Research article Special Issues

Spectral stability of the curlcurl operator via uniform Gaffney inequalities on perturbed electromagnetic cavities

  • Received: 22 September 2021 Revised: 25 January 2022 Accepted: 26 January 2022 Published: 04 March 2022
  • We prove spectral stability results for the $ curl curl $ operator subject to electric boundary conditions on a cavity upon boundary perturbations. The cavities are assumed to be sufficiently smooth but we impose weak restrictions on the strength of the perturbations. The methods are of variational type and are based on two main ingredients: the construction of suitable Piola-type transformations between domains and the proof of uniform Gaffney inequalities obtained by means of uniform a priori $ H^2 $-estimates for the Poisson problem of the Dirichlet Laplacian. The uniform a priori estimates are proved by using the results of V. Maz'ya and T. Shaposhnikova based on Sobolev multipliers. Connections to boundary homogenization problems are also indicated.

    Citation: Pier Domenico Lamberti, Michele Zaccaron. Spectral stability of the curlcurl operator via uniform Gaffney inequalities on perturbed electromagnetic cavities[J]. Mathematics in Engineering, 2023, 5(1): 1-31. doi: 10.3934/mine.2023018

    Related Papers:

  • We prove spectral stability results for the $ curl curl $ operator subject to electric boundary conditions on a cavity upon boundary perturbations. The cavities are assumed to be sufficiently smooth but we impose weak restrictions on the strength of the perturbations. The methods are of variational type and are based on two main ingredients: the construction of suitable Piola-type transformations between domains and the proof of uniform Gaffney inequalities obtained by means of uniform a priori $ H^2 $-estimates for the Poisson problem of the Dirichlet Laplacian. The uniform a priori estimates are proved by using the results of V. Maz'ya and T. Shaposhnikova based on Sobolev multipliers. Connections to boundary homogenization problems are also indicated.



    加载中


    [1] J. Arrieta, A. N. Carvalho, G. Losada-Cruz, Dynamics in dumbbell domains Ⅰ. Continuity of the set of equilibria, J. Differ. Equations, 231 (2006), 551–597. https://doi.org/10.1016/j.jde.2006.06.002 doi: 10.1016/j.jde.2006.06.002
    [2] J. Arrieta, F. Ferraresso, P. D. Lamberti, Boundary homogenization for a triharmonic intermediate problem, Math. Method. Appl. Sci., 41 (2018), 979–985. https://doi.org/10.1002/mma.4025 doi: 10.1002/mma.4025
    [3] J. Arrieta, P. D. Lamberti, Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems, J. Differ. Equations, 263 (2017), 4222–4266. https://doi.org/10.1016/j.jde.2017.05.011 doi: 10.1016/j.jde.2017.05.011
    [4] J. Arrieta, M. Villanueva-Pesqueira, Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary, Commun. Pure Appl. Anal., 19 (2020), 1891–1914. https://doi.org/10.3934/cpaa.2020083 doi: 10.3934/cpaa.2020083
    [5] M. Sh. Birman, M. Z. Solomyak, The Maxwell operator in domains with a nonsmooth boundary, Sib. Math. J., 28 (1987), 12–24. https://doi.org/10.1007/BF00970204 doi: 10.1007/BF00970204
    [6] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7
    [7] V. I. Burenkov, Sobolev spaces on domains, Wiesbaden: Vieweg+Teubner Verlag, 1998. https://doi.org/10.1007/978-3-663-11374-4
    [8] V. I. Burenkov, P. D Lamberti, Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators, Rev. Mat. Complut., 25 (2012), 435–457. https://doi.org/10.1007/s13163-011-0079-2 doi: 10.1007/s13163-011-0079-2
    [9] G. Cardone, C. Perugia, M. Villanueva Pesqueira, Asymptotic behavior of a Bingham flow in thin domains with rough boundary, Integr. Equ. Oper. Theory, 93 (2021), 24. https://doi.org/10.1007/s00020-021-02643-7 doi: 10.1007/s00020-021-02643-7
    [10] A. Carvalho, S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems, Numer. Funct. Anal. Optim., 27 (2006), 785–829. https://doi.org/10.1080/01630560600882723 doi: 10.1080/01630560600882723
    [11] J. Casado-Díaz, M. Luna-Laynez, F. J. Suárez-Grau, Asymptotic behavior of a viscous fluid with slip boundary conditions on a slightly rough wall, Math. Models Methods Appl. Sci., 20 (2010), 121–156. https://doi.org/10.1142/S0218202510004179 doi: 10.1142/S0218202510004179
    [12] M. Cessenat, Mathematical methods in electromagnetics, River Edge, NJ: World Scientific Publishing Co., Inc., 1996. https://doi.org/10.1142/2938
    [13] M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains, Math. Method. Appl. Sci., 12 (1990), 365–368. https://doi.org/10.1002/mma.1670120406 doi: 10.1002/mma.1670120406
    [14] M. Costabel, A coercive bilinear form for Maxwell's equations, J. Math. Anal. Appl., 157 (1991), 527–541. https://doi.org/10.1016/0022-247X(91)90104-8 doi: 10.1016/0022-247X(91)90104-8
    [15] M. Costabel, M. Dauge, Maxwell and Lamé eigenvalues on polyhedra, Math. Method. Appl. Sci., 22 (1999), 243–258. https://doi.org/10.1002/(SICI)1099-1476(199902)22:3<243::AID-MMA37>3.0.CO;2-0 doi: 10.1002/(SICI)1099-1476(199902)22:3<243::AID-MMA37>3.0.CO;2-0
    [16] M. Costabel, M. Dauge, Maxwell eigenmodes in product domains, In: Maxwell's equations: analysis and numerics, Berlin, Boston: De Gruyter, 2019,171–198. https://doi.org/10.1515/9783110543612-006
    [17] R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for science and technology. Volume 3: spectral theory and applications, Berlin: Springer-Verlag, 1990.
    [18] F. Ferraresso, On the spectral instability for weak intermediate triharmonic problems, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.8144
    [19] F. Ferraresso, P. D. Lamberti, On a Babuška paradox for polyharmonic operators: spectral stability and boundary homogenization for intermediate problems, Integr. Equ. Oper. Theory, 91 (2019), 55. https://doi.org/10.1007/s00020-019-2552-0 doi: 10.1007/s00020-019-2552-0
    [20] A. Ferrero, P. D. Lamberti, Spectral stability for a class of fourth order Steklov problems under domain perturbations, Calc. Var., 58 (2019), 33. https://doi.org/10.1007/s00526-018-1481-0 doi: 10.1007/s00526-018-1481-0
    [21] A. Ferrero, P. D. Lamberti, Spectral stability of the Steklov problem, arXiv: 2103.04991.
    [22] N. Filonov, Principal singularities of the magnetic field component in resonators with a boundary of a given class of smoothness, St. Petersburg Math. J., 9 (1998), 379–390.
    [23] V. Girault, P. A. Raviart, Finite element approximation of the Navier-Stokes equations, Berlin-New York: Springer-Verlag, 1979. https://doi.org/10.1007/BFb0063447
    [24] G. W. Hanson, A. B. Yakovlev, Operator theory for electromagnetics, New York: Springer-Verlag, 2002. https://doi.org/10.1007/978-1-4757-3679-3
    [25] F. Hagemann, F. Hettlich, Application of the second domain derivative in inverse electromagnetic scattering, Inverse Probl., 36 (2020), 125002. https://doi.org/10.1088/1361-6420/abaa31 doi: 10.1088/1361-6420/abaa31
    [26] F. Hagemann, T. Arens, T. Betcke, F. Hettlich, Solving inverse electromagnetic scattering problems via domain derivatives, Inverse Probl., 35 (2019), 084005. https://doi.org/10.1088/1361-6420/ab10cb doi: 10.1088/1361-6420/ab10cb
    [27] F. Hettlich, The domain derivative of time-harmonic electromagnetic waves at interfaces, Math. Method. Appl. Sci., 35 (2012), 1681–1689. https://doi.org/10.1002/mma.2548 doi: 10.1002/mma.2548
    [28] K. Hirakawa, Denki rikigaku, (Japanese), Tokyo: Baifukan, 1973.
    [29] S. Jimbo, Hadamard variation for electromagnetic frequencies, In: Geometric properties for parabolic and elliptic PDE's, Milan: Springer, 2013,179–199. https://doi.org/10.1007/978-88-470-2841-8_12
    [30] A. Kirsch, F. Hettlich, The mathematical theory of time-harmonic Maxwell's equations, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-11086-8
    [31] G. Kristensson, I. G. Stratis, N. Wellander, A. N. Yannacopoulos, The exterior Calderón operator for non-spherical objects, SN Partial Differ. Equ. Appl., 1 (2020), 6. https://doi.org/10.1007/s42985-019-0005-x doi: 10.1007/s42985-019-0005-x
    [32] P. D. Lamberti, I. G. Stratis, On an interior Calderón operator and a related Steklov eigenproblem for Maxwell's equations, SIAM J. Math. Anal., 52 (2020), 4140–4160. https://doi.org/10.1137/19M1251370 doi: 10.1137/19M1251370
    [33] P. D. Lamberti, M. Zaccaron, Shape sensitivity analysis for electromagnetic cavities, Math. Method. Appl. Sci., 44 (2021), 10477–10500. https://doi.org/10.1002/mma.7423 doi: 10.1002/mma.7423
    [34] V. G. Maz'ya, T. O. Shaposhnikova, Theory of Sobolev multipliers, Berlin: Springer-Verlag, 2009. https://doi.org/10.1007/978-3-540-69492-2
    [35] P. Monk, Finite element methods for Maxwell's equations, New York: Oxford University Press, 2003. https://doi.org/10.1093/acprof:oso/9780198508885.001.0001
    [36] J. C. Nédeléc, Acoustic and electromagnetic equations, New York: Springer-Verlag, 2001. https://doi.org/10.1007/978-1-4757-4393-7
    [37] D. Pauly, On the Maxwell constants in 3D, Math. Method. Appl. Sci., 40 (2017), 435–447. https://doi.org/10.1002/mma.3324 doi: 10.1002/mma.3324
    [38] A. Prokhorov, N. Filonov, Regularity of electromagnetic fields in convex domains, J. Math. Sci., 210 (2015), 793–813. https://doi.org/10.1007/s10958-015-2591-2 doi: 10.1007/s10958-015-2591-2
    [39] G. F. Roach, I. G. Stratis, A. N. Yannacopoulos, Mathematical analysis of deterministic and stochastic problems in complex media electromagnetics, Princeton, NJ: Princeton University Press, 2012. https://doi.org/10.23943/princeton/9780691142173.001.0001
    [40] G. M. Vainikko, Regular convergence of operators and the approximate solution of equations, J. Math. Sci., 15 (1981), 675–705. https://doi.org/10.1007/BF01377042 doi: 10.1007/BF01377042
    [41] C. Weber, Regularity theorems for Maxwell's equations, Math. Method. Appl. Sci., 3 (1981), 523–536. https://doi.org/10.1002/mma.1670030137 doi: 10.1002/mma.1670030137
    [42] Ch. Weber, A local compactness theorem for Maxwell's equations, Math. Method. Appl. Sci., 2 (1980), 12–25. https://doi.org/10.1002/mma.1670020103 doi: 10.1002/mma.1670020103
    [43] H. M. Yin, An eigenvalue problem for curlcurl operators, Can. Appl. Math. Q., 20 (2012), 421–434.
    [44] Z. Zhang, Comparison results for eigenvalues of curl curl operator and Stokes operator, Z. Angew. Math. Phys., 69 (2018), 104. https://doi.org/10.1007/s00033-018-0997-7 doi: 10.1007/s00033-018-0997-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1865) PDF downloads(165) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog