We consider positive solutions to semilinear elliptic problems with Hardy potential and a first order term in bounded smooth domain $ \Omega $ with $ 0\in \overline \Omega $. We deduce symmetry and monotonicity properties of the solutions via the moving plane procedure under suitable assumptions on the nonlinearity.
Citation: Luigi Montoro, Berardino Sciunzi. Qualitative properties of solutions to the Dirichlet problem for a Laplace equation involving the Hardy potential with possibly boundary singularity[J]. Mathematics in Engineering, 2023, 5(1): 1-16. doi: 10.3934/mine.2023017
We consider positive solutions to semilinear elliptic problems with Hardy potential and a first order term in bounded smooth domain $ \Omega $ with $ 0\in \overline \Omega $. We deduce symmetry and monotonicity properties of the solutions via the moving plane procedure under suitable assumptions on the nonlinearity.
[1] | A. D. Alexandrov, A characteristic property of the spheres, Annali di Matematica, 58 (1962), 303–315. http://dx.doi.org/10.1007/BF02413056 doi: 10.1007/BF02413056 |
[2] | B. Abdellaoui, L. Boccardo, I. Peral, A. Primo, Quasilinear elliptic equations with natural growth, Differ. Integral Equ., 20, (2007), 1005–1020. |
[3] | B. Abdellaoui, I. Peral, Some results for semilinear elliptic equations with critical potential, Proc. Roy. Soc. Edinb. A, 132 (2002), 2002, 1–24. http://dx.doi.org/10.1017/S0308210500001505 doi: 10.1017/S0308210500001505 |
[4] | B. Abdellaoui, I. Peral, A. Primo, Elliptic problems with a Hardy potential and critical growth in the gradient: non-resonance and blow-up results, J. Differ. Equations, 239 (2007), 386–416. http://dx.doi.org/10.1016/j.jde.2007.05.010 doi: 10.1016/j.jde.2007.05.010 |
[5] | B. Abdellaoui, I. Peral, A. Primo, Breaking of resonance and regularizing effect of a first order quasi-linear term in some elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 969–985. http://dx.doi.org/10.1016/j.anihpc.2007.06.003 doi: 10.1016/j.anihpc.2007.06.003 |
[6] | B. Abdellaoui, I. Peral, A. Primo, Influence of the Hardy potential in a semilinear heat equation, Proc. Roy. Soc. Edinb. A, 139 (2009), 897–926. http://dx.doi.org/10.1017/S0308210508000152 doi: 10.1017/S0308210508000152 |
[7] | B. Abdellaoui, I. Peral, A. Primo, Strong regularizing effect of a gradient term in the heat equation with the Hardy potential, J. Funct. Anal., 258 (2010), 1247–1272. http://dx.doi.org/10.1016/j.jfa.2009.11.008 doi: 10.1016/j.jfa.2009.11.008 |
[8] | B. Abdellaoui, I. Peral, A. Primo, Optimal results for parabolic problems arising in some physical models with critical growth in the gradient respect to a Hardy potential, Adv. Math., 225 (2010), 2967–3021. http://dx.doi.org/10.1016/j.aim.2010.04.028 doi: 10.1016/j.aim.2010.04.028 |
[9] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. http://dx.doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |
[10] | B. Barrios, L. Montoro, B. Sciunzi, On the moving plane method for nonlocal problems in bounded domains, JAMA, 135 (2018), 37–57. http://dx.doi.org/10.1007/s11854-018-0031-1 doi: 10.1007/s11854-018-0031-1 |
[11] | H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., 22 (1991), 1–37. http://dx.doi.org/10.1007/BF01244896 doi: 10.1007/BF01244896 |
[12] | L. Boccardo, L. Orsina, I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Contin. Dyn. Syst., 16, (2006), 513–523. http://dx.doi.org/10.3934/dcds.2006.16.513 doi: 10.3934/dcds.2006.16.513 |
[13] | H. Brezis, X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1 (1998), 223–262. |
[14] | A. Canino, L. Montoro, B. Sciunzi, The moving plane method for singular semilinear elliptic problems, Nonlinear Anal., 156 (2017), 61–69. http://dx.doi.org/10.1016/j.na.2017.02.009 doi: 10.1016/j.na.2017.02.009 |
[15] | A. Canino, F. Esposito, B. Sciunzi, On the Höpf boundary lemma for singular semilinear elliptic equations, J. Differ. Equations, 266 (2019), 5488–5499. http://dx.doi.org/10.1016/j.jde.2018.10.039 doi: 10.1016/j.jde.2018.10.039 |
[16] | C. Cazacu, On Hardy inequalities with singularities on the boundary, C. R. Math., 349 (2011), 273–277. http://dx.doi.org/10.1016/j.crma.2011.02.005 doi: 10.1016/j.crma.2011.02.005 |
[17] | C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results, J. Funct. Anal., 263 (2012), 3741–3783. http://dx.doi.org/10.1016/j.jfa.2012.09.006 doi: 10.1016/j.jfa.2012.09.006 |
[18] | J. Dávila, I. Peral, Nonlinear elliptic problems with a singular weight on the boundary, Calc. Var., 41 (2011), 567–586. http://dx.doi.org/10.1007/s00526-010-0376-5 doi: 10.1007/s00526-010-0376-5 |
[19] | S. Dipierro, L. Montoro, I. Peral, B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var., 55 (2016), 99. http://dx.doi.org/10.1007/s00526-016-1032-5 doi: 10.1007/s00526-016-1032-5 |
[20] | H. Egnell, Positive solutions of semilinear equations in cones, Trans. Amer. Math. Soc., 330 (1992), 191–201. http://dx.doi.org/10.1090/S0002-9947-1992-1034662-5 doi: 10.1090/S0002-9947-1992-1034662-5 |
[21] | F. Esposito, Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearity, Discrete Contin. Dyn. Syst., 40 (2020), 549–577. http://dx.doi.org/10.3934/dcds.2020022 doi: 10.3934/dcds.2020022 |
[22] | F. Esposito, A. Farina, B. Sciunzi, Qualitative properties of singular solutions to semilinear elliptic problems, J. Differ. Equations, 265 (2018), 1962–1983. http://dx.doi.org/10.1016/j.jde.2018.04.030 doi: 10.1016/j.jde.2018.04.030 |
[23] | F. Esposito, L. Montoro, B. Sciunzi, Monotonicity and symmetry of singular solutions to quasilinear problems, J. Math. Pure Appl., 126 (2019), 214–231. http://dx.doi.org/10.1016/j.matpur.2018.09.005 doi: 10.1016/j.matpur.2018.09.005 |
[24] | F. Esposito, B. Sciunzi, On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications, J. Funct. Anal., 278 (2020), 108346. http://dx.doi.org/10.1016/j.jfa.2019.108346 doi: 10.1016/j.jfa.2019.108346 |
[25] | M. M. Fall, R. Musina, Hardy-Poincaré inequalities with boundary singularities, Proc. Roy. Soc. Edinb. A, 142 (2012), 769–786. http://dx.doi.org/10.1017/S0308210510000740 doi: 10.1017/S0308210510000740 |
[26] | B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209–243. http://dx.doi.org/10.1007/BF01221125 doi: 10.1007/BF01221125 |
[27] | N. Ghoussoub, X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 767–793. http://dx.doi.org/10.1016/j.anihpc.2003.07.002 doi: 10.1016/j.anihpc.2003.07.002 |
[28] | N. Ghoussoub, F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities, Geom. Funct. Anal., 16 (2006), 1201–1245. http://dx.doi.org/10.1007/s00039-006-0579-2 doi: 10.1007/s00039-006-0579-2 |
[29] | S. Merchán, L. Montoro, Remarks on the existence of solutions to some quasilinear elliptic problems involving the Hardy-Leray potential, Annali di Matematica, 193 (2014), 609–632. http://dx.doi.org/10.1007/s10231-012-0293-7 doi: 10.1007/s10231-012-0293-7 |
[30] | L. Montoro, Harnack inequalities and qualitative properties for some quasilinear elliptic equations, Nonlinear Differ. Equ. Appl., 26 (2019), 45. http://dx.doi.org/10.1007/s00030-019-0591-5 doi: 10.1007/s00030-019-0591-5 |
[31] | S. Merchán, L. Montoro, I. Peral, B. Sciunzi, Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy-Leray potential, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 1–22. http://dx.doi.org/10.1016/j.anihpc.2013.01.003 doi: 10.1016/j.anihpc.2013.01.003 |
[32] | L. Montoro, F. Punzo, B. Sciunzi, Qualitative properties of singular solutions to nonlocal problems, Annali di Matematica, 197 (2018), 941–964. http://dx.doi.org/10.1007/s10231-017-0710-z doi: 10.1007/s10231-017-0710-z |
[33] | B. Sciunzi, On the moving Plane Method for singular solutions to semilinear elliptic equations, J. Math. Pure. Appl., 108 (2017), 111–123. http://dx.doi.org/10.1016/j.matpur.2016.10.012 doi: 10.1016/j.matpur.2016.10.012 |
[34] | J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. http://dx.doi.org/10.1007/BF00250468 doi: 10.1007/BF00250468 |