In these notes we review some recent results on the homoenergetic solutions for the Boltzmann equation obtained in [
Citation: Alessia Nota, Juan J. L. Velázquez. Homoenergetic solutions of the Boltzmann equation: the case of simple-shear deformations[J]. Mathematics in Engineering, 2023, 5(1): 1-25. doi: 10.3934/mine.2023019
In these notes we review some recent results on the homoenergetic solutions for the Boltzmann equation obtained in [
[1] | A. V. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwellian molecules, (Russian), Dokl. Akad. Nauk. SSSR, 225 (1975), 1041–1044. |
[2] | A. V. Bobylev, A class of invariant solutions of the Boltzmann equation, (Russian), Dokl. Akad. Nauk SSSR, 231 (1976), 571–574. |
[3] | A. V. Bobylev, G. L. Caraffini, G. Spiga, On group invariant solutions of the Boltzmann equation, J. Math. Phys., 37 (1996), 2787–2795. https://dx.doi.org/10.1063/1.531540 doi: 10.1063/1.531540 |
[4] | A. Bobylev, A. Nota, J. J. L. Velázquez, Self-similar asymptotics for a modified Maxwell-Boltzmann equation in systems subject to deformations, Commun. Math. Phys., 380 (2020), 409–448. https://dx.doi.org/10.1007/s00220-020-03858-2 doi: 10.1007/s00220-020-03858-2 |
[5] | C. Cercignani, Mathematical methods in Kinetic theory, Boston, MA: Springer, 1969. https://dx.doi.org/10.1007/978-1-4899-5409-1 |
[6] | C. Cercignani, Existence of homoenergetic affine flows for the Boltzmann equation, Arch. Rational Mech. Anal., 105 (1989), 377–387. https://dx.doi.org/10.1007/BF00281497 doi: 10.1007/BF00281497 |
[7] | C. Cercignani, Shear flow of a granular material, J. Stat. Phys., 102 (2001), 1407–1415. https://dx.doi.org/10.1023/A:1004804815471 doi: 10.1023/A:1004804815471 |
[8] | C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, Berlin: Springer, 1994. https://dx.doi.org/10.1007/978-1-4419-8524-8 |
[9] | K. Dayal, R. D. James, Nonequilibrium molecular dynamics for bulk materials and nanostructures, J. Mech. Phys. Solids, 58 (2010), 145–163. https://dx.doi.org/10.1016/j.jmps.2009.10.008 doi: 10.1016/j.jmps.2009.10.008 |
[10] | K. Dayal, R. D. James, Design of viscometers corresponding to a universal molecular simulation method, J. Fluid Mech., 691 (2012), 461–486. https://dx.doi.org/10.1017/jfm.2011.483 doi: 10.1017/jfm.2011.483 |
[11] | M. Escobedo, S. Mischler, M. Rodriguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré (C) Anal. Non Linéaire, 22 (2005), 99–125. https://dx.doi.org/10.1016/j.anihpc.2004.06.001 doi: 10.1016/j.anihpc.2004.06.001 |
[12] | M. Escobedo, J. J. L. Velázquez, On the theory of weak turbulence for the nonlinear Schrödinger equation, Memoirs of the American Mathematical Society, 238 (2015), 1124. https://dx.doi.org/10.1090/memo/1124 doi: 10.1090/memo/1124 |
[13] | M. A. Ferreira, J. Lukkarinen, A. Nota, J. J. L. Velázquez, Stationary non-equilibrium solutions for coagulation systems, Arch. Rational Mech. Anal., 240 (2021), 809–875. https://doi.org/10.1007/s00205-021-01623-w doi: 10.1007/s00205-021-01623-w |
[14] | V. S. Galkin, On a class of solutions of Grad's moment equation, Journal of Applied Mathematics and Mechanics, 22 (1958), 532–536. https://dx.doi.org/10.1016/0021-8928(58)90067-4 doi: 10.1016/0021-8928(58)90067-4 |
[15] | V. S. Galkin, One-dimensional unsteady solution of the equation for the kinetic moments of a monatomic gas, Journal of Applied Mathematics and Mechanics 28 (1964), 336–229. https://dx.doi.org/10.1016/0021-8928(64)90155-8 doi: 10.1016/0021-8928(64)90155-8 |
[16] | V. S. Galkin, Exact solutions of the kinetic-moment equations of a mixture of monatomic gases, Fluid Dyn., 1 (1966), 29–34. https://dx.doi.org/10.1007/BF01022146 doi: 10.1007/BF01022146 |
[17] | I. M. Gamba, V. Panferov, C. Villani, On the Boltzmann equation for diffusively excited granular media, Commun. Math. Phys., 246 (2004), 503–541. https://dx.doi.org/10.1007/s00220-004-1051-5 doi: 10.1007/s00220-004-1051-5 |
[18] | V. Garzó, A. Santos, Kinetic theory of gases in shear flows, Dordrecht: Springer, 2003. https://dx.doi.org/10.1007/978-94-017-0291-1 |
[19] | R. D. James, Symmetry, invariance and the structure of matter, In: Proceedings of the international congress of mathematicians (ICM 2018), World Scientific Publishing Co. Pte Ltd., 2018, 3967–3993. https://dx.doi.org/10.1142/9789813272880_0208 |
[20] | R. D. James, A. Nota, J. J. L. Velázquez, Self-similar profiles for homoenergetic solutions of the Boltzmann equation: particle velocity distribution and entropy, Arch. Rational Mech. Anal., 231 (2019), 787–843. https://dx.doi.org/10.1007/s00205-018-1289-2 doi: 10.1007/s00205-018-1289-2 |
[21] | R. D. James, A. Nota, J. J. L. Velázquez, Long time asymptotics for homoenergetic solutions of the Boltzmann equation: Collision-dominated case, J. Nonlinear Sci., 29 (2019), 1943–1973. https://dx.doi.org/10.1007/s00332-019-09535-6 doi: 10.1007/s00332-019-09535-6 |
[22] | R. D. James, A. Nota, J. J. L. Velázquez, Long time asymptotics for homoenergetic solutions of the Boltzmann equation. Hyperbolic-dominated case, Nonlinearity, 33 (2020), 3781–3815. https://dx.doi.org/10.1088/1361-6544/ab853f doi: 10.1088/1361-6544/ab853f |
[23] | B. Kepka, Self-similar profiles for homoenergetic solutions of the Boltzmann equation for non-cutoff Maxwell molecules, 2021, arXiv: 2103.10744. |
[24] | A. Kierkels, J. J. L. Velázquez, On the transfer of energy towards infinity in the theory of weak turbulence for the nonlinear Schrödinger equation, J. Stat. Phys., 159 (2015), 668–712. https://dx.doi.org/10.1007/s10955-015-1194-0 doi: 10.1007/s10955-015-1194-0 |
[25] | B. Niethammer, J. J. L. Velázquez, Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels, Commun. Math. Phys., 318 (2013), 505–532. https://dx.doi.org/10.1007/s00220-012-1553-5 doi: 10.1007/s00220-012-1553-5 |
[26] | B. Niethammer, A. Nota, S. Throm, J. J. L. Velázquez, Self-similar asymptotic behavior for the solutions of a linear coagulation equation, J. Differ. Equations, 266 (2019), 653–715. https://dx.doi.org/10.1016/j.jde.2018.07.059 doi: 10.1016/j.jde.2018.07.059 |
[27] | B. Niethammer, S. Throm, J. J. L. Velázquez, Self-similar solutions with fat tails for Smoluchowski's coagulation equation with singular kernels, Ann. Inst. Henri Poincaré (C) Nonlinear Analysis, 33 (2016), 1223–1257. http://dx.doi.org/10.1016/J.ANIHPC.2015.04.002 doi: 10.1016/J.ANIHPC.2015.04.002 |
[28] | A. A. Nikol'skii, On a general class of uniform motions of continuous media and rarefied gas, Soviet Engineering Journal, 5 (1965), 757–760. |
[29] | A. A. Nikol'skii, Three-dimensional homogeneous expansion-contraction of a rarefied gas with power-law interaction functions, (Russian), Dokl. Akad. Nauk SSSR, 151 (1963), 522–524. |
[30] | C. Truesdell, R. G. Muncaster, Fundamentals of Maxwell's kinetic theory of a simple monatomic gas, New York-London: Academic Press, 1980. |
[31] | C. Villani, A review of mathematical topics in collisional kinetic theory, In: Hand-book of mathematical fluid dynamics, Amsterdam: North-Holland, 2002, 71–305. http://dx.doi.org/10.1016/S1874-5792(02)80004-0 |