Research article Special Issues

Homoenergetic solutions of the Boltzmann equation: the case of simple-shear deformations

  • Received: 20 December 2021 Revised: 05 February 2022 Accepted: 05 February 2022 Published: 22 March 2022
  • In these notes we review some recent results on the homoenergetic solutions for the Boltzmann equation obtained in [4,20,21,22]. These solutions are a particular class of non-equilibrium solutions of the Boltzmann equation which are useful to describe the dynamics of Boltzmann gases under shear, expansion or compression. Therefore, they do not behave asymptotically for long times as Maxwellian distributions, at least for all the choices of the collision kernels, and their behavior strongly depends on the homogeneity of the collision kernel and on the particular form of the hyperbolic terms which describe the deformation taking plance in the gas. We consider here the case of simple shear deformation and present different possible long-time asymptotics of these solutions. We discuss the current knowledge about the long-time behaviour of the homoenergetic solutions as well as some conjectures and open problems.

    Citation: Alessia Nota, Juan J. L. Velázquez. Homoenergetic solutions of the Boltzmann equation: the case of simple-shear deformations[J]. Mathematics in Engineering, 2023, 5(1): 1-25. doi: 10.3934/mine.2023019

    Related Papers:

  • In these notes we review some recent results on the homoenergetic solutions for the Boltzmann equation obtained in [4,20,21,22]. These solutions are a particular class of non-equilibrium solutions of the Boltzmann equation which are useful to describe the dynamics of Boltzmann gases under shear, expansion or compression. Therefore, they do not behave asymptotically for long times as Maxwellian distributions, at least for all the choices of the collision kernels, and their behavior strongly depends on the homogeneity of the collision kernel and on the particular form of the hyperbolic terms which describe the deformation taking plance in the gas. We consider here the case of simple shear deformation and present different possible long-time asymptotics of these solutions. We discuss the current knowledge about the long-time behaviour of the homoenergetic solutions as well as some conjectures and open problems.



    加载中


    [1] A. V. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwellian molecules, (Russian), Dokl. Akad. Nauk. SSSR, 225 (1975), 1041–1044.
    [2] A. V. Bobylev, A class of invariant solutions of the Boltzmann equation, (Russian), Dokl. Akad. Nauk SSSR, 231 (1976), 571–574.
    [3] A. V. Bobylev, G. L. Caraffini, G. Spiga, On group invariant solutions of the Boltzmann equation, J. Math. Phys., 37 (1996), 2787–2795. https://dx.doi.org/10.1063/1.531540 doi: 10.1063/1.531540
    [4] A. Bobylev, A. Nota, J. J. L. Velázquez, Self-similar asymptotics for a modified Maxwell-Boltzmann equation in systems subject to deformations, Commun. Math. Phys., 380 (2020), 409–448. https://dx.doi.org/10.1007/s00220-020-03858-2 doi: 10.1007/s00220-020-03858-2
    [5] C. Cercignani, Mathematical methods in Kinetic theory, Boston, MA: Springer, 1969. https://dx.doi.org/10.1007/978-1-4899-5409-1
    [6] C. Cercignani, Existence of homoenergetic affine flows for the Boltzmann equation, Arch. Rational Mech. Anal., 105 (1989), 377–387. https://dx.doi.org/10.1007/BF00281497 doi: 10.1007/BF00281497
    [7] C. Cercignani, Shear flow of a granular material, J. Stat. Phys., 102 (2001), 1407–1415. https://dx.doi.org/10.1023/A:1004804815471 doi: 10.1023/A:1004804815471
    [8] C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, Berlin: Springer, 1994. https://dx.doi.org/10.1007/978-1-4419-8524-8
    [9] K. Dayal, R. D. James, Nonequilibrium molecular dynamics for bulk materials and nanostructures, J. Mech. Phys. Solids, 58 (2010), 145–163. https://dx.doi.org/10.1016/j.jmps.2009.10.008 doi: 10.1016/j.jmps.2009.10.008
    [10] K. Dayal, R. D. James, Design of viscometers corresponding to a universal molecular simulation method, J. Fluid Mech., 691 (2012), 461–486. https://dx.doi.org/10.1017/jfm.2011.483 doi: 10.1017/jfm.2011.483
    [11] M. Escobedo, S. Mischler, M. Rodriguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré (C) Anal. Non Linéaire, 22 (2005), 99–125. https://dx.doi.org/10.1016/j.anihpc.2004.06.001 doi: 10.1016/j.anihpc.2004.06.001
    [12] M. Escobedo, J. J. L. Velázquez, On the theory of weak turbulence for the nonlinear Schrödinger equation, Memoirs of the American Mathematical Society, 238 (2015), 1124. https://dx.doi.org/10.1090/memo/1124 doi: 10.1090/memo/1124
    [13] M. A. Ferreira, J. Lukkarinen, A. Nota, J. J. L. Velázquez, Stationary non-equilibrium solutions for coagulation systems, Arch. Rational Mech. Anal., 240 (2021), 809–875. https://doi.org/10.1007/s00205-021-01623-w doi: 10.1007/s00205-021-01623-w
    [14] V. S. Galkin, On a class of solutions of Grad's moment equation, Journal of Applied Mathematics and Mechanics, 22 (1958), 532–536. https://dx.doi.org/10.1016/0021-8928(58)90067-4 doi: 10.1016/0021-8928(58)90067-4
    [15] V. S. Galkin, One-dimensional unsteady solution of the equation for the kinetic moments of a monatomic gas, Journal of Applied Mathematics and Mechanics 28 (1964), 336–229. https://dx.doi.org/10.1016/0021-8928(64)90155-8 doi: 10.1016/0021-8928(64)90155-8
    [16] V. S. Galkin, Exact solutions of the kinetic-moment equations of a mixture of monatomic gases, Fluid Dyn., 1 (1966), 29–34. https://dx.doi.org/10.1007/BF01022146 doi: 10.1007/BF01022146
    [17] I. M. Gamba, V. Panferov, C. Villani, On the Boltzmann equation for diffusively excited granular media, Commun. Math. Phys., 246 (2004), 503–541. https://dx.doi.org/10.1007/s00220-004-1051-5 doi: 10.1007/s00220-004-1051-5
    [18] V. Garzó, A. Santos, Kinetic theory of gases in shear flows, Dordrecht: Springer, 2003. https://dx.doi.org/10.1007/978-94-017-0291-1
    [19] R. D. James, Symmetry, invariance and the structure of matter, In: Proceedings of the international congress of mathematicians (ICM 2018), World Scientific Publishing Co. Pte Ltd., 2018, 3967–3993. https://dx.doi.org/10.1142/9789813272880_0208
    [20] R. D. James, A. Nota, J. J. L. Velázquez, Self-similar profiles for homoenergetic solutions of the Boltzmann equation: particle velocity distribution and entropy, Arch. Rational Mech. Anal., 231 (2019), 787–843. https://dx.doi.org/10.1007/s00205-018-1289-2 doi: 10.1007/s00205-018-1289-2
    [21] R. D. James, A. Nota, J. J. L. Velázquez, Long time asymptotics for homoenergetic solutions of the Boltzmann equation: Collision-dominated case, J. Nonlinear Sci., 29 (2019), 1943–1973. https://dx.doi.org/10.1007/s00332-019-09535-6 doi: 10.1007/s00332-019-09535-6
    [22] R. D. James, A. Nota, J. J. L. Velázquez, Long time asymptotics for homoenergetic solutions of the Boltzmann equation. Hyperbolic-dominated case, Nonlinearity, 33 (2020), 3781–3815. https://dx.doi.org/10.1088/1361-6544/ab853f doi: 10.1088/1361-6544/ab853f
    [23] B. Kepka, Self-similar profiles for homoenergetic solutions of the Boltzmann equation for non-cutoff Maxwell molecules, 2021, arXiv: 2103.10744.
    [24] A. Kierkels, J. J. L. Velázquez, On the transfer of energy towards infinity in the theory of weak turbulence for the nonlinear Schrödinger equation, J. Stat. Phys., 159 (2015), 668–712. https://dx.doi.org/10.1007/s10955-015-1194-0 doi: 10.1007/s10955-015-1194-0
    [25] B. Niethammer, J. J. L. Velázquez, Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels, Commun. Math. Phys., 318 (2013), 505–532. https://dx.doi.org/10.1007/s00220-012-1553-5 doi: 10.1007/s00220-012-1553-5
    [26] B. Niethammer, A. Nota, S. Throm, J. J. L. Velázquez, Self-similar asymptotic behavior for the solutions of a linear coagulation equation, J. Differ. Equations, 266 (2019), 653–715. https://dx.doi.org/10.1016/j.jde.2018.07.059 doi: 10.1016/j.jde.2018.07.059
    [27] B. Niethammer, S. Throm, J. J. L. Velázquez, Self-similar solutions with fat tails for Smoluchowski's coagulation equation with singular kernels, Ann. Inst. Henri Poincaré (C) Nonlinear Analysis, 33 (2016), 1223–1257. http://dx.doi.org/10.1016/J.ANIHPC.2015.04.002 doi: 10.1016/J.ANIHPC.2015.04.002
    [28] A. A. Nikol'skii, On a general class of uniform motions of continuous media and rarefied gas, Soviet Engineering Journal, 5 (1965), 757–760.
    [29] A. A. Nikol'skii, Three-dimensional homogeneous expansion-contraction of a rarefied gas with power-law interaction functions, (Russian), Dokl. Akad. Nauk SSSR, 151 (1963), 522–524.
    [30] C. Truesdell, R. G. Muncaster, Fundamentals of Maxwell's kinetic theory of a simple monatomic gas, New York-London: Academic Press, 1980.
    [31] C. Villani, A review of mathematical topics in collisional kinetic theory, In: Hand-book of mathematical fluid dynamics, Amsterdam: North-Holland, 2002, 71–305. http://dx.doi.org/10.1016/S1874-5792(02)80004-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2082) PDF downloads(122) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog