Citation: Luca Spolaor, Bozhidar Velichkov. On the logarithmic epiperimetric inequality for the obstacle problem[J]. Mathematics in Engineering, 2021, 3(1): 1-42. doi: 10.3934/mine.2021004
[1] | Brezis H (1972) Problèmes unilatèraux. J Math Pure Appl 51: 1-168. |
[2] | Caffarelli LA (1998) The obstacle problem revisited. J Fourier Anal Appl 4: 383-402. doi: 10.1007/BF02498216 |
[3] | Colombo M, Spolaor L, Velichkov B (2018) A logarithmic epiperimetric inequality for the obstacle problem. Geom Funct Anal 28: 1029-1061. doi: 10.1007/s00039-018-0451-1 |
[4] | Colombo M, Spolaor L, Velichkov B (2020) Direct epiperimetric inequalities for the thin obstacle problem and applications. Commun Pure Appl Math 73: 384-420. doi: 10.1002/cpa.21859 |
[5] | Colombo M, Spolaor L, Velichkov B (2020) On the asymptotic behavior of the solutions to parabolic variational inequalities. arXiv:1809.06075. |
[6] | Engelstein M, Spolaor L, Velichkov B (2020) Uniqueness of the blow-up at isolated singularities for the Alt-Caffarelli functional. Duke Math J 169: 1541-1601. doi: 10.1215/00127094-2019-0077 |
[7] | Engelstein M, Spolaor L, Velichkov B (2019) (Log-)epiperimetric inequality and regularity over smooth cones for almost Area-Minimizing currents. Geom Topol 23: 513-540. doi: 10.2140/gt.2019.23.513 |
[8] | Fefferman C (2009) Extension of Cm,ω-smooth functions by linear operators. Rev Mat Iberoam 25: 1-48. |
[9] | Figalli A (2018) Free boundary regularity in obstacle problems. arXiv:1807.01193. |
[10] | Figalli A, Serra J (2019) On the fine structure of the free boundary for the classical obstacle problem. Invent Math 215: 311-366. doi: 10.1007/s00222-018-0827-8 |
[11] | Figalli A, Ros-Oton X, Serra J (2019) Generic regularity of free boundaries for the obstacle problem. Preprint. |
[12] | Focardi M, Spadaro E (2016) An epiperimetric inequality for the thin obstacle problem. Adv Differential Equ 21: 153-200. |
[13] | Garofalo N, Petrosyan A, Smit Vega Garcia M (2016) An epiperimetric inequality approach to the regularity of the free boundary in the Signorini problem with variable coefficients. J Math Pure Appl 105: 745-787. doi: 10.1016/j.matpur.2015.11.013 |
[14] | Reifenberg ER (1964) An epiperimetric inequality related to the analyticity of minimal surfaces. Ann Math 80: 1-14. doi: 10.2307/1970488 |
[15] | Shi W (2020) An epiperimetric inequality approach to the parabolic Signorini problem. Disc Cont Dyn Syst 40: 1813-1846. doi: 10.3934/dcds.2020095 |
[16] | Spolaor L, Velichkov B (2019) An epiperimetric inequality for the regularity of some free boundary problems: the 2-dimensional case. Commun Pure Appl Math 72: 375-421. doi: 10.1002/cpa.21785 |
[17] | Weiss GS (1999) A homogeneity improvement approach to the obstacle problem. Invent Math 138: 23-50. doi: 10.1007/s002220050340 |