Citation: Huyuan Chen, Laurent Véron. Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data[J]. Mathematics in Engineering, 2019, 1(3): 391-418. doi: 10.3934/mine.2019.3.391
[1] | Baras P, Pierre M (1984) Singularité séliminables pour des équations semi linéaires. Ann Inst Fourier Grenoble 34: 185–206. doi: 10.5802/aif.956 |
[2] | Bénilan P, Brezis H (2003) Nonlinear problems related to the Thomas-Fermi equation. J Evol Equ 3: 673–770. |
[3] | Bidaut-Véron M, Véron L (1991) Nonlinear elliptic equations on complete Riemannian manifolds and asymptotics of Emden equations. Invent Math 106: 489–539. doi: 10.1007/BF01243922 |
[4] | Birnbaum Z, Orlicz W (1931) über die Verallgemeinerung des Begriffes der zueinander Konjugierten Potenzen. Stud Math 3: 1–67. doi: 10.4064/sm-3-1-1-67 |
[5] | Boccardo L, Orsina L, Peral I (2006) A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential. Discrete Cont Dyn-A 16: 513–523. doi: 10.3934/dcds.2006.16.513 |
[6] | Brezis H (1980) Some variational problems of the Thomas-Fermi type. Variational inequalities and complementarity problems. Proc Internat School, Erice, Wiley, Chichester 53–73. |
[7] | Brezis H, Dupaigne L, Tesei A (2005) On a semilinear elliptic equation with inverse-square potential. Sel Math 11: 1–7. doi: 10.1007/s00029-005-0003-z |
[8] | Brezis H, Marcus M, Ponce A (2007) Nonlinear elliptic equations with measures revisited. Ann Math Stud 163: 55–109. |
[9] | Brezis H, Vázquez J (1997) Blow-up solutions of some nonlinear elliptic problems. Rev Mat Complut 10: 443–469. |
[10] | Brezis H, Véron L (1980) Removable singularities of some nonlinear elliptic equations. Arch Ration Mech Anal 75: 1–6. doi: 10.1007/BF00284616 |
[11] | Chen H, Véron L (2014) Semilinear fractional elliptic equations with gradient nonlinearity involving measures. J Funct Anal 266: 5467–5492. doi: 10.1016/j.jfa.2013.11.009 |
[12] | Chen H, Quaas A, Zhou F (2017) On nonhomogeneous elliptic equations with the Hardy-Leray potentials. arXiv:1705.08047. |
[13] | Chen H, Zhou F (2018) Isolated singularities for elliptic equations with inverse square potential and source nonlinearity. Discrete Cont Dyn-A 38: 2983–3002. |
[14] | Chen H, Alhomedan S, Hajaiej H, et al. (2017) Fundamental solutions for Schrödinger operators with general inverse square potentials. Appl Anal 1–24. |
[15] | Cignoli R, Cottlar M (1974) An Introduction to Functional Analysis. Amsterdam: North-Holland. |
[16] | Cîrstea F (2014) A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials.Mem Am Math Soc 227: No. 1068. |
[17] | Cîrstea F, Du Y (2007) Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity. J Funct Anal 250: 317–346. doi: 10.1016/j.jfa.2007.05.005 |
[18] | Dupaigne L (2002) A nonlinear elliptic PDE with the inverse square potential. J Anal Math 86: 359-398. doi: 10.1007/BF02786656 |
[19] | Folland G, Sitaram A (1997) The uncertainty principle: A mathematical survey. J Fourier Anal Appl 3: 207–238. doi: 10.1007/BF02649110 |
[20] | Frank R (2011) Sobolev inequalities and uncertainty principles in mathematical physics. part I, unpublished notes of a course given at the LMU, Munich. Available From: http://www.math.caltech.edu/ rlfrank/sobweb1.pdf. |
[21] | Gilbarg D, Trudinger N (1983) Elliptic Partial Differential Equations of Second Order. Springer-Verlag, 224. |
[22] | Guerch B, Véron L (1991) Local properties of stationary solutions of some nonlinear singular Schrödinger equations. Rev Mat Iberoamericana 7: 65–114. |
[23] | Krasnosel'skii M, Rutickii Y (1961) Convex Functions and Orlicz Spaces. P. Noordhoff, Groningen. |
[24] | Meyers N (1970) A theory of capacities for potentials of functions in Lebesgue classes. Math Scand 26: 255–292. doi: 10.7146/math.scand.a-10981 |
[25] | Triebel H (1978) Interpolation Theory, Function Spaces, Differential Operators. North-Holland Pub Co. |
[26] | Vàzquez J (1983) On a semilinear equation in RN involving bounded measures. Proc R Soc Edinburgh Sect A: Math 95: 181–202. doi: 10.1017/S0308210500012907 |
[27] | Véron L (1981) Singular solutions of some nonlinear elliptic equations. Nonlinear Anal Theory Methods Appl 5: 225–242. doi: 10.1016/0362-546X(81)90028-6 |
[28] | Véron L (1986) Weak and strong singularities of nonlinear ellptic equations. Proc Symp Pure Math 45: 477–495. |
[29] | Véron L (1996) Singularities of Solutions of Second Order Quasilinear Equations. Pitman Research Notes in Mathematics. Series, 353. |
[30] | Véron L (2004) Elliptic equations involving measures, In: Chipot, M., Quittner, P., Editors,Handbook of Differential Equations: Stationary Partial Differential equations. Amsterdam: North-Holland, Vol I, 593–712. |
[31] | Véron L (2013) Existence and stability of solutions of general semilinear elliptic equations with measure data. Adv Nonlinear Stud 13: 447–460. |
[32] | Véron L (2017) Local and Global Aspects of Quasilinear Degenerate Elliptic Equations. Quasilinear Elliptic Singular Problems. World Scientific Publishing Co Pte Ltd, Hackensack, NJ, 457. |