobolev conjugate exponent of p

and
‖u‖Lp∗ ,q ≤ S N,p ‖∇u‖Lp,q , (2.6)

where S N,p is the Sobolev constant given by S N,p = ω−1/N
N

p
N−p .
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2.3. Parabolic spaces

Let T > 0 and X be a Banach space endowed with a norm ‖ · ‖X. Then, the space Lp (0,T, X) is
defined as the class of all measurable functions u : [0,T ]→ X such that

‖u‖Lp(0,T,X) :=
(∫ T

0
‖u(t)‖p

X dt
)1/p

< ∞ (2.7)

whenever 1 ≤ p < ∞, and
‖u‖L∞(0,T,X) := ess sup

0<t<T
‖u(t)‖X < ∞

for p = ∞. The space C0 ([0,T ], X) represents the class of all continuous functions u : [0,T ]→ X with
the norm

‖u‖C0([0,T ],X) := max
0≤t≤T

‖u(t)‖X.

We essentially consider the case where X is either a Lorentz space or Sobolev space W1,p
0 (Ω). This

space will be equipped with the norm ‖g‖W1,p
0 (Ω) := ‖∇g‖Lp(Ω) for g ∈ W1,p

0 (Ω).
For f ∈ L∞(0,T, Lp,∞(Ω)) we define

distL∞(0,T,Lp,∞(Ω)) ( f , L∞(ΩT )) = inf
g∈L∞(ΩT )

‖ f − g‖L∞(0,T,Lp,∞(Ω)) (2.8)

and as in (2.3) we find

distL∞(0,T,Lp,∞(Ω)) ( f , L∞(ΩT )) = lim
m→+∞

‖ f χ{| f |>m}‖L∞(0,T,Lp,∞(Ω)) . (2.9)

In the class Wp(0,T ) defined in (1.1) and equipped with the norm

‖u‖Wp(0,T ) := ‖u‖Lp(0,T,W1,p(Ω)) + ‖ut‖Lp′ (0,T,W−1,p′ (Ω)),

the following inclusion holds (see [27, Chapter III, page 106]).

Lemma 2.2. Let p > 2N/(N + 2). Then Wp(0,T ) is contained into the space C0
(
[0,T ], L2(Ω)

)
and

any function u ∈ Wp(0,T ) satisfies

‖u‖C0([0,T ],L2(Ω)) ≤ C‖u‖Wp(0,T )

for some constant C > 0.
Moreover, the function t ∈ [0,T ] 7→ ‖u(·, t)‖2L2(Ω) is absolutely continuous and

1
2

d
dt
‖u(·, t)‖2L2(Ω) = 〈ut(·, t), u(·, t)〉 for a.e. t ∈ [0,T ].

The compactness result due to Aubin–Lions reads as follows.

Lemma 2.3. Let X0, X, X1 be Banach spaces with X0 and X1 reflexive. Assume that X0 is compactly
embedded into X and X is continuously embedded into X1. For 1 < p, q < ∞ let

W := {u ∈ Lp(0,T, X0) : ∂tu ∈ Lq(0,T, X1)}.

Then W is compactly embedded into Lp(0,T, X).

As an example, we choose q = p′, X0 = W1,p
0 (Ω), X1 = W−1,p′(Ω) and X = Lp(Ω) if p ≥ 2 or

X = L2(Ω) for 2N
N+2 < p < 2. Therefore, we deduce

Lemma 2.4. If p > 2N/(N + 2) then Wp(0,T ) is compactly embedded into Lp(ΩT ) and into L2(ΩT ).
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3. A penalized problem

Let δ > 0. We introduce the following initial–boundary value problem

∂tuδ − div
[
A(x, t,max{uδ, ψ},∇uδ)

]
= 1

δ
[(ψ − uδ)+]q−1 + f in ΩT ,

uδ = 0 on ∂Ω × (0,T ),

uδ(·, 0) = u0 in Ω,

(3.1)

where
q := min{2, p}.

Moreover, in this section we assume that

ψ 6 0 a.e. in ΩT . (3.2)

We introduce the notation
Ã(x, t,w, ξ) := A(x, t,max{w, ψ}, ξ).

By the elementary inequality

|a ∨ a′| 6 |a| ∀a ∈ R ∀a′ ∈ (−∞, 0] (3.3)

and recalling (1.5), (1.6) and (1.7), we easily deduce

Ã(x, t, u, ξ) · ξ > α|ξ|p − (b(x, t)|u|)p
− H(x, t)[

Ã(x, t, u, ξ) − Ã(x, t, u, η)
]
· (ξ − η) > 0 if ξ , η∣∣∣Ã(x, t, u, ξ)

∣∣∣ 6 β|ξ|p−1 +
(
b̃(x, t)|u|

)p−1
+ K(x, t)

for a.e. (x, t) ∈ ΩT and for any u ∈ R and ξ, η ∈ RN .
For u0 ∈ L2(Ω) and f ∈ Lp′(0,T,W−1,p′(Ω)), a solution to problem (3.1) is a function

uδ ∈ C0
(
[0,T ], L2(Ω)

)
∩ Lp(0,T,W1,p

0 (Ω))

such that

−

∫
ΩT

uδϕt dx ds +

∫
ΩT

Ã(x, s, uδ,∇uδ) · ∇ϕ dx ds =
1
δ

∫
ΩT

[(ψ − uδ)+]q−1ϕ dx ds

+

∫
Ω

u0ϕ(x, 0) dx +

∫ T

0
〈 f , ϕ〉 ds

for every ϕ ∈ C∞(Ω̄T ) such that suppϕ ⊂ [0,T ) ×Ω.
By using the elementary inequality

(a + a′)θ 6 aθ + a′θ ∀a, a′ ∈ [0,+∞) ∀θ ∈ (0, 1)

and Young inequality we see that

p < 2 =⇒ [(ψ − u)+]p−1 6 |ψ|p−1 + |u|p−1 6 (p − 1) (|u| + |ψ|) + 2(2 − p).

Hence, by Theorem 4.2 and Remark 4.5 in [12] we get the following existence result.
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Proposition 3.1. Let (1.2), (1.4)–(1.16) and (3.2) be in charge. For every fixed δ > 0, problem (3.1)
admits a solution uδ ∈ C0

(
[0,T ], L2(Ω)

)
∩ Lp(0,T,W1,p

0 (Ω)).

The arguments of [12] lead to some estimates for the sequence {uδ}δ>0. We propose here a proof
that carefully keeps trace of the constants in the estimates.

Lemma 3.2. Let (1.2), (1.4)–(1.16) and (3.2) be in charge. Any solution uδ ∈ C0
(
[0,T ], L2(Ω)

)
∩

Lp(0,T,W1,p
0 (Ω)) to problem (3.1) satisfies the following estimate

‖uδ‖2L∞(0,T,L2(Ω)) + ‖∇uδ‖
p
Lp(ΩT ) 6 C(b,N, p, α)

[
‖u0‖

2
L2(Ω) + ‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖H‖L1(ΩT )

+

(
‖u0‖

2
L2(Ω) + ‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖b‖p

Lp(ΩT )

)p
‖b‖p

Lp(ΩT )

]
.

(3.4)

Proof. We fix t ∈ (0,T ) and we set Ωt := Ω × (0, t). We choose ϕ := T1(uδ)χ(0,t) as a test function. If
we let Φ(z) :=

∫ z

0
T1(ζ) dζ for z ∈ R, we have∫

Ω

Φ(uδ(x, t)) dx +

∫
Ωt

Ã(x, s, uδ,∇uδ) · ∇T1(uδ) dx ds

=
1
δ

∫
Ωt

[(ψ − uδ)+]q−1T1(uδ) dx ds

+

∫
Ω

Φ(u0) dx +

∫ t

0
〈 f ,T1(uδ)〉 ds .

Assumption (3.2) implies that [(ψ − uδ)+]q−1T1(uδ) 6 0 a.e. in ΩT , so we have∫
Ω

Φ(uδ(x, t)) dx +

∫
Ωt∩{|uδ |61}

Ã(x, s, uδ,∇uδ) · ∇uδ dx ds

6

∫
Ω

Φ(u0(x, 0)) dx +

∫ t

0
〈 f ,T1(uδ)〉 ds .

By (1.5) and (1.7) we deduce∫
Ω

Φ(uδ(x, t)) dx + α

∫
Ωt∩{|uδ |61}

|∇uδ|p dx ds

6

∫
Ω

Φ(u0) dx +

∫ t

0
〈 f ,T1(uδ)〉 ds

+

∫
Ωt∩{|uδ |61}

(b|uδ ∨ ψ|)p dx ds +

∫
Ωt∩{|uδ |61}

H dx ds.

(3.5)

Now, as 0 6 Φ(z) 6 z2

2 for all z ∈ R, we have∫
Ω

Φ(u0) dx 6
1
2
‖u0‖

2
L2(Ω). (3.6)
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By Hölder and Young inequality we get∫ t

0
〈 f ,T1(uδ)〉 ds 6 ‖ f ‖Lp′ (0,T,W−1,p′ (Ω))‖∇T1(uδ)‖Lp(Ωt)

= ‖ f ‖Lp′ (0,T,W−1,p′ (Ω))

(∫
Ωt∩{|uδ |61}

|∇(uδ)|p dx ds
)1/p

6
α

2

∫
Ωt∩{|uδ |61}

|∇uδ|p dx ds + C(α, p)‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
.

(3.7)

Finally, by (3.3) ∫
Ωt∩{|uδ |61}

(b|uδ ∨ ψ|)p dx ds 6
∫

Ωt∩{|uδ |61}
(b|uδ|)p dx ds 6 ‖b‖p

Lp(ΩT ). (3.8)

Gathering (3.6), (3.7), and (3.8) and using Hölder inequality, by (3.5) we have∫
Ω

Φ(uδ(x, t)) dx 6 M0,

where

M0 := C(N, p, α)
[
‖u0‖

2
L2(Ω) + ‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖b‖p

Lp(ΩT ).
]

(3.9)

It is easily seen that
|u|
2
6 Φ(u) for |u| > 1

and so

sup
0<t<T

|{x ∈ Ω : |uδ(x, t)| > k}| 6
C(N, p, α, β)M0

k
∀k > 1. (3.10)

We fix t ∈ (0,T ) and choose ϕ := uδχ(0,t) as a test function in (3.1). Again, assumption (3.2) implies
that [(ψ − uδ)+]q−1uδ 6 0 a.e. in ΩT , then

1
2
‖uδ(·, t)‖2L2(Ω) +

∫
Ωt

Ã(x, s, uδ,∇uδ) · ∇uδ dx ds

6
1
2
‖u0‖

2
L2(Ω) +

∫ t

0
〈 f , uδ〉 ds.

By Young inequality for ε > 0∫ t

0
〈 f , uδ〉 ds 6 ε

∫
Ωt

|∇uδ|p dx ds +
p − 1

pp ε1−p‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
.

Then, by (1.5) we further have

‖uδ(·, t)‖2L2(Ω) + α

∫
Ωt

|∇uδ|p dx ds

6 ‖u0‖
2
L2(Ω) + ε

∫
Ωt

|∇uδ|p dx ds

+ C(ε, p) ‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
+

∫
Ωt

(b |uδ ∨ ψ|)p dx ds +

∫
Ωt

H dx ds.

(3.11)
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For m > 0 to be chosen later, we have from (3.3)∫
Ωt

(b |uδ ∨ ψ|)p dx ds 6
∫

Ωt

(b |uδ|)p dx ds =

∫
Ωt

(
b χ{b6m} |uδ|

)p dx ds +

∫
Ωt

(
b χ{b>m} |uδ|

)p dx ds.

(3.12)
We estimate separately the two terms in the right–hand side of (3.12). For k > 1 fixed, we obtain∫

Ωt

(
b χ{b6m} |uδ|

)p dx ds

6 mp
∫ t

0
ds

∫
{|uδ(·,s)|>k}

|uδ|p dx + kp
∫ t

0
ds

∫
Ω

b(x, s)p dx.
(3.13)

Now we apply Hölder inequality (2.1), estimates (2.6) and (3.10) to get∫ t

0
ds

∫
{|uδ(·,s)|>k}

|uδ|p dx =

∫ t

0
ds

∫
Ω

|uδχ{|uδ(·,s)|>k}|
p dx

6

∫ t

0
‖χ{|uδ(·,s)|>k}‖

p
LN,∞(Ω)‖uδ‖

p
Lp∗ ,p(Ω)

ds

6
S p

N,pMp/N
0

kp/N

∫
Ωt

|∇uδ|p dx ds,

(3.14)

where M0 is the constant in (3.9). On the other hand, using again Hölder inequality (2.1) and
estimate (2.6) we have∫

Ωt

(
b χ{b>m} |uδ|

)p dx ds 6 S p
N,p ‖b χ{b>m}‖

p
L∞(0,T,LN,∞(Ω))

∫
Ωt

|∇uδ|p dx ds. (3.15)

Inserting (3.13), (3.14) and (3.15) into (3.12) we obtain∫
Ωt

(b |uδ ∨ ψ|)p dx ds

6

mpS p
N,pMp/N

0

kp/N + S p
N,p ‖b χ{b>m}‖

p
L∞(0,T,LN,∞(Ω))

 ‖∇uδ‖
p
Lp(Ωt)

+ kp
∫ t

0
ds

∫
Ω

b(x, s)p dx.
(3.16)

Observe that (3.11) and (3.16) imply

1
2
‖uδ(·, t)‖2L2(Ω) + α ‖∇uδ‖

p
Lp(Ωt)
6

1
2
‖u0‖

2
L2(Ω) + kp‖b‖p

Lp(ΩT ) +
p − 1

pp ε1−p‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖H‖L1(ΩT )

+

ε +
mpS p

N,pMp/N
0

kp/N + S p
N,p ‖b χ{b>m}‖

p
L∞(0,T,LN,∞(Ω))

 ‖∇uδ‖
p
Lp(Ωt)

.

Now we choose m > 0 so large to guarantee

S p
N,p ‖b χ{b>m}‖

p
L∞(0,T,LN,∞(Ω)) < α.
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The existence of such a value of m is a direct consequence of (1.16) and the characterization of distance
in (2.9). It is also clear that m is a positive constant depending only on b, N, p and α. So we get

1
2
‖uδ(·, t)‖2L2(Ω) + α1 ‖∇uδ‖

p
Lp(Ωt)
6

1
2
‖u0‖

2
L2(Ω) + kp‖b‖p

Lp(ΩT ) +
p − 1

pp ε1−p‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖H‖L1(ΩT )

+

ε +
mpS p

N,pMp/N
0

kp/N

 ‖∇uδ‖
p
Lp(Ωt)

for some α1 = α1(b,N, p, α). We may also choose ε = α1
2 . Then the latter relation becomes

1
2
‖uδ(·, t)‖2L2(Ω) +

α1

2
‖∇uδ‖

p
Lp(Ωt)
6

1
2
‖u0‖

2
L2(Ω) + kp‖b‖p

Lp(ΩT ) + C1(b,N, p, α)‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖H‖L1(ΩT )

+ C2(b,N, p, α)
(M0

k

)p/N

‖∇uδ‖
p
Lp(Ωt)

.

We choose k = M0

(
α1

4C2

)N/p
so that C2

(
M0
k

)p/N
= α1

4 and therefore

1
2
‖uδ(·, t)‖2L2(Ω) +

α1

4
‖∇uδ‖

p
Lp(Ωt)
6

1
2
‖u0‖

2
L2(Ω) + C3(b,N, p, α)Mp

0 ‖b‖
p
Lp(ΩT ) + C1(b,N, p, α)‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖H‖L1(ΩT ).

Taking into account the definition of M0, the latter leads to the estimate (3.4). �

Lemma 3.3. Let (1.2), (1.4)–(1.16) and (3.2) be in charge. Assume further that g− defined in (1.15) is
such that

g− ∈ Lq′(ΩT ). (3.17)

Then, for every δ > 0, every solution uδ of problem (3.1) satisfies

‖(uδ − ψ)−‖q−1
Lq(ΩT ) ≤ δ‖g

−‖Lq′ (ΩT ). (3.18)

Moreover, there exists a positive constant C depending only on the data and independent on δ such that

‖∂tuδ‖Lp′ (0,T ;W−1,p′ (Ω)) ≤ C. (3.19)

Proof. We use the function φ = (ψ − uδ)+ as a test function in the equation of Problem (3.1). Then, we
get ∫ T

0
〈∂tuδ, (ψ − uδ)+〉 dt +

∫
ΩT

A(x, t,max{uδ, ψ},∇u) · ∇(ψ − uδ)+ dxdt

=
1
δ

∫
ΩT

[(ψ − uδ)+]qdxdt +

∫ T

0
〈 f , (ψ − uδ)+〉 dt.
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Recalling (1.15), this implies

1
δ

∫
ΩT

[(ψ − uδ)+]qdxdt =

∫
ΩT

g−(ψ − uδ)+ dxdt

−

∫ T

0
〈g+, (ψ − uδ)+〉 dt

−

∫ T

0
〈∂t(ψ − uδ), (ψ − uδ)+〉 dt

−

∫
ΩT∩{ψ>uδ}

[A(x, t, ψ,∇ψ) − A(x, t, ψ,∇uδ)] · ∇(ψ − uδ) dxdt.

By (1.14) we observe that∫ T

0
〈∂t(ψ − uδ), (ψ − uδ)+〉 dt =

1
2
‖(uδ − ψ)−(T )‖2L2(Ω)

hence, by (1.6) we get

1
δ

∫
ΩT

[(ψ − uδ)+]q ≤

∫
ΩT

g−(ψ − uδ)+ dxdt.

Then, using Hölder inequality and dividing both sides of the inequality by ‖(ψ − uδ)+)‖Lq((ΩT ) we
obtain (3.18). To obtain (3.19) we fix ϕ ∈ Lp(0,T ; W1,p

0 (Ω)) and then we observe that∣∣∣∣∣∣
∫ T

0
〈∂tuδ, ϕ〉 dt

∣∣∣∣∣∣ ≤ (
‖A(·, ·,max{uδ, ψ},∇uδ)‖Lp′ (ΩT ) + ‖ f ‖Lp′ (ΩT )

)
‖ϕ‖Lp(0,T ;W1,p

0 (Ω))

+
1
δ
‖(ψ − uδ)+‖

q−1
Lq(ΩT )‖ϕ‖Lq(ΩT ).

At this point we observe that the definition of q and Holder inequality imply

‖ϕ‖Lq(ΩT ) ≤ C(p, |Ω|,T )‖ϕ‖Lp(ΩT ).

Finally, using (3.18) and Poncaré inequality slicewise, we conclude that∣∣∣∣∣∣
∫ T

0
〈∂tuδ, ϕ〉 dt

∣∣∣∣∣∣ ≤ C(p, |Ω|,T )‖ϕ‖Lp(0,T ;W1,p
0 (Ω)),

where C is a positive constant independent of δ. This immediately leads to (3.19). �

4. Proof of main result

We proceed step by step. We first prove the result under regularity assumptions on g and sign
conditon (3.2) on the obstacle function ψ. Then we address the general case.

Proposition 4.1. Let (1.2), (1.4)–(1.16), (3.2) and (3.17) be in charge. There exists at least solution
u ∈ Kψ(ΩT ) to the variational inequality (1.3) such that u(·, 0) = u0 in Ω and satisfying the following
estimate

‖u‖2L∞(0,T,L2(Ω)) + ‖∇u‖p
Lp(ΩT ) 6 C(b,N, p, α)

[
‖u0‖

2
L2(Ω) + ‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖H‖L1(ΩT )

+

(
‖u0‖

2
L2(Ω) + ‖ f ‖p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖b‖p

Lp(ΩT )

)p
‖b‖p

Lp(ΩT )

]
.

(4.1)
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Proof. By Proposition 3.1, for every δ > 0 there exists a solution
uδ ∈ C0

(
[0,T ], L2(Ω)

)
∩ Lp(0,T,W1,p

0 (Ω)) to problem (3.1) satisfying (3.4). Hence we have that, by

Lemma 3.3 and Lemma 2.2, there exists u ∈ C0
(
[0,T ], L2(Ω)

)
∩ Lp(0,T,W1,p

0 (Ω)) such that

uδ → u strongly in Lp(ΩT ) (4.2)

∇uδ ⇀ ∇u weakly in Lp
(
ΩT ,R

N
)

(4.3)

uδ
∗
⇀ u weakly∗ in L∞(0,T ; L2(Ω))

∂tuδ ⇀ ∂tu weakly in Lp′(0,T,W−1,p′(Ω))

as δ→ 0+. By semicontinuity, (3.4) implies (4.1)
We claim that the limit function u solves the variational inequality (1.3) in the strong form.
It is immediate to check that

u(·, 0) = u0 a.e. in Ω, (4.4)
u ≥ ψ a.e. in ΩT . (4.5)

Indeed, (4.4) holds since uδ(·, 0) = u0 a.e. in Ω for every δ > 0. On the other hand, if we pass to
the limit as δ → 0+ in (3.18) and take into account (4.2) we have ‖(u − ψ)−‖L2∧p(ΩT ) = 0 which clearly
implies (4.5).

Our next goal is to prove that
∇uδ → ∇u a.e. in ΩT (4.6)

as δ→ 0+. We test the penalized equation by T1(uδ − u) and since condition (4.5) implies∫
ΩT

[(ψ − uδ)+]q−1T1(uδ − u) dx dt 6 0

we get the following inequality

∫ T

0
〈∂tuδ,T1(uδ − u)〉 dt +

∫
ΩT

A(x, t, uδ ∨ ψ,∇uδ) · ∇T1(uδ − u) dz 6
∫ T

0
〈 f ,T1(uδ − u)〉 dt. (4.7)

If we set Φ(z) :=
∫ z

0
T1(ζ) dζ, by (4.4) we obtain∫ T

0
〈∂tuδ,T1(uδ − u)〉 dt =

∫
Ω

Φ(uδ − u)(x,T ) dx +

∫ T

0
〈∂tu,T1(uδ − u)〉 dt.

Because of (4.3), the latter term in the last inequality vanishes in the limit as δ → 0. So, as Φ is
nonnegative, we get

lim sup
δ→0

∫ T

0
〈∂tuδ,T1(uδ − u)〉 dt > 0.

Again by (4.3), the right hand side of (4.7) vanishes in the limit as δ→ 0, and so (4.7) implies

lim sup
δ→0

∫
ΩT∩{|uδ−u|61}

A(x, t, uδ ∨ ψ,∇uδ) · ∇(uδ − u) dx dt 6 0. (4.8)
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By (1.7), (3.2) and (3.3) we have

|A(x, t, uδ ∨ ψ,∇u)| χ{|uδ−u|61} 6 β|∇u|p−1 + (b̃|uδ|)p−1χ{|uδ−u|61} + K

6 β|∇u|p−1 + C(p)b̃p−1 + C(p)(b̃|u|)p−1 + K

therefore, by the dominated convergence theorem and by (4.2), we get

lim
δ→0

∫
ΩT∩{|uδ−u|61}

A(x, t, uδ ∨ ψ,∇u) · ∇(uδ − u) dx dt = 0. (4.9)

Combining (4.8) and (4.9) and by (1.6) we get

lim
δ→0

∫
ΩT

[
A(x, t, uδ ∨ ψ,∇uδ) − A(x, t, uδ ∨ ψ,∇u)

]
· ∇T1(uδ − u) dx dt = 0. (4.10)

Using again (1.6), relation (4.10) gives[
A(x, t, uδ ∨ ψ,∇uδ) − A(x, t, uδ ∨ ψ,∇u)

]
· ∇(uδ − u)χ{|uδ−u|61} → 0 a.e. in ΩT

and so by (4.2) we get[
A(x, t, uδ ∨ ψ,∇uδ) − A(x, t, uδ ∨ ψ,∇u)

]
· ∇(uδ − u)→ 0 a.e. in ΩT

as δ→ 0. By Lemma 3.1 in [21] we deduce that (4.6) holds.
We let v ∈ Kψ(ΩT ). It is clear that

[
(ψ − uδ)+

]q−1
Tλ(uδ − v) 6 0 a.e. in ΩT and for every λ > 0. For

this reason, if we use Tλ(uδ − v) as a test function in (3.1) we deduce∫ T

0
〈∂tuδ,Tλ(uδ − v)〉 dt +

∫
ΩT

[
A(x, t, uδ ∨ ψ,∇uδ) − A(x, t, uδ ∨ ψ,∇v)

]
· ∇Tλ(uδ − v) dx dt

6

∫ T

0
〈 f ,Tλ(uδ − v)〉 dt −

∫
ΩT

A(x, t, uδ ∨ ψ,∇v) · ∇Tλ(uδ − v) dx dt.
(4.11)

We set Φλ(z) :=
∫ z

0
Tλ(ζ) dζ and we have∫ T

0
〈∂tuδ,Tλ(uδ − v)〉 dt =

∫ T

0
〈∂tv,Tλ(uδ − v)〉 dt +

∫ T

0
〈∂tuδ − ∂tv,Tλ(uδ − v)〉 dt

=

∫ T

0
〈∂tv,Tλ(uδ − v)〉 dt +

∫
Ω

Φλ(uδ − v)(x,T ) dx −
∫

Ω

Φλ(u0 − v(x, 0)) dx.

(4.12)

We observe that Lemma 2.2 applies because of (3.4) and (3.19), so

uδ(·, t) ⇀ u(·, t) weakly in L2(Ω) for all t ∈ [0,T ].

This convergence and the Lipschitz continuity of Φλ gives Φλ(uδ − v)(·,T ) ⇀ Φλ(u− v)(·,T ) weakly in
L2(Ω), then

lim
δ→0

∫
Ω

Φλ(uδ − v)(x,T ) dx =

∫
Ω

Φλ(u − v)(x,T ) dx. (4.13)
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On the other hand, by Fatou lemma, we are able to pass to the limit as δ → 0 in the third term on the
left–hand side of (4.11). Indeed, for this term we know by the monotonicity condition (1.6) that the
integrand is nonnegative and we have already observed that uδ and ∇uδ converge a.e. according to (4.2)
and (4.6) respectively. We only need to handle the term∫

ΩT

A(x, t, uδ ∨ ψ,∇v) · ∇Tλ(uδ − v) dx dt.

This can be done arguing similarly as for the case λ = 1. By (1.7) we have

|A(x, t, uδ ∨ ψ,∇v)| χ{|uδ−v|6λ} 6 β|∇v|p−1 + K + C(p)λp−1
(
b̃p−1 + (b̃|v|)p−1

)
.

By (4.2) and (4.5) we obtain A(x, t, uδ ∨ψ,∇v)→ A(x, t, u,∇v) a.e. in ΩT , Therefore, by the dominated
convergence theorem, A(x, t, uδ ∨ ψ,∇v)→ A(x, t, u,∇v) strongly in Lp′(ΩT ,R

N), and this yields

lim
δ→0

∫
ΩT

A(x, t, uδ,∇v) · ∇Tλ(uδ − v) dx dt =

∫
ΩT

A(x, t, u,∇v) · ∇Tλ(u − v) dx dt.

Taking into account the latter relation and also (4.12) and (4.13), we can now pass to the limit as δ→ 0
in (4.11) and obtain∫ T

0
〈∂tv,Tλ(u − v)〉 dt +

∫
Ω

Φλ(u − v)(x,T ) dx −
∫

Ω

Φλ(u0 − v(x, 0)) dx

+

∫
ΩT

A(x, t, u,∇u) · ∇Tλ(u − v) dx dt 6
∫ T

0
〈 f ,Tλ(u − v)〉 dt.

Since

Tλ(u − v)→ u − v strongly in Lp(0,T,W1,p
0 (Ω)) as λ→ ∞,

Φλ(u − v)(·,T )→
1
2
|u0 − v(·, 0)|2 strongly in L1(Ω) as λ→ ∞

Φλ(u0 − v(·, 0))→
1
2
|u(·, 0) − v(·, 0)|2 strongly in L1(Ω) as λ→ ∞

and also observing that∫ T

0
〈∂tv, u − v〉 dt =

∫ T

0
〈∂tu, u − v〉 dt +

1
2

∫
Ω

|u0 − v(·, 0)|2 dx −
1
2

∫
Ω

|u(·,T ) − v(·,T )|2 dx

we conclude that (1.3) holds. �

Next result shows that a Lewy–Stampacchia inequality can be derived under some suitable
assuption, that we are going to remove later.

Proposition 4.2. Let (1.2), (1.4)–(1.16), (3.2) and (3.17) be in charge. If we also assume that

g− ∈ Lp′(ΩT ) ∩ Lp(0,T,W1,p
0 (Ω))

g− > 0 a.e. in ΩT

∂tg− ∈ Lq′(ΩT )

the solution u of the obstacle problem constructed in Proposition 4.1 satisfies the Lewy–Stampacchia
inequality (1.17).
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Proof. We define

zδ := g− −
1
δ

[
(ψ − uδ)+]q−1

.

For k > 1 we also define

ηk(y) := (q − 1)
∫ y+

0
min{k, sq−2} ds

Ψk(x, t, λ) := −
(
g− −

1
δ
ηk(λ−)

)−
Λk(x, t, λ) :=

∫ λ

0
Ψk(x, t, σ) dσ.

Thanks to Lemma 4.3 in [15] we are able to test (3.1) by Ψk(x, s, uδ − ψ)χ(0,t) for t ∈ (0,T ), obtaining

−

∫
Ωt

∂tΛk(x, s, uδ − ψ) dx ds +

∫
Ω

Λk(x, t, (uδ − ψ)(x, t)) dx −
∫

Ω

Λk(x, 0, (uδ − ψ)(x, 0)) dx

−

∫
Ωt

[
A(x, s, uδ ∨ ψ,∇uδ) − A(x, s, ψ,∇ψ)

]
· ∇

(
g− −

1
δ
ηk((uδ − ψ)−)

)−
dx ds

−

∫
Ωt

zδ

(
g− −

1
δ
ηk((uδ − ψ)−)

)−
dx ds

= −

∫ t

0

〈
g+,

(
g− −

1
δ
ηk((uδ − ψ)−)

)−〉
ds 6 0.

(4.14)

By (1.14) we have ∫
Ω

Λk(x, 0, (uδ − ψ)(x, 0)) dx = 0.

We also have

−

∫
Ωt

∂tΛk(x, s, uδ − ψ) dx ds = −

∫
Ωt

∂tg−
∫ uδ−ψ

0
χ{g−− 1

δ ηk(τ−)<0} dτ dx ds

= −

∫
Ωt

∂tg−
∫ −(uδ−ψ)−

0
χ{g−− 1

δ ηk(τ−)<0} dτ dx ds

> −

∫
Ωt

|∂tg−||(uδ − ψ)−| dx ds.

So, taking into account (4.14), we have

−

∫
Ωt

|∂tg−||(uδ − ψ)−| dx ds +

∫
Ω

Λk(x, t, (uδ − ψ)(x, t)) dx −
∫

Ωt

zδ

(
g− −

1
δ
ηk

(
(uδ − ψ)−

))−
dx ds

−

∫
Ωt

[
A(x, s, uδ ∨ ψ,∇uδ) − A(x, s, ψ,∇ψ)

]
· ∇

(
g− −

1
δ
ηk((uδ − ψ)−)

)−
dx ds 6 0.

(4.15)
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We remark that

−

∫
Ωt

zδ

(
g− −

1
δ
ηk

(
(uδ − ψ)−

))−
dx ds

= −

∫
Ωt

(
g− −

1
δ

[
(ψ − uδ)+]q−1

) (
g− −

1
δ
ηk

(
(uδ − ψ)−

))−
dx ds.

Since we have
{
g− − 1

δ
ηk((uδ − ψ)−) < 0

}
⊂ {uδ < ψ} then

−

∫
Ωt

[
A(x, s, uδ ∨ ψ,∇uδ) − A(x, s, ψ,∇ψ)

]
· ∇

(
g− −

1
δ
ηk((uδ − ψ)−)

)−
dx ds

=

∫
Ωt

χ{g−− 1
δ ηk((uδ−ψ)−<0}

[
A(x, s, ψ,∇uδ) − A(x, s, ψ,∇ψ)

]
· ∇

(
g− −

1
δ
ηk((uδ − ψ)−))

)
dx ds.

By (1.6) it follows that

[
A(x, s, ψ,∇uδ) − A(x, s, ψ,∇ψ)

]
· ∇

(
g− −

1
δ
ηk((uδ − ψ)−))

)
>

1
δ
η′k((uδ − ψ)−)

[
A(x, s, ψ,∇uδ) − A(x, s, ψ,∇ψ)

]
· ∇(uδ − ψ)

− |
[
A(x, s, ψ,∇uδ) − A(x, s, ψ,∇ψ)

]
||∇g−|

> − |A(x, s, ψ,∇uδ) − A(x, s, ψ,∇ψ)| |∇g−|.

Hence, we deduce from (4.15)

−

∫
Ωt

|∂tg−||(uδ − ψ)−| dx ds +

∫
Ω

Λk(x, t, (uδ − ψ)(x, t)) dx

−

∫
Ωt

(
g− −

1
δ

[
(ψ − uδ)+]q−1

) (
g− −

1
δ
ηk

(
(uδ − ψ)−

))−
dx ds

−

∫
Ωt

|A(x, s, ψ,∇uδ) − A(x, s, ψ,∇ψ)| |∇g−| dx ds 6 0.

Now, we pass to the limit as k → ∞. In particular, by using the monotone convergence theorem, we
have

lim
k→∞

∫
Ω

Λk(x, t, (uδ − ψ)(x, t)) dx = −

∫
Ω

dx
∫ (uδ−ψ)(x,t)

0

(
g− −

1
δ

[
σ−

]q−1
)−

dσ > 0

and also

− lim
k→∞

∫
Ωt

(
g− −

1
δ

[
(ψ − uδ)+]q−1

) (
g− −

1
δ
ηk

(
(uδ − ψ)−

))−
dx ds = ‖z−δ ‖

2
L2(Ωt)

We gather the previous relations, and (since t ∈ (0,T ) is arbitrary) we get

−

∫
ΩT

|∂tg−||(uδ − ψ)−| dx ds + ‖z−δ ‖
2
L2(ΩT ) 6

∫
ΩT

χ{ψ>uδ} |A(x, t, ψ,∇uδ) − A(x, t, ψ,∇ψ)| |∇g−| dx ds.

Since it is clear that
lim
δ→0

∫
ΩT

|∂tg−||(uδ − ψ)−| dx ds = 0
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we obtain

lim sup
δ→0

‖z−δ ‖
2
L2(ΩT ) 6 lim sup

δ→0

∫
Ωt

χ{ψ>uδ} |A(x, t, ψ,∇uδ) − A(x, t, ψ,∇ψ)| |∇g−| dx ds. (4.16)

Observing that (4.2), (4.5) and (4.6) hold, then

Fδ := χ{ψ>uδ} |A(x, t, ψ,∇uδ) − A(x, t, ψ,∇ψ)| → 0 a.e. in ΩT

as δ → 0. By (1.7), (3.2) and (3.4), Fδ is also bounded in Lp′(ΩT ), hence Fδ ⇀ 0 in Lp′(ΩT ). We
deduce

lim
δ→0

∫
ΩT

χ{ψ>uδ} |A(x, t, ψ,∇uδ) − A(x, t, ψ,∇ψ)| |∇g−| dx ds = 0.

By (4.16) we obtain
lim
δ→0
‖z−δ ‖

2
L2(ΩT ) = 0.

Hence we have
0 6

1
δ

[
(uδ − ψ)−

]q−1
= ∂tuδ − divA(·, ·, uδ ∨ ψ,∇uδ) − f

and so
0 6 ∂tu − divA(·, ·, u,∇u) − f .

Similarly, rewriting (3.1) as follows

z+
δ + ∂tuδ − divA(·, ·, uδ ∨ ψ,∇uδ) − f = g− + z−δ

then
∂tu − divA(·, ·, u,∇u) − f 6 g−

and the proof is completed. �

Next result provides the one of Theorem 1.1 under the assumption (3.2) but removing
condition (3.17).

Proposition 4.3. Let (1.2), (1.4)–(1.16) and (3.2) be in charge. There exists at least solution u ∈
Kψ(ΩT ) to the variational inequality (1.3) satisfying u(·, 0) = u0 in Ω, the estimate (4.1) and the Lewy–
Stampacchia inequality (1.17).

Proof. We know that
g := f − ψt + div A(x, t, ψ,∇ψ) = g+ − g−,

where g± are nonnegative elements of Lp′(0,T,W−1,p′(Ω)). By using a regularization procedure, due
to [7] Lemma p. 593, and Lemma 4.1 in [15], we find a sequence {g−n }n∈N of nonnegative functions
such that

g−n ∈ Lp′(ΩT ) ∩ Lp(0,T,W1,p
0 (Ω))

gn > 0 a.e. in ΩT

∂tg−n ∈ Lq′(ΩT )

Mathematics in Engineering Volume 5, Issue 4, 1–23.
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and
g−n → g− in Lp′(0,T,W−1,p′(Ω)) as n→ ∞.

We define
fn = ψt − div A(x, t, ψ,∇ψ) + g+ − g−n .

It is clear that
fn → f in Lp′(0,T,W−1,p′(Ω))

as n → ∞. Due to the regularity assumptions on g−n , we get the existence of un ∈ Kψ(ΩT ) with
un(·, 0) = u0 in Ω such that for every v ∈ Kψ(ΩT ) we have∫ T

0
〈∂tun, v − un〉 dt +

∫
ΩT

A(x, t, un,∇un) · ∇(v − un) dxdt >
∫ T

0
〈 fn, v − un〉 dt. (4.17)

Moreover, the subsequent estimate holds

‖un(·, t)‖2L2(Ω) + ‖∇un‖
p
Lp(Ωt)
6 C(b,N, p, α)

[
‖u0‖

2
L2(Ω) + ‖ fn‖

p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖H‖L1(ΩT )

+

(
‖u0‖

2
L2(Ω) + ‖ fn‖

p′

Lp′ (0,T,W−1,p′ (Ω))
+ ‖b‖p

Lp(ΩT )

)p
‖b‖p

Lp(ΩT )

]
and the following Lewy-Stampacchia inequality holds

0 ≤ ∂tun − div A(x, t, un,∇un) − fn ≤ g−n . (4.18)

Since the sequence { fn}n∈N is strongly converging (and hence bounded) in Lp′(0,T,W−1,p′(Ω)), we
obtain

sup
0<t<T

∫
Ω

|un(·, t)|2 dx +

∫
ΩT

|∇un|
p dxdt 6 C

for some positive constant C independent of n. Moreover, the Lewy–Stampacchia inequality (4.18)
implies a uniform bound of this kind

‖∂tun‖Lp′ (0,T ;W−1,p′ (Ω)) ≤ C

again for some positive constant C independent of n. Therefore, there exists u ∈ C0
(
[0,T ], L2(Ω)

)
∩

Lp(0,T,W1,p
0 (Ω)) with u(·, 0) = u0 in Ω such that

un → u strongly in Lp(ΩT ) (4.19)

∇un ⇀ ∇u weakly in Lp
(
ΩT ,R

N
)

un
∗
⇀ u weakly∗ in L∞(0,T ; L2(Ω))

∂tun ⇀ ∂tu weakly in Lp′(0,T,W−1,p′(Ω))

as n→ ∞. Obviously (4.19) implies u > ψ a.e. in ΩT . If we summarize, we have u ∈ Kψ(ΩT ) and then
vn := un − T1(un − u) ∈ Kψ(ΩT ). Hence, we use vn as a test function in (4.17) and, arguing as in the
proof of Proposition 4.1, we obtain

∇un → ∇u a.e. in ΩT

as n → ∞. For fixed λ > 0 and v ∈ Kψ(ΩT ) we also have vn,λ := un − Tλ(un − v) ∈ Kψ(ΩT ). Arguing
again as in the proof of Proposition 4.1, we get (1.3) passing to the limit (first as n → ∞ and then as
λ→ ∞) in the inequality obtained by testing (4.17) by vn,λ. �
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Finally, we remove condition (3.2), i.e., we are able to prove Theorem 1.1.

Proof of Theorem 1.1. The convex set Kψ(ΩT ) is nonempty and one can find w ∈ Kψ(ΩT ) such that
w(·, 0) = ψ(·, 0) in Ω (see for details Remark 2.1 in [15]). Let us define

Â(x, t, u, η) := A(x, t, u + w, η + ∇w)

f̂ := f − ∂tw

ψ̂ := ψ − w

û0 := u0 − w(·, 0).

Hence f̂ ∈ Lp′(0,T,W−1,p′(Ω)) and ψ̂ and ψ share the same trace on ∂Ω × (0,T ). Therefore, one can
conclude

ψ̂ 6 0 a.e. in ΩT

ψ̂(·, 0) = 0 a.e. in Ω.

Moreover, the vector field Â enjoys similar properties as A. This is trivial for conditions (1.6) and (1.7).
As in [12], properties of A and Young inequality, we have for ε > 0

Â(x, t, u, ξ) · ξ > (α − β εp) |ξ + ∇w|p −
(
bp + εp b̃p

)
|u + w|p − H1

with a suitable H1 ∈ L1(ΩT ). Moreover, as an elementary consequence of the convexity of | |p, for
0 < ϑ < 1 we find a constant C = C(ϑ, p) > 0 such that

|ξ + ∇w|p > ϑp |ξ|p −C |∇w|p , |u + w|p 6 ϑ−p |u|p + C |w|p.

Hence, we get coercivity condition for Â:

Â(x, u, ξ) · ξ > α̂ |ξ|p − (b̂ |u|)p − Ĥ,

where we set

α̂ = (α − β εp)ϑp , b̂ =
b + ε b̃
ϑ

and denoted by Ĥ a suitable nonnegative function in L1(ΩT ). Obviously, we can make α̂ arbitrarily
close to α, by choosing ε close to 0 and ϑ close to 1. Using inequality (2.5) for b and b̃ in place of
f and g, respectively, we can easily show that also Db̂ is arbitrarily close to Db, again by choosing ε
close to 0 and ϑ close to 1. Indeed, we have

distL∞(0,T,LN,∞(Ω))(b̂, L∞(ΩT ))

6
1 +
√
ε

ϑ
distL∞(0,T,LN,∞(Ω))(b, L∞(ΩT )) +

√
ε(1 +

√
ε)

ϑ
‖b̃‖L∞(0,T,LN,∞(Ω)).

By (1.16) we can also have

Db̂ <
α̂1/p

S N,p
.
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We observe that
f̂ − ψ̂t + div A(x, t, ψ̂,∇ψ̂) = f − ψt + div Â(x, t, ψ,∇ψ).

We can apply Proposition 4.3 for the operator Â. Therefore, we obtain the existence of a function
û ∈ Kψ̂(ΩT ) such that

û(·, 0) = û0 in Ω (4.20)

and the following parabolic variational inequality∫ T

0
〈ût, v̂ − û〉 dt +

∫
ΩT

Â(x, t, û,∇û) · ∇(v̂ − û) dx dt >
∫ T

0
〈 f̂ , v̂ − û〉 dt

holds true for every admissible function v̂ ∈ Kψ̂(ΩT ). Since any v ∈ Kψ(ΩT ) can be rewritten as
v = v̂ + w for some v̂ ∈ Kψ̂(ΩT ), by (4.20), by the definitions of Â, f̂ and ψ̂, we see that the variational
inequality (1.3) holds true with u := û + w and for any admissible function v ∈ Kψ(ΩT ). The fact that
u ∈ Kψ(ΩT ) and u(·, 0) = u0 in Ω is obvious, and this concludes the proof. �
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