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Abstract: We study existence and stability of solutions of

−∆u +
µ

|x|2
u + g(u) = ν in Ω, u = 0 on ∂Ω,

where Ω is a bounded, smooth domain of RN , N ≥ 2, containing the origin, µ ≥ − (N−2)2

4 is a constant,
g is a nondecreasing function satisfying some integral growth assumption and the weak ∆2-condition,
and ν is a Radon measure in Ω. We show that the situation differs depending on whether the measure is
diffuse or concentrated at the origin. When g is a power function, we introduce a capacity framework
to find necessary and sufficient conditions for solvability.
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1. Introduction

Schrödinger operators with singular potentials under the form

u 7→ H(u) := −∆u + V(x)u, x ∈ R3 (1.1)

are at the core of the description of many aspects of nuclear physics. The associated energy, the sum
of the momentum energy and the potential energy, endows the form

H(u) =
1
2

∫
R3

(
|∇u|2 + V(x)u2

)
dx. (1.2)

In classical physics V(x) = −κ|x|−1 (κ > 0) is the Coulombian potential and H is not bounded from
below and there is no ground state. In quantum physics there are reasons arising from its mathematical
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formulation which leads, at least in the case of the hydrogen atom, to V(x) = −κ|x|−2 (κ > 0) and H
is bounded from below provided κ ≥ − 1

4 . Furthermore, a form of the uncertainty principle is Hardy’s
inequality ∫

R3
|∇u|2dx ≥

1
4

∫
R3

u2

|x|2
dx for all u ∈ C∞0 (R3). (1.3)

The meaning of this inequality is that if u is localized close to a point 0 (i.e., the right side term is
large), then its momentum has to be large (i.e., the left side term is large), and the power |x|−2 is the
consequence of a dimensional analysis (see [19, 20]). Such potential is often called a Leray-Hardy
potential. The study of the mathematical properties of generalisations of the operator H in particular
in N-dimensional domains generated hundred of publications in the last thirty years. In this article we
define the Schrödinger operator L in RN by

Lµ := −∆ +
µ

|x|2
, (1.4)

where µ is a real number satisfying

µ ≥ µ0 := −
(N − 2)2

4
. (1.5)

Note that (N−2)2

4 achieves the value 1
4 when N = 3. Let Ω ⊂ RN (N ≥ 2) be a bounded, smooth domain

containing the origin and g : R → R be a continuous nondecreasing function such that g(0) ≥ 0, we
are interested in the nonlinear Poisson equation Lµu + g(u) = ν in Ω,

u = 0 on ∂Ω,
(1.6)

where ν is a Radon measure in Ω. The reason for a measure framework is that the problem is essentially
trivial if ν ∈ L2(Ω), more complicated if ν ∈ L1(Ω) and very rich if ν is a measure.

When µ = 0, problem (1.6) reduces to −∆u + g(u) = ν in Ω,

u = 0 on ∂Ω,
(1.7)

which has been extensively studied by numerous authors in the last 30 years. A fundamental
contribution is due to Brezis [6], Benilan and Brezis [2], where ν is bounded and the function
g : R→ R is nondecreasing, positive on (0,+∞) and satisfies the subcritical assumption in dimension
N ≥ 3: ∫ +∞

1
(g(s) − g(−s))s−1− N

N−2 ds < +∞. (1.8)

They obtained the existence, uniqueness and stability of weak solutions for the problem. When N = 2,
Vàzquez [26] introduced the exponential orders of growth of g defined by

β+(g) = inf
{

b > 0 :
∫ ∞

1
g (t) e−btdt < ∞

}
,

β−(g) = sup
{

b < 0 :
∫ −1

−∞

g (t) ebtdt > −∞
}
,

(1.9)
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and proved that if ν is any bounded measure in Ω with Lebesgue decomposition

ν = νr +
∑
j∈N

α jδa j ,

where νr is part of ν with no atom, a j ∈ Ω and α j ∈ R satisfies

4π
β−(g)

≤ α j ≤
4π
β+(g)

, (1.10)

then (1.7) admits a (unique) weak solution. Later on, Baras and Pierre [1] studied (1.7) when g(u) =

|u|p−1u for p > 1 and they discovered that if p ≥ N
N−2 the problem is well posed if and only if ν is

absolutely continuous with respect to the Bessel capacity c2,p′ with p′ =
p

p−1 .

It is a well established fact that, by the improved Hardy inequality in [9] and Lax-Milgram Theorem,
the non-homogeneous problem

Lµu = f in Ω, u = 0 on ∂Ω, (1.11)

with f ∈ L2(Ω), has a unique solution in H1
0(Ω) if µ > µ0, or in a weaker space H(Ω) if µ = µ0, see [18].

When f < L2(Ω), a natural question is to find sharp conditions on f for the existence or nonexistence of
solutions of (1.11) and the difficulty comes from the fact that the Hardy term |x|−2u may not be locally
integrable in Ω. An attempt done by Dupaigne in [18] is to consider problem (1.11) when µ ∈ [µ0, 0)
and N ≥ 3 in the sense of distributions∫

Ω

uLµξ dx =

∫
Ω

f ξ dx, ∀ ξ ∈ C∞c (Ω). (1.12)

The corresponding semi-linear problem is studied in [5] with this approach.

We adopt here a different point of view in using a different notion of weak solutions. It is known
that the equation Lµu = 0 in RN \ {0} has two distinct radial solutions:

Φµ(x) =

 |x|τ−(µ) if µ > µ0,

|x|−
N−2

2 ln
(

1
|x|

)
if µ = µ0,

and Γµ(x) = |x|τ+(µ),

with

τ−(µ) = −
N − 2

2
−

√
(N − 2)2

4
+ µ and τ+(µ) = −

N − 2
2

+

√
(N − 2)2

4
+ µ.

In the remaining of the paper and when there is no ambiguity, we put τ+ = τ+(µ), τ0
+ = τ+(µ0),

τ− = τ−(µ) and τ0
− = τ−(µ0). It is noticeable that identity (1.12) cannot be used to express that Φµ is a

fundamental solution, i.e., f = δ0, since Φµ is not locally integrable if µ ≥ 2N. Recently, Chen, Quaas
and Zhou found in [12] that the function Φµ is the fundamental solution in the sense that∫

RN
ΦµL

∗
µξ dγµ(x) = cµξ(0) for all ξ ∈ C1,1

0 (RN), (1.13)

where
dγµ(x) = Γµ(x)dx, L∗µξ = −∆ξ − 2

τ+

|x|2
〈x,∇ξ〉, (1.14)
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and

cµ =

 2
√
µ − µ0 | S N−1 | if µ > µ0,∣∣∣S N−1

∣∣∣ if µ = µ0.
(1.15)

With the power-absorption nonlinearity in Ω∗ = Ω \ {0}, the precise behaviour near 0 of any positive
solution of

Lµu + up = 0 in D′(Ω∗) (1.16)

is given in [22] when p > 1. In this paper it appears a critical exponent

p∗µ = 1 −
2
τ−

(1.17)

with the following properties: if p ≥ p∗µ any solution of (1.16) can be extended by continuity as a
solution in D′(Ω). If 1 < p < p∗µ any positive solution of (1.16) either satisfies

lim
x→0
|x|

2
p−1 u(x) = `, (1.18)

where ` = `N,p,µ > 0, or there exists k ≥ 0 such that

lim
x→0

u(x)
Φµ(x)

= k, (1.19)

and in that case u ∈ Lp
loc(Ω; dγµ). In view of [12], it implies that u satisfies∫

RN

(
uL∗µξ + upξ

)
dγµ(x) = cµkξ(0), ∀ ξ ∈ C1,1

0 (RN). (1.20)

Note the threshold p∗µ and its role is put into light by the existence or non-existence of explicit solutions
of (1.16) under the form x 7→ a|x|b, where necessarily b = − 2

p−1 and a = `. It is also proved in [22] that
when µ > µ0 and g : R→ R+ is a continuous nondecreasing function satisfying∫ ∞

1
(g(s) − g(−s)) s−1−p∗µds < ∞, (1.21)

then for any k > 0 there exists a radial solution of

Lµu + g(u) = 0 in D′(B∗1) (1.22)

satisfying (1.19), where B∗1 := B1(0) \ {0}. When µ = µ0 and N ≥ 3 it is proved in [22] that if there
exists b > 0 such that ∫ 1

0
g
(
−bs−

N−2
N+2 ln s

)
ds < ∞, (1.23)

then there exists a radial solution of (1.22) satisfying (1.19) with γ =
(N+2)b

2 . In fact this condition is
independent of b > 0, by contrast to the case N = 2 and µ = 0 where the introduction of the exponential
order of growth of g is a necessity. Moreover, it is easy to see that u satisfies∫

RN

(
uL∗µξ + g(u)ξ

)
dγµ(x) = cµγξ(0), ∀ξ ∈ C1,1

0 (RN). (1.24)
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In view of these results and identity (1.13), we introduce a definition of weak solutions adapted to
the operator Lµ in a measure framework. Since Γµ is singular at 0 if µ < 0, there is need of defining
specific set of measures and we denote byM(Ω∗; Γµ), the set of Radon measures ν in Ω∗ such that∫

Ω∗
Γµd|ν| := sup

{∫
Ω∗
ζd|ν| : ζ ∈ C0(Ω∗), 0 ≤ ζ ≤ Γµ

}
< ∞. (1.25)

If ν ∈ M+(Ω∗), we define its natural extension, with the same notation since there is no ambiguity, as
a measure in Ω by∫

Ω

ζdν = sup
{∫

Ω∗
ηdν : η ∈ C0(Ω∗) , 0 ≤ η ≤ ζ

}
for all ζ ∈ C0(Ω) , ζ ≥ 0, (1.26)

a definition which is easily extended if ν = ν+ − ν− ∈ M(Ω∗). Since the idea is to use the weight Γµ
in the expression of the weak solution, the expression Γµν has to be defined properly if τ+ < 0. We
denote by M(Ω; Γµ) the set of measures ν on Ω which coincide with the above natural extension of
νbΩ∗∈ M+(Ω∗; Γµ). If ν ∈ M+(Ω; Γµ) we define the measure Γµν in the following way∫

Ω

ζd(Γµν) = sup
{∫

Ω∗
ηΓµdν : η ∈ C0(Ω∗) , 0 ≤ η ≤ ζ

}
for all ζ ∈ C0(Ω) , ζ ≥ 0. (1.27)

If ν = ν+ − ν−, Γµν is defined accordingly. Notice that the Dirac mass at 0 does not belong toM(Ω; Γµ)
although it is a limit of {νn} ⊂ M(Ω; Γµ). We denote by M(Ω; Γµ) the set of measures which can be
written under the form

ν = νbΩ∗+kδ0, (1.28)

where νbΩ∗∈ M(Ω; Γµ) and k ∈ R. Before stating our main theorem we make precise the notion of weak
solution used in this article. We denote Ω

∗

:= Ω \ {0}, ρ(x) = dist(x, ∂Ω) and

Xµ(Ω) =
{
ξ ∈ C0(Ω) ∩C1(Ω

∗

) : |x|L∗µξ ∈ L∞(Ω)
}
. (1.29)

Clearly C1,1
0 (Ω) ⊂ Xµ(Ω).

Definition 1.1. We say that u is a weak solution of (1.6) with ν ∈ M(Ω; Γµ) such that ν = νbΩ∗+kδ0 if
u ∈ L1(Ω, |x|−1dγµ), g(u) ∈ L1(Ω, ρdγµ) and∫

Ω

[
uL∗µξ + g(u)ξ

]
dγµ(x) =

∫
Ω

ξd(Γµν) + kξ(0) for all ξ ∈ Xµ(Ω), (1.30)

where L∗µ is given by (1.13) and cµ is defined in (1.15).

A measure for which problem (1.6) admits a solution is a g-good measure. In the regular case we
prove the following

Theorem A. Let µ ≥ 0 if N = 2, µ ≥ µ0 if N ≥ 3 and g : R→ R be a Hölder continuous nondecreasing
function such that g(r)r ≥ 0 for any r ∈ R. Then for any ν ∈ L1(Ω, dγµ), problem (1.6) has a unique
weak solution uν such that for some c1 > 0,

‖uν‖L1(Ω,|x|−1dγµ) ≤ c1‖ν‖L1(Ω,dγµ).
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Furthermore, if uν′ is the solution of (1.6) with right-hand side ν′ ∈ L1(Ω, dγµ), there holds∫
Ω

[
|uν − uν′ |L∗µξ + |g(uν) − g(uν′)|ξ

]
dγµ(x) ≤

∫
Ω

(ν − ν′)sgn(u − u′)ξdγµ(x), (1.31)

and ∫
Ω

[
(uν − uν′)+L

∗
µξ + (g(uν) − g(uν′))+ξ

]
dγµ(x) ≤

∫
Ω

(ν − ν′)sgn+(u − u′)ξdγµ(x), (1.32)

for all ξ ∈ Xµ(Ω), ξ ≥ 0.

Definition 1.2. A continuous function g : R → R such that rg(r) ≥ 0 for all r ∈ R satisfies the weak
∆2-condition if there exists a positive nondecreasing function t ∈ R 7→ K(t) such that

|g(s + t)| ≤ K(t) (|g(s)| + |g(t)|) for all (s, t) ∈ R × R s.t. st ≥ 0. (1.33)

It satisfies the ∆2-condition if the above function K is constant.

The ∆2-condition has been intruduced in the study of Birnbaum-Orlicz spaces [4, 23] and it is
satisfied by power function r 7→ |r|p−1r, p > 0, but not by exponential functions r 7→ ear. It plays a key
role in the study of semilinear equation with a power type reaction term (see eg., [29, 30]). The new
weak ∆2-condition is more general and it is also satisfied by exponential functions.

Theorem B. Let µ > 0 if N = 2 or µ > µ0 if N ≥ 3 and g : R → R be a nondecreasing continuous
function such that g(r)r ≥ 0 for any r ∈ R. If g satisfies the weak ∆2-condition and∫ ∞

1
(g(s) − g(−s))s−1−min{p∗µ, p∗0}ds < ∞, (1.34)

where p∗µ is given by (1.17), then for any ν ∈ M+(Ω; Γµ) problem (1.6) admits a unique weak solution
uν.

Note that min{p∗µ, p∗0} = p∗µ for µ > 0 and min{p∗µ, p∗0} = p∗0 if µ < 0. Furthermore, the mapping:
ν 7→ uν is increasing. In the case N ≥ 3 and µ = µ0 we have a more precise result.

Theorem C. Assume that N ≥ 3 and g : R → R is a continuous nondecreasing function such that
g(r)r ≥ 0 for any r ∈ R satisfying the weak ∆2-condition and (1.8). Then for any ν = νbΩ∗ + cµkδ0 ∈

M+(Ω; Γµ) problem (1.6) admits a unique weak solution uν.
Furthermore, if νbΩ∗ = 0, condition (1.8) can be replaced by the following weaker one∫ ∞

1
(g(t) − g(−t)) (ln t)

N+2
N−2 t−

2N
N−2 dt < ∞. (1.35)

The optimality of these conditions depends whether the measure is concentrated at 0 or not. When
the measure is of the form kδ0 the condition proved to be optimal in [22] and when it is of the type
kδa with a , 0 optimality is shown in [28]. Normally, the estimates on the Green kernel plays an
essential role for approximating the solution of elliptic problems with absorption and Radon measure
data. However, we have avoided to use the estimates on the Green kernel for Hardy operators which
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are not easily tractable when 0 > µ ≥ µ0, and our main idea is to separate the measure ν∗ inM(Ω; Γµ)
and the Dirac mass at the origin, and then to glue the solutions with above measures respectively. This
technique requires this new weak ∆2-condition.

In the previous result, it is noticeable that if k = 0 (resp. νbΩ∗= 0) only condition (1.8) (resp.
condition (1.35)) is needed. In the two cases the weak ∆2-condition is unnecessary. In the power case
where g(u) = |u|p−1u := gp(u),  Lµu + gp(u) = ν in Ω,

u = 0 on ∂Ω,
(1.36)

the following result follows from Theorem B and C.

Corollary D. Let µ ≥ µ0 if N ≥ 3 and µ > 0 if N = 2. Any nonzero measure ν = νbΩ∗ + cµkδ0 ∈

M+(Ω; Γµ) is gp-good if one of the following holds:

(i) 1 < p < p∗µ in the case νbΩ∗ = 0;

(ii) 1 < p < p∗0 in the case k = 0;

(iii) 1 < p < min
{
p∗µ, p∗0

}
in the case k , 0 and νbΩ∗ , 0.

We remark that p∗µ is the sharp exponent for the existence of (1.36) when νbΩ∗ = 0, while the critical
exponent becomes p∗0 when k = 0 and ν has atom in Ω \ {0}.

The supercritical case of equation (1.36) corresponds to the fact that not all measures are gp-good
and the case where k , 0 is already treated.

Theorem E. Assume that N ≥ 3. Then ν = νbΩ∗ ∈ M(Ω; Γµ) is gp-good if and only if for any ε > 0,

νε = νχ
Bc
ε

is absolutely continuous with respect to the c2,p′-Bessel capacity.

Finally we characterize the compact removable sets in Ω.

Theorem F. Assume that N ≥ 3, p > 1 and K is a compact set of Ω. Then any weak solution of

Lµu + gp(u) = 0 in Ω \ K (1.37)

can be extended a weak solution of the same equation in whole Ω if and only if

(i) c2,p′(K) = 0 if 0 < K;

(ii) p ≥ pµ∗ if K = {0};

(iii) c2,p′(K) = 0 if µ ≥ 0, 0 ∈ K and K \ {0} , ∅;

(iv) c2,p′(K) = 0 and p ≥ p∗µ if µ < 0, 0 ∈ K and K \ {0} , ∅.

The case (i) is already proved in [22, Theorem 1.2]. Notice also that if A , ∅ necessarily c2,p′(A) = 0
holds only if p ≥ p0. Therefore, if µ ≥ 0 there holds p ≥ p∗0 ≥ p∗µ, while if µ < 0, then p0 < p∗µ.

The rest of this paper is organized as follows. In Section 2, we build the framework for weak
solutions of (1.6) involving L1 data. Section 3 is devoted to solve existence and uniqueness of weak
solution of (1.6), where the absorption is subcritical and ν is a related Radon measure. Finally, we deal
with the super critical case in Section 4 by characterized by Bessel Capacity.
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2. L1 data

Throughout this section we assume N ≥ 2 and µ ≥ µ0 and in what follows, we denote by ci with
i ∈ N a generic positive constant. We first recall some classical comparison results for Hardy operator
Lµ. The next lemma is proved in [12, Lemma 2.1], and in [15, Lemma 2.1] if h(s) = sp.

Lemma 2.1. Let G be a bounded domain in RN such that 0 < Ḡ, L : G × [0,+∞) 7→ [0,+∞) be a
continuous function satisfying for any x ∈ G,

h(x, s1) ≥ h(x, s2) if s1 ≥ s2,

and functions u, v ∈ C1,1(G) ∩C(G) satisfy Lµu + h(x, u) ≥ Lµv + h(x, v) in G,

u ≥ v on ∂G,

then
u ≥ v in G.

As an immediate consequence we have

Lemma 2.2. Assume that Ω is a bounded C2 domain containing 0. If L is a continuous function as in
Lemma 2.1 verifying that L(x, 0) = 0 for all x ∈ Ω, and u ∈ C1,1(Ω∗) ∩C(Ω

∗

) satisfies
Lµu + L(x, u) = 0 in Ω∗,

u = 0 on ∂Ω,

lim
x→0

u(x)Φ−1
µ (x) = 0.

(2.1)

Then u = 0.

We recall that if u ∈ L1(Ω, |x|−1dγµ) is a weak solution ofLµ u = f in Ω,

u = 0 on ∂Ω,
(2.2)

in the sense of Definition 1.1, then it satisfies that∫
Ω

uL∗µ(ξ) dγµ(x) =

∫
Ω

f ξ dγµ(x) for all ξ ∈ Xµ(Ω). (2.3)

If u is a weak solution of (2.2), there holds

Lµu = f inD′(Ω∗), (2.4)

and v = Γ−1
µ u verifies

L∗µv = Γ−1
µ f inD′(Ω∗), (2.5)

a fact which is expressed by the commutating formula

ΓµL
∗
µv = Lµ(Γµv). (2.6)

The following form of Kato’s inequality, proved in [12, Proposition 2.1], plays an essential role in
the obtention a priori estimates and uniqueness of weak solution of (1.6).
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Proposition 2.1. If f ∈ L1(Ω, ρdγµ), then there exists a unique weak solution u ∈ L1(Ω, |x|−1dγµ) of
(2.2). Furthermore, for any ξ ∈ Xµ(Ω), ξ ≥ 0, we have∫

Ω

|u|L∗µ(ξ) dγµ(x) ≤
∫

Ω

sign(u) f ξ dγµ(x) (2.7)

and ∫
Ω

u+L
∗
µ(ξ) dγµ(x) ≤

∫
Ω

sign+(u) f ξ dγµ(x). (2.8)

The proof is done if ξ ∈ C1,1
0 (Ω), but it is valid if ξ ∈ Xµ(Ω). The next result is proved in [13, Lemma

2.3].

Lemma 2.3. Assume that µ > µ0 and f ∈ C1(Ω∗) verifies

0 ≤ f (x) ≤ c2|x|τ−2, (2.9)

for some τ > τ−. Let u f be the solution of
Lµu = f in Ω∗,

u = 0 on ∂Ω,

lim
x→0

u(x)
Φµ(x)

= 0.
(2.10)

Then there holds:
(i) if τ− < τ < τ+,

0 ≤ u f (x) ≤ c3|x|τ in Ω∗; (2.11)

(ii) if τ = τ+,
0 ≤ u f (x) ≤ c4|x|τ(1 + (− ln |x|)+) in Ω∗; (2.12)

(iii) if τ > τ+,
0 ≤ u f (x) ≤ c5|x|τ+ in Ω∗. (2.13)

Proof of Theorem A. Let H1
µ,0(Ω) be the closure of C∞0 (Ω) under the norm of

‖u‖H1
µ,0(Ω) =

√∫
Ω

|∇u|2dx + µ

∫
Ω

u2

|x|2
dx. (2.14)

Then H1
µ,0(Ω) is a Hilbert space with inner product

〈u, v〉H1
µ,0(Ω) =

∫
Ω

〈∇u,∇v〉dx + µ

∫
Ω

uv
|x|2

dx (2.15)

and the embedding H1
µ,0(Ω) ↪→ Lp(Ω) is continuous and compact for p ∈ [2, 2∗) with 2∗ = 2N

N−2 when
N ≥ 3 and any p ∈ [2,∞) if N = 2. Furthermore, if η ∈ C1

0(Ω) has the value 1 in a neighborhood of 0,
then ηΓµ ∈ H1

µ,0(Ω). We put

G(v) =

∫ v

0
g(s)ds,
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then G is a convex nonnegative function. If ρν ∈ L2(Ω) we define the functional Jν in the space H1
µ,0(Ω)

by

Jν(v) =


1
2
‖v‖2
H1
µ,0(Ω)

+

∫
Ω

G(v)dx −
∫

Ω

νvdx if G(v) ∈ L1(Ω, dγµ),

∞ if G(v) < L1(Ω, dγµ).
(2.16)

The functional J is strictly convex, lower semicontinuous and coercive in H1
µ,0(Ω), hence it admits a

unique minimum u which satisfies

〈u, v〉H1
µ,0(Ω) +

∫
Ω

g(u)vdx =

∫
Ω

νvdx for all v ∈ H1
µ,0(Ω).

If ξ ∈ C1,1
0 (Ω) then v = ξΓµ ∈ H

1
µ,0(Ω), then

〈u, ξΓµ〉H1
µ,0(Ω) =

∫
Ω

〈∇u,∇ξ〉dγµ(x) +

∫
Ω

(
〈∇u,∇Γµ〉 +

µΓµ

|x|2

)
ξdx, (2.17)

and ∫
Ω

〈∇u,∇Γµ〉ξdx = −

∫
Ω

〈∇ξ,∇Γµ〉udx −
∫

Ω

uξ∆Γµdx,

since C∞0 (Ω) is dense in H1
µ,0(Ω). Furthermore, since u ∈ Lp(Ω) for any p < 2∗, |x|−1u ∈ L1(Ω, dγµ),

hence uL∗µξ ∈ L1(Ω, dγµ). Therefore∫
Ω

(
uL∗µξ + g(u)ξ

)
dγµ =

∫
Ω

νξdγµ. (2.18)

Next, if ν ∈ L1(Ω, ρdγµ) we consider a sequence {νn} ⊂ C∞0 (Ω) converging to ν in L1(Ω, ρdγµ) and
denote by {un} the sequence of the corresponding minimizing problem in H1

µ,0(Ω). By Proposition 2.1
we have that, for any ξ ∈ Xµ(Ω),∫

Ω

(
|un − um|L

∗
µξ + (g(un) − g(um))sgn(un − um)ξ

)
dγµ ≤

∫
Ω

(νn − νm)sgn(un − um)ξdγµ. (2.19)

We denote by η0 the solution of

L∗µη = 1 in Ω, η = 0 on ∂Ω. (2.20)

Its existence is proved in [12, Lemma 2.2], as well as the estimate 0 ≤ η0 ≤ c6ρ for some c6 > 0. Since
g is monotone, we obtain from (2.19)∫

Ω

(|un − um| + |g(un) − g(um)|η0) dγµ ≤
∫

Ω

|νn − νm|η0dγµ. (2.21)

Hence {un} is a Cauchy sequence in L1(Ω, dγµ). Next we construct a solution η1 to

L∗µη = |x|−1 in Ω∗, η = 0 on ∂Ω. (2.22)

For this aim, we consider for 0 < θ < 1, the function yθ(x) = 1−|x|2−θ

N−θ+2τ+(µ) which verifies

L∗µyθ = |x|−θ in B1, yθ = 0 on ∂B1
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(we can always assume that Ω ⊂ B1). As in the proof of [12, Lemma 2.2], for any x0 ∈ Ω there exists
r0 > 0 such that Br0(x0) ⊂ Ω and for t > 0 small enough wt,x0(x) = t(r2

0 − |x − x0|
2) is a subsolution of

(2.20), hence of (2.22). Therefore there exists ηθ such that

L∗µηθ = |x|−θ in Ω∗, ηθ = 0 on ∂Ω. (2.23)

Furthermore θ 7→ ηθ is increasing and bounded from above by y1, hence it converges to a function η1

which satisfies (2.23). Then∫
Ω

(
|un − um||x|−θ + |g(un) − g(um)|ηθ

)
dγµ ≤

∫
Ω

|νn − νm|ηθdγµ. (2.24)

Letting θ → 1, we obtain as a complement of (2.21) that∫
Ω

(
|un − um|

|x|
+ |g(un) − g(um)|η1

)
dγµ ≤

∫
Ω

|νn − νm|η1dγµ. (2.25)

Hence {un} is a Cauchy sequence in L1(Ω, |x|−1dγµ) with limit u and {g(un)} is a Cauchy sequence in
L1(Ω, ρdγµ) with limit g(u). Then (2.18) holds. As for (1.31) it is a consequence of (2.19) and (1.32)
is proved similarly. �

3. The subcritical case

In this section as well as in the next one we always assume that N ≥ 3 and µ ≥ µ0, or N = 2 and
µ > 0, since the case N = 2, µ = 0, which necessitates specific tools, has already been completely
treated in [26].

We recall that the set M(Ω∗; Γµ) of Radon measures is defined in the introduction as the set of
measures in Ω∗ satisfying (1.25), and any positive measure ν ∈ M(Ω∗; Γµ) is naturaly extended by
formula (1.26) as a positive measure in Ω. The space M(Ω; Γµ) is the space of measures ν on C0(Ω)
such that

ν = νbΩ∗+kδ0, (3.1)

where νbΩ∗∈ M(Ω∗; Γµ).

3.1. The linear equation

Lemma 3.1. If ν ∈ M(Ω; Γµ), then there exists a unique weak solution u ∈ L1(Ω, |x|−1dγµ) toLµu = ν in Ω,

u = 0 on ∂Ω.
(3.2)

This solution is denoted by Gµ[ν], and this defines the Green operator of Lµ in Ω with homogeneous
Dirichlet conditions.

Proof. By linearity and using the result of [12] on fundamental solution, we can assume that k = 0
and ν ≥ 0. Let {νn} ⊂ L1(Ω, ρdγµ) be a sequence such that νn ≥ 0 and∫

Ω

ξΓµνndx→
∫

Ω

ξd(Γµν) for all ξ ∈ Xµ(Ω),
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and by Proposition 2.1, we may let un be the unique, nonnegative weak solution ofLµun = νn in Ω,

un = 0 on ∂Ω,
(3.3)

with n ∈ N. There holds ∫
Ω

unL
∗
µξdγµ(x) =

∫
Ω

ξνnΓµdx for all ξ ∈ Xµ(Ω). (3.4)

Then un ≥ 0 and using the function η1 defined in the proof of Theorem A for test function, we have

c6

∫
Ω

un

|x|
dγµ =

∫
Ω

η1Γµνndx ≤ c7‖ν‖M(Ω,Γµ), (3.5)

which implies that {un} is bounded in L1(Ω, 1
|x|dγµ(x)).

For any ε > 0 sufficiently small, set the test function ξ in
{
ζ ∈ Xµ(Ω) : ζ = 0 in Bε

}
, then we have

that ∫
Ω\Bε (0)

unL
∗
µξdγµ(x) =

∫
Ω\Bε (0)

ξνnΓµdx for all ξ ∈ Xµ(Ω). (3.6)

Therefore, for any open sets O and O′ verifying Ō ⊂ O′ ⊂ Ō′ ⊂ Ω \ Bε(0), there exists c8 > 0
independent of n such that

‖un‖L1(O′) ≤ c8‖ν‖M(Ω,Γµ).

Note that in Ω \ Bε , the operator L∗µ is uniformly elliptic and the measure dγµ is equivalent to the
N-dimensional Lebesgue measure dx, then [30, Corollary 2.8] could be applied to obtain that for some
c9, c10 > 0 independent of n but dependent of O′,

‖un‖W1,q(O) ≤ c9‖un‖L1(O′) + ‖ν̃n‖L1(Ω,dγµ)

≤ c10‖ν‖M(Ω,Γµ).

That is, {un} is uniformly bounded in W1,q
loc (Ω \ {0}).

As a consequence, since ε is arbitrary, there exist a subsequence, still denoted by {un}n and a function
u such that

un → u a.e. in Ω.

Meanwhile, we deduce from Fatou’s lemma,∫
Ω

u
|x|

dγµ ≤ c11

∫
Ω

η1Γµdν. (3.7)

Next we claim that un → u in L1(Ω, |x|−1dγµ). Let ω ⊂ Ω be a Borel set and ψω be the solution ofL∗µψω = |x|−1χω in Ω,

ψω = 0 on ∂Ω.
(3.8)

Then ψω ≤ η1, thus it is uniformly bounded. Assuming that Ω ⊂ B1, clearly ψω is bounded from above
by the solution Ψω of L∗µΨω = |x|−1χω in B1,

Ψω = 0 on ∂B1,
(3.9)
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and by standard rearrangement, supB1
Ψω ≤ supB1

Ψr
ω, where Ψr

ω solvesL∗µΨr
ω = |x|−1Bε(|ω|) in B1,

Ψr
ω = 0 on ∂B1,

(3.10)

where ε(|ω|) =
(
|ω|
|B1

) 1
N . Then Ψr

ω is radially decreasing and lim|ω|→0 Ψr
ω = 0, uniformly on B1. This

implies
lim
|ω|→0

ψω(x) = 0 uniformly in B1. (3.11)

Using (3.4) with ξ = ψω,∫
ω

un

|x|
dγµ(x) =

∫
ω

νnΓµψωdx ≤ sup
Ω

ψω

∫
ω

νnΓµdx→ 0 as |ω| → 0.

Therefore {un} is uniformly integrable for the measure |x|−1dγµ. Letting n → ∞ in (3.4) implies the
claim. �

3.2. Dirac masses

We assume that g : R→ R is a continuous nondecreasing function such that rg(r) ≥ 0 for all r ∈ R.
The next lemma dealing with problemLµu + g(u) = kδ0 in Ω,

u = 0 on ∂Ω,
(3.12)

is an extension of [22, Theorem 3.1, Theorem 3.2]. Actually it was quoted without demonstration in
this article as Remark 3.1 and Remark 3.2 and we give here their proof. Notice also that when N ≥ 3
and µ = µ0 we give a more complete result than [22, Theorem 3.2].

Lemma 3.2. Let k ∈ R and g : R→ R be a continuous nondecreasing function such that rg(r) ≥ 0 for
all r ∈ R. Then problem (3.12) admits a unique solution u := ukδ0 if one of the following conditions is
satisfied:

(i) N ≥ 2, µ > µ0 and g satisfies (1.21);

(ii) N ≥ 3, µ = µ0 and g satisfies (1.35).

Proof. Without loss of generality we assume BR ⊂ Ω ⊂ B1 for some R ∈ (0, 1).
(i) The case µ > µ0. It follows from [22, Theorem 3.1] that for any k ∈ R there exists a radial function
vk,1 (resp. vk,R) defined in B∗1 (resp. B∗R) satisfying

Lµv + g(v) = 0 in B∗1 (resp. in B∗R), (3.13)

vanishing respectively on ∂B1 and ∂BR and satisfying

lim
x→0

vk,1(x)
Φµ(x)

= lim
x→0

vk,R(x)
Φµ(x)

=
k
cµ
. (3.14)
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Furthermore g(vk,1) ∈ L1(B1, dγµ) (resp. g(vk,R) ∈ L1(BR, dγµ)). Assume that k > 0, then 0 ≤ vk,R ≤ vk,1

in B∗R and the extension of ṽk,R by 0 in Ω∗ is a subsolution of (3.13) in Ω∗ and it is still smaller than
vk,1 in Ω∗. By the well known method on super and subsolutions (see e.g., [32, Theorem 1.4.6]), there
exists a function u in Ω∗ satisfying ṽk,R ≤ u ≤ vk,1 in Ω∗ and

Lµu + g(u) = 0 in Ω∗,

u = 0 on ∂Ω,

lim
x→0

u(x)
Φµ(x)

=
k
cµ
.

(3.15)

By standard methods in the study of isolated singularities (see e.g., [16, 17, 22, 29] for various
extensions)

lim
x→0
|x|1−τ−∇u(x) = τ−

k
cµ

x
|x|
. (3.16)

For any ε > 0 and ξ ∈ Xµ(Ω),

0 =

∫
Ω\Bε

(Lµu + g(u))Γµξdx

=

∫
Ω\Bε

uL∗µξdγµ(x) + (τ− − τ+)
k
cµ
|S N−1|ξ(0)(1 + o(1)).

Using (1.15), we obtain ∫
Ω

uL∗µξdγµ(x) = kξ(0). (3.17)

(ii) The case µ = µ0. In [22, Theorem 3.2] it is proved that if for some b > 0 there holds

I :=
∫ ∞

1
g
(
bt

N−2
N+2 ln t

)
t−2dt < ∞, (3.18)

then there exists a solution of (1.22) satisfying (1.19) with γ =
(N+2)b

2 . Actually we claim that the
finiteness of this integral is independent of the value of b. To see that, set s = t

N−2
N+2 , then

I =
N + 2
N − 2

∫ ∞

1
g (βs ln s) s−

2N
N−2 ds,

with β = N+2
N−2b. Set τ = βs ln s, then

ln s
(
1 +

ln ln s
ln s

+
ln β
ln s

)
=⇒ ln s = ln τ(1 + o(1)) as s→ ∞.

We infer that for ε > 0 there exists sε > 2 and τε = sε ln sε such that

(1 − ε)β
N+2
N−2 ≤

∫ ∞

sε
g (βs ln s) s−

2N
N−2 ds∫ ∞

τε

g (τ) (ln τ)
N+2
N−2 τ−

2N
N−2 dτ

≤ (1 + ε)β
N+2
N−2 , (3.19)

Mathematics in Engineering Volume 1, Issue 3, 391–418.



405

which implies the claim. Next we prove as in case (i) the existence of vk,1 (resp. vk,R) defined in B∗1
(resp. B∗R) satisfying

Lµ0v + g(v) = 0 in B∗1 (resp. in B∗R), (3.20)

vanishing respectively on ∂B1 and ∂BR and satisfying

lim
x→0

vk,1(x)
Φµ(x)

= lim
x→0

vk,R(x)
Φµ(x)

=
k

cµ0

. (3.21)

We end the proof as above. �

Remark. It is important to notice that conditions (1.21) and (1.35) (or equivalently (1.23)) are also
necessary for the existence of radial solutions in a ball, hence their are also necessary for the existence
of non radial solutions of the Dirichlet problem (3.12).

3.3. Measures in Ω∗

We consider now the problem Lµu + g(u) = ν in Ω,

u = 0 on ∂Ω,
(3.22)

where ν ∈ M(Ω∗; Γµ).

Lemma 3.1. Let µ ≥ µ0. Assume that g satisfies (1.8) if N ≥ 3 or the β±(g) defined by (1.9) satisfy
β−(g) < 0 < β+(g) if N = 2, and let ν ∈ M(Ω∗; Γµ). If N = 2, we assume that ν can be decomposed
as ν = νr +

∑
j α jδa j where νr has no atom, the α j satisfy (1.10) and {a j} ⊂ Ω∗. Then problem (3.22)

admits a unique weak solution.

Proof. We assume first that ν ≥ 0 and let r0 = dist (x, ∂Ω). For 0 < σ < r0, we set Ωσ = Ω \ {Bσ}

and νσ = νχ
Ωσ

and for 0 < ε < σ we consider the following problem in Ωε


Lµu + g(u) = νσ in Ωε ,

u = 0 on ∂Ω,

u = 0 on ∂Bε .

(3.23)

Since 0 < Ωε problem (3.23) admits a unique solution uνσ,ε which is smaller than Gµ[ν] and satisfies

0 ≤ uνσ,ε ≤ uνσ′ ,ε′ in Ωε for all 0 < ε′ ≤ ε and 0 < σ′ ≤ σ.

For any ξ ∈ C1,1
c (Ω∗) and ε small enough so that supp (ξ) ⊂ Ωε , there holds∫

Ω

(
uνσ,εL

∗
µξ + g(uνσ,ε)ξ

)
dγµ =

∫
Ω

ξΓµdνσ.

There exists uνσ = lim
ε→0

uνσ,ε and it satisfies the identity∫
Ω

(
uνσL

∗
µξ + g(uνσ)ξ

)
dγµ =

∫
Ω

ξΓµdνσ for all ξ ∈ C1,1
c (Ω∗). (3.24)
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As a consequence of the maximum principle and Lemma 3.1, there holds

0 ≤ uνσ ≤ Gµ[νσ] ≤ Gµ[ν]. (3.25)

Since νσ vanishes in Bσ, Gµ[νσ](x) ≤ c12Φµ(x) in a neighborhood of 0, and uνσ is also bounded by
c12Φµ in this neighborhood. This implies that Φ−1

µ (x)uνσ(x) → c′ as x → 0 for some c′ ≥ 0. Next let
ξ ∈ C1,1

c (Ω),

`n(r) =

 2−1
(
1 + cos

(
2π|x|
σ

))
if |x| ≤ σ

2 ,

0 if |x| > σ
2 ,

and ξn = ξ`n. Then ∫
Ω

(
uνσL

∗
µξn + g(uνσ)ξn

)
dγµ =

∫
Ω

ξnΓµdνσ. (3.26)

When n→ ∞, ∫
Ω

ξnΓµdνσ →
∫

Ω

ξΓµdνσ

and ∫
Ω

g(uσ)ξndγµ →
∫

Ω

g(uσ)ξdγµ.

Now for the first inegral term in (3.26), we have∫
Ω

uνσL
∗
µξndγµ =

∫
Ω

`nuσL∗µξdγµ + In + IIn + IIIn,

where
In = −

∫
Bσ

2

uσξ∆`ndγµ,

IIn = −2
∫

Bσ
2

uσ〈∇ξ,∇`n〉dγµ

and
IIIn = −τ+

∫
Bσ

2

uσ〈
x
|x|2

,∇`n〉dγµ.

Using the fact that ξ(x) → ξ(0) and ∇ξ(x) → ∇ξ(0) we easily infer that In, IIn and IIIn converge to
0 when n → ∞, the most complicated case being the case when µ = µ0, which is the justification
of introducing the explicit cut-off function `n. Therefore (3.24) is still valid if it is assumed that ξ ∈
C1,1

c (Ω). This means that uνσ is a weak solution of Lµu + g(u) = νσ in Ω,

u = 0 on ∂Ω.
(3.27)

Furthermore uνσ is unique and uνσ is a decreasing function of σ with limit u when σ → 0. Taking η1

as test function, we have∫
Ω

(
c|x|−1uνσ + η1g(uνσ)

)
dγµ =

∫
Ω

η1d
(
γµνσ

)
≤

∫
Ω

η1d
(
γµν

)
.
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By using the monotone convergence theorem we infer that uνσ → u in L1(Ω, |x|−1dγµ) and g(uνσ) →
g(uν) in L1(Ω, dγµ). Hence u = uν is the weak solution of (3.22).

Next we consider a signed measure ν = ν+ − ν−. We denote by uνσ+ ,ε , u−νσ− ,ε and uνσ,ε the solutions of
(3.23) in Ωε corresponding to νσ+, −νσ− and νσ, ε respectively. Then

u−νσ− ,ε ≤ uνσ,ε ≤ uνσ+ ,ε . (3.28)

The correspondence ε 7→ uνσ+ ,ε and ε 7→ u−νσ− ,ε are respectively increasing and decreasing. Furthermore
uνσ,ε is locally bounded, hence by local compactness and up to a subsequence uνσ,ε converges a.e. in
Bε to some function uνσ . Since u−νσ− ,ε → u−νσ− and uνσ+ ,ε → uνσ+ in L1(Ω, |x|−1dγµ), it follows by Vitali’s
theorem that uνσ,ε → uνσ in L1(Ω, |x|−1dγµ). Similarly, using the monotonicity of g, g(uνσ,ε) → g(uνσ)
in L1(Ω, dγµ). By local compactness, uνσ → u a.e. in Ω. Using the same argument of uniform
integrability, we have that uνσ → u in L1(Ω, |x|−1dγµ) and g(uνσ) → g(u) in L1(Ω, dγµ) when σ → 0
and u satisfies ∫

Ω

(
uL∗µξ + g(u)ξ

)
dγµ =

∫
Ω

ξd(dγµν) for any ξ ∈ C1,1
c (Ω∗). (3.29)

Finally the singularity at 0 is removable by the same argument as above which implies that u solves
(3.29) and thus u = uν is the weak solution of (3.22). �

3.4. Proof of Theorem B

The idea is to glue altogether two solutions one with the Dirac mass and the other with the measure
in Ω∗, this is the reason why the weak ∆2 condition is introduced.

Lemma 3.3. Let ν = νbΩ∗+kδ0 ∈ M+(Ω; Γµ) and σ > 0. We assume that νbΩ∗(Bσ) = 0. Then there
exists a unique weak solution to (1.6).

Proof. Set νσ = νbΩ∗ . It has support in Ωσ = Ω \ Bσ. For 0 < ε < σ we consider the approximate
problem in Ωε = Ω \ Bε , 

Lµu + g(u) = νσ in Ωε ,

u = 0 on ∂Ω,

u = ukδ0 on ∂Bε ,

(3.30)

where ukδ0 is the solution of problem (3.12) obtained in Lemma 3.2. It follows from [30, Theorem 3.7]
that problem (3.30) admits a unique weak solution denoted by Uνσ,ε , thanks to the fact that the operator
is not singular in Ωε . We recall that uνσ,ε is the solution of (3.23) and Gµ[δ0] the fundamental solution
in Ω. Then

max{ukδ0 , uνσ,ε} ≤ Uνσ,ε ≤ uνσ + kGµ[δ0] in Ωε . (3.31)

Furthermore one has Uνσ,ε ≤ Uνσ,ε′ in Ωε , for 0 < ε′ < ε. Since uνσ ≤ uν and both kGµ[δ0] and uν
belong to L1(Ω, |x|−1dγµ), then it follows by the monotone convergence theorem that Uνσ,ε converges
in L1(Ω, |x|−1dγµ) and almost everywhere to some function Uνσ ∈ L1(Ω, |x|−1dγµ). Since Γµ is a
supersolution for equation Lµu + g(u) = 0 in Bσ, for 0 < ε0 < σ there exists c13 := c13(ε0, σ) > 0 such
that

uνσ(x) ≤ c13|x|τ+ for all x ∈ Bε0 .
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For any δ > 0, there exists ε0 such that uνσ(x) ≤ δGµ[δ0](x) in Bε0 . Hence uνσ + kGµ[δ0] ≤ (k + δ)Gµ[δ0]
in Bε0 , which implies

g(Uνσ,ε) ≤ g((k + δ)Gµ[δ0]) in Bε0 \ Bε , (3.32)

and ∫
Ω

g((k + δ)Gµ[δ0])dγµ(x) ≤
∫

B1

g( k+δ
cµ
|x|τ−)|x|τ+dx = |S N−1|

∫ 1

0
g( k+δ

cµ
rτ−)rτ++N−1dr

= c14

∫ ∞

k+δ
cµ

g(t)t−2+ 2
τ− = c14

∫ ∞

k+δ
cµ

g(t)t−1−p∗µdt

< ∞.

Now, using the local ∆2-condition,with a′ = k
cµ
ετ−0 , we see that

g(Uνσ,ε) ≤ g(uνσ + k
cµ
ετ−0 ) ≤ K(a′)

(
g(uνσ) + g(a′)

)
in Ωε0 . (3.33)

From (3.32) and (3.33) we infer that g(Uνσ,ε) is bounded in L1(Ωε , dγµ) independently of ε. If ξ ∈
C1,1

0 (Ω∗), we have for ε > 0 small enough so that supp (ξ) ⊂ Ωε∫
Ω

(
Uνσ,εL

∗
µξ + g(Uνσ,ε)ξ

)
dγµ =

∫
Ω

ξΓµdνσ.

Letting ε → 0 we obtain that ∫
Ω

(
UνσL

∗
µξ + g(Uνσ)ξ

)
dγµ =

∫
Ω

ξΓµdνσ. (3.34)

Let ξ ∈ C1,1
0 (Ω) and ηn ∈ C1,1(RN) be a nonnegative cut-off function such that 0 ≤ ηn ≤ 1, ηn ≡ 1 in Bc

2
n
,

ηn ≡ 0 in B 1
n
, and choose ξηn for test function. Then∫

Ω

(
ηnUνσL

∗
µξ + g(Uνσ)ηnξ

)
dγµ −

∫
Ω

UνσAndγµ =

∫
Ω

ξηnΓµdνσ, (3.35)

with
An = ξ∆ηn + 2〈∇ηn,∇ξ〉 + 2τ+ξ〈∇ηn,

x
|x|2 〉. (3.36)

Clearly

lim
n→∞

∫
Ω

(
ηnUνσL

∗
µξ + g(Uνσ)ηnξ

)
dγµ =

∫
Ω

(
UνσL

∗
µξ + g(Uνσ)ξ

)
dγµ,

and
lim
n→∞

∫
Ω

ξηnΓµdνσ =

∫
Ω

ξΓµdνσ.

We take

ηn(r) =


1
2 −

1
2 cos

(
nπ

(
r − 1

n

))
if 1

n ≤ r ≤ 2
n ,

0 if r < 1
n ,

1 if r > 2
n .

Then

An =
n2π2

2
cos

(
nπ

(
r −

1
n

))
+

nπ
2

N − 1 + 2τ+

r
sin

(
nπ

(
r −

1
n

))
.
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Letting ε → 0 in (3.31), we have

Uνσ(x) = kGµ[δ0](x)(1 + o(1)) =
k
cµ
|x|τ−(1 + o(1)) as x→ 0.

Hence

lim
n→∞

∫
Ω

UνσAndγµ =
2k|S N−1|

√
µ − µ0

cµ
= k. (3.37)

This implies that Uνσ is the solution of (1.6) with ν replaced by νσ + kδ0. �

Lemma 3.4. Let ν = νbΩ∗+kδ0 ∈ M+(Ω; Γµ). Then there exists a unique weak solution to (1.6).

Proof. Following the notations of Lemma 3.3, we set νσ = χBσ
νbΩ∗ and denote by Uνσ the solution

of  Lµu + g(u) = νσ + kδ0 in Ω,

u = 0 on ∂Ω.
(3.38)

It is a positive function and there holds

max{ukδ0 , uνσ} ≤ Uνσ ≤ uνσ + kGµ[δ0] in Ω. (3.39)

Since the mapping σ 7→ Uνσ is decreasing, then there exists U = lim
σ→0

Uνσ and U satisfies (3.39).

As a consequence Uνσ → U in L1(Ω, |x|−1dγµ) as σ → 0. We take η1 for test function in the weak
formulation of (3.39), then∫

Ω

(
|x|−1Uνσ + η1g(Uνσ)

)
dγµ =

∫
Ω

η1Γµdνσ + kη1(0).

By the monotone convergence theorem we obtain the identity∫
Ω

(
|x|−1U + η1g(U)

)
dγµ =

∫
Ω

η1d(γµνbΩ∗) + kη1(0) =

∫
Ω

η1d(γµν),

and the fact that g(Uνσ) → g(U) in L1(Ω, ρdγµ). Going to the limit as σ → 0 in the weak formulation
of (3.38), we infer that U = uν is the solution of (1.6). �

Proof of Theorem B. Assume ν = νbΩ∗+kδ0 ∈ M(Ω; Γµ) satisfies k > 0 and let ν+ = ν+bΩ∗+kδ0 and
ν− = ν−bΩ∗ the positive and the negative part of ν. We denote by uν+

and u−ν− the weak solutions of
(1.6) with respective data ν+ and −ν−. For 0 < ε < σ such that Bσ ⊂ Ω, we set νσ = χBσ

νbΩ∗ , with
positive and negative part νσ+ and νσ− and denote by Uνσ+,ε , U−νσ−,ε and Uνσ,ε the respective solutions
of 

Lµu + g(u) = νσ+ in Ωε ,

u = 0 on ∂Ω,

u = ukδ0 on ∂Bε ,

(3.40)

 Lµu + g(u) = −νσ− in Ωε ,

u = 0 on ∂Ω ∪ ∂Bε ,
(3.41)
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and 
Lµu + g(u) = νσ in Ωε ,

u = 0 on ∂Ω,

u = ukδ0 on ∂Bε ,

(3.42)

then
U−νσ−,ε ≤ Uνσ,ε ≤ Uνσ+,ε . (3.43)

Furthermore Uνσ+,ε satisfies (3.31) and, in coherence with the notations of Lemma 3.1 with νσ replaced
by −νσ−,

u−νσ− ≤ U−νσ−,ε = u−νσ−,ε . (3.44)

By compactness, {Uνσ,ε j}ε j converges almost everywhere in Ω to some function U for some sequence
{ε j} converging to 0. Moreover Uνσ,ε j converges to Uνσ in L1(Ω, |x|−1dγµ) because Uνσ+,ε → uνσ++kδ0

and u−νσ−,ε → u−νσ− in L1(Ω, |x|−1dγµ) by Lemma 3.1 and (3.43) holds. Similarly g(Uνσ,ε j) converges to
g(U) in L1(Ω, ρdγµ). This implies that U satisfies∫

Ω

(
UL∗µξ + g(U)ξ

)
dγµ =

∫
Ω

ξΓµdνσ for all ξ ∈ C1,1
0 (Ω∗).

In order to use test functions in C1,1
0 (Ω), we proceed as in the proof of Lemma 3.3, using the inequality

(derived from (3.43)) and the
u−νσ− ≤ Uνσ ≤ uνσ++kδ0 . (3.45)

By (3.33), uνσ++kδ0(x) = kGµ[δ0](x)(1 + o(1)) when x → 0 and u−νσ− = o(Gµ[δ0]) near 0. This implies
Uνσ(x) = kGµ[δ0](x)(1 + o(1)) as x → 0 and we conclude as in the proof of Lemma 3.3 that
u = uνσ+kδ0 .

At end we let σ → 0. Up to a sequence {σ j} converging to 0 such that uνσ j +kδ0 → U almost
everywhere and

u−ν− ≤ U ≤ uν++kδ0 . (3.46)

Since by Lemma 3.4, uνσ++kδ0 → uν++kδ0 in L1(Ω, |x|−1dγµ) and g(uνσ++kδ0) → g(uν++kδ0) in L1(Ω, ρdγµ),
we infer that the convergences of uνσ j +kδ0 → U and g(uνσ j +kδ0) → g(U) occur respectively in the same
space, therefore U = uν+kδ0 , it is the weak solution of (1.6). �

Remark. In the course of the proof we have used the following result which is independent of any
assumption on g except for the monotonicity: If {νn} ⊂ M+(Ω; Γµ) is an increasing sequence of g-good
measures converging to a measure ν ∈ M+(Ω; Γµ), then ν is a g-good measure, {uνn} converges to uν in
L1(Ω, |x|−1dγµ) and {g(uνn)} converges to g(uν) in L1(Ω, ρdγµ).

3.5. Proof of Theorem C

The construction of a solution is essentially similar to the one of Theorem B, the only modifications
lies in Lemma 3.3. Estimate (3.31) remains valid with

ukδ0(x) = k
|S N−1 |
|x|

2−N
2 ln |x|−1(1 + o(1)) = kGµ[δ0](x)(1 + o(1)) as x→ 0. (3.47)

Mathematics in Engineering Volume 1, Issue 3, 391–418.



411

Since uνσ(x) ≤ c15|x|
2−N

2 , (3.32) holds with δ > 0 arbitrarily small. Next∫
Ω

g((k + δ)Gµ[δ0])dγµ(x) ≤
∫

B1

g
(

k+δ
|S N−1 |
|x|

2−N
2 ln |x|−1

)
|x|

2−N
2 dx

= |S N−1|

∫ 1

0
g
(

k+δ
|S N−1 |

r
2−N

2 ln r−1
)

r
N
2 dr

= c16

∫ ∞

c′
g(t ln t)t−

2N
N−2 < ∞,

by (3.19) and (1.35). The end of the proof for Theorem C is similar to the one of Theorem B.
�

Proof of Corollary D. If g(r) = gp(r) = |r|p−1r, p > 1, the existence of a solution with ν = kδ0 is a
direct consequence of conditions (1.34) and (1.35). If k = 0 and νbΩ∗, 0, the existence is ensured if
(1.8) holds, hence p < N

N−2 . Assertion (iii) follows. �

4. The supercritical case

The notion of reduced measures introduced by Brezis, Marcus and Ponce [8] turned out to be a
useful tool in the construction of solutions in a measure framework. We will develop only the aspect
needed for the proof of Theorem E. If k ∈ N∗, we set

gk(r) =

 min{g(r), g(k)} if r ≥ 0,

max{g(r), g(−k)} if r > 0.
(4.1)

Since gk satisfies (1.34) and (1.35), for any ν ∈ M+(Ω; Γµ) there exists a unique weak solution u = uν,k
of  Lµu + gk(u) = ν in Ω,

u = 0 on ∂Ω.
(4.2)

Furthermore, from the proof of Lemma 3.4 and Kato’s type estimates Proposition 2.1 we have that

0 ≤ uν+,k′ ≤ uν+,k for all k′ ≥ k > 0. (4.3)

Proposition 4.1. Let ν ∈ M+(Ω; Γµ). Then the sequence of weak solutions {uν,k} of Lµu + gk(u) = ν in Ω,

u = 0 on ∂Ω,
(4.4)

decreases and converges, when k → ∞, to some nonnegative function u, and there exists a measure
ν∗ ∈ M+(Ω; Γµ) such that 0 ≤ ν∗ ≤ ν and u = uν∗ .

Proof. The proof is similar to the one of [8, Prop. 4.1]. Observe that uν,k ↓ u∗ and the sequence
{uν,k} is uniformly integrable in L1(Ω, |x|−1dγµ). By Fatou’s lemma u satisfies∫

Ω

(
u∗L∗µξ + g(u∗)ξ

)
dγµ(x) ≤

∫
Ω

ξd(Γµν) for all ξ ∈ Xµ(Ω), ξ ≥ 0. (4.5)
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Hence u∗ is a subsolution of (1.6) and by construction it is the largest of all nonnegative subsolutions.
The mapping

ξ 7→

∫
Ω

(
u∗L∗µξ + g(u∗)ξ

)
dγµ(x) for all ξ ∈ C∞c (Ω),

is a positive distribution, hence a measure ν∗, called the reduced measure of ν. It satisfies 0 ≤ ν∗ ≤ ν
and u∗ = uν∗ . �

Lemma 4.2. Let ν, ν′ ∈ M+(Ω; Γµ). If ν′ ≤ ν and ν = ν∗, then ν′ = ν′∗.

Proof. Let uν′,k be the weak solution of the truncated equation Lµu + gk(u) = ν′ in Ω,

u = 0 on ∂Ω.
(4.6)

Then 0 ≤ uν′,k ≤ uν,k. By Proposition 4.1, we know that uν,k ↓ uν∗ = uν and uν′,k ↓ u′∗ a.e. in
L1(Ω, |x|−1dγµ) and then

Lµ(uν,k − uν) + gk(uν,k) − gk(uν) = g(uν) − gk(uν),

from what follows, by Proposition 2.1,∫
Ω

(uν,k − uν))|x|−1dγµ +

∫
Ω

|gk(uν,k) − gk(uν)|η1dγµ ≤
∫

Ω

|g(uν) − gk(uν)|η1dγµ.

By the increasing monotonicity of mapping k 7→ gk(uν), we have gk(uν) → g(uν) in L1(Ω, ρdγµ) as
k → +∞, hence ∫

Ω

|gk(uν,k) − g(uν)|η1dγµ ≤ 2
∫

Ω

|g(uν) − gk(uν)|η1dγµ → 0 as n→ ∞.

Because gk(uν′,k) ≤ gk(uν,k) it follows by Vitali’s convergence theorem that gk(uν′,k) → g(u′∗) in
L1(Ω, ρdγµ). Using the weak formulation of (4.6), we infer that u′∗ verifies∫

Ω

(
u′∗L∗µξ + g(u′∗)ξ

)
dγµ =

∫
Ω

ξd(γµν′) for all ξ ∈ Xµ(Ω).

This yields u′∗ = uν′ . �

The next result follows from Lemma 4.2.

Lemma 4.3. Assume that ν = νbΩ∗+kδ0 ∈ M+(Ω; Γµ), then ν∗ = ν∗bΩ∗+k∗δ0 ∈ M+(Ω; Γµ) with ν∗bΩ∗≤
νbΩ∗ and k∗ ≤ k. More precisely,

(i) If µ > µ0 and g satisfies (1.34), then k = k∗.
(ii) If µ = µ0 and g satisfies (1.35), then k = k∗.
(ii) If µ > µ0 (resp. µ = µ0) and g does not satisfy (1.21) (resp. (1.35)), then k∗ = 0.

The next result is useful in applications.

Corollary 4.1. If ν ∈ M+(Ω; Γµ), then ν∗ is the largest g-good measure smaller or equal to ν.
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Proof. Let λ ∈ M+(Ω; Γµ) be a g-good measure, λ ≤ ν. Then λ∗ = λ ≤ ν∗. Since ν∗ is a g-good
measure the result follows. �

Proof of Theorem E. Assume that ν ≥ 0. By Lemma 4.2 and Remark at the end of Section 3.5 the
following assertions are equivalent:
(i) ν is gp-good.
(ii) For any σ > 0, νσ = χ

Bc
σ
ν is gp-good.

If νσ is good, then uνσ satisfies

− ∆uνσ + up
νσ

= νσ −
µ

|x|2
uνσ inD′(Ω∗) (4.7)

and since uνσ(x) ≤ c|x|τ+ if |x| ≤ σ
2 (4.7) holds in D′(Ω). This implies that u ∈ Lp(Ω) and |x|−2uνσ ∈

Lα(Bσ
2
) for any α < N

(2−τ+)+
. Using [1] the measure νσ is absolutely continuous with respect to the

c2,p′-Bessel capacity. If E ⊂ Ω is a Borel set such that c2,p′(E) = 0, then c2,p′(E ∩ Bc
σ) = 0, hence

ν(E ∩ Bc
σ) = νσ(E ∩ Bc

σ) = 0. By the monotone convergence theorem ν(E) = 0.

Conversely, if ν is nonnegative and absolutely continuous with respect to the c2,p′-Bessel capacity,
then so is νσ = χ

Bc
σ
ν. For 0 ≤ ε ≤ σ

2 we consider the problem
−∆u +

µ

|x|2
u + up = νσ in Ωε := Ω \ Bε ,

u = 0 on ∂Bε ,

u = 0 on ∂Ω.

(4.8)

Since µ

|x|2 is bounded in Ωε and νσ is absolutely continuous with respect to the c2,p′ capacity there exists
a solution uνσ,ε thanks to [1], unique by monotonicity. Now the mapping ε 7→ uνσ,ε is decreasing. We
use the method developed in Lemma 3.1, when ε → 0, we know that uνσ,ε increase to some uσ which
is dominated by G[νσ] and satisfies −∆u +

µ

|x|2
u + up = νσ in Ω∗,

u = 0 on ∂Ω.
(4.9)

Because uσ ≤ G[νσ] and νσ = 0 in Bσ, there holds u(x) ≤ c′11Γµ(x) in Bσ
2
, and then uσ is a solution in Ω

and u = uνσ . Letting σ → 0, we conclude as in Lemma 3.1 that uνσ converges to uν which is the weak
solution of  −∆u +

µ

|x|2
u + up = ν in Ω,

u = 0 on ∂Ω.
(4.10)

If ν is a signed measure absolutely continuous with respect to the c2,p′-capacity, so are ν+ and ν−.
Hence there exists solutions uν+

and uν− . For 0 < ε < σ
2 we construct uνσ,ε with the property that

−u−ν−σ,ε ≤ uνσ,ε ≤ uν+σ,ε , we let ε → 0 and deduce the existence of uνσ which is eventually the weak
solution of  −∆u +

µ

|x|2
u + |u|p−1u = νσ in Ω∗,

u = 0 on ∂Ω,
(4.11)
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and satisfies −u−ν−σ ≤ uνσ ≤ uν+σ
. Letting σ→ 0 we obtain that u = lim

σ→0
uνσ satisfies −∆u +

µ

|x|2
u + |u|p−1u = ν in Ω∗,

u = 0 on ∂Ω.
(4.12)

Hence u = uν and ν is a good solution. �

Proof of Theorem F. Part 1. Without loss of generality we can assume that Ω is a bounded smooth
domain. Let K ⊂ Ω be compact. If 0 ∈ K and p < p∗µ there exists a solution ukδ0 , hence K is not
removable. If 0 < K and c2,p′(K) > 0, there exists a capacitary measure νK ∈ W−2,p(Ω) ∩M+(Ω) with
support in K. This measure is gp-good by Theorem E, hence K is not removable.
Part 2. Conversely we first assume that 0 < K. Then there exists a subdomain D ⊂ Ω such that 0 < D̄
and K ⊂ D. Hence a solution u of (1.37) is also a solution of

−∆u +
µ

|x|2
u + |u|p−1u = 0 in D \ K,

and the coefficient µ

|x|2 is uniformly bounded in D̄. By [1, Theorem 3.1] it can be extended as a C2

solution of the same equation in Ω′. Hence, if c2,p′(K) = 0 the set K is removable.
If 0 ∈ K we have to assume at least p ≥ p∗µ in order that 0 is removable and p ≥ p0 in order there

exists non-empty set with zero c2,p′-capacity. Let ζ ∈ C1,1
0 (Ω) with 0 ≤ ζ ≤ 1, vanishing in a compact

neighborhood D of K. Since 0 < Ω \ D, we first consider the case where u is nonnegative and satisfies
in the usual sense

−∆u +
µ

|x|2
u + up = 0 in Ω \ D.

Taking ζ2p′ for test function, we get

−2p′
∫

Ω

uζ2p′−1∆ζdx − 2p′(2p′ − 1)
∫

Ω

uζ2p′−2|∇ζ |2dx + µ

∫
Ω

uζ2p′

|x|2
dx +

∫
Ω

ζ2p′updx = 0.

There holds ∣∣∣∣∣∫
Ω

uζ2p′−1∆ζdx
∣∣∣∣∣ ≤ (∫

Ω

ζ2p′updx
) 1

p
(∫

Ω

|∆ζ |p
′

ζ p′dx
) 1

p′

,

0 ≤
∫

Ω

uζ2p′−2|∇ζ |2dx ≤
(∫

Ω

ζ2p′updx
) 1

p
(∫

Ω

|∇ζ |2p′dx
) 1

p′

,

and

0 ≤
∫

Ω

uζ2p′

|x|2
dx ≤

(∫
Ω

ζ2p′updx
) 1

p
(∫

Ω

ζ2p′

|x|2p′ dx
) 1

p′

.

By standard elliptic equations regularity estimates and Gagliardo-Nirenberg inequality [21] (and since
0 ≤ ζ ≤ 1), (∫

Ω

|∆ζ |p
′

ζ p′
) 1

p′

≤ c17‖ζ‖W2,p′

and (∫
Ω

|∇ζ |2p′dx
) 1

p′

≤ c18‖ζ‖W2,p′ .
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Finally, if p > p0 := N
N−2 , then 2p′ < N which implies that there exists c19 independent of ζ (with value

in [0, 1]) such that (∫
Ω

ζ2p′

|x|2p′ dx
) 1

p′

≤

(∫
B1

dx
|x|2p′

) 1
p′

:= c19.

Next we set

X =

(∫
Ω

ζ2p′updx
) 1

p

,

and if µ ≥ 0, p ≥ p0, we have

Xp −
(
2p′(2p′ − 1)c18 − p′c18

)
‖ζ‖W2,p′X ≤ 0; (4.13)

and if µ < 0, p > p0, we have

Xp −
((

2p′(2p′ − 1)c18 − p′c18
)
‖ζ‖W2,p′ − c19µ

)
X ≤ 0. (4.14)

However, the condition p > p0 is ensured when µ < 0 since p ≥ p∗µ > p0. We consider a sequence
{ηn} ⊂ S(RN) such that 0 ≤ ηn ≤ 1, ηn = 0 on a neighborhood of K and such that ‖ηn‖W2,p′ → 0 when
n → ∞. Such a sequence exists by the result in [24] since c2,p′(K) = 0. Let ξ ∈ C∞0 (Ω) such that
0 ≤ ξ ≤ 1 and with value 1 in a neighborhood of K. We take ζ := ζn = (1− ηn)ξ in the above estimates.
Letting n→ ∞, then ζn → ξ in W2,p′ and finally

Xp−1 =

(∫
Ω

ξ2p′updx
) p−1

p

≤
(
2p′(2p′ − 1)c18 − p′c18

)
‖ξ‖W2,p′ + c19µ−, (4.15)

under the condition that p > p0 if µ < 0, in which case there also holds∫
Ω

uζ2p′

|x|2
dx ≤ c19X. (4.16)

However the condition p > p0 is not necessary in order the left-hand side of (4.16) is bounded, since
we have

µ

∫
Ω

uζ2p′

|x|2
dx + Xp ≤

(
2p′(2p′ − 1)c18 − p′c18

)
‖ζ‖W2,p′X, (4.17)

and X is bounded.
Next we take ζ := ζn = (1 − ηn)ξ for test function in (1.37) and get

−

∫
Ω

((1 − ηn)∆ξ − ξ∆ηn − 2〈∇ηn,∇ξ〉) udx + µ

∫
Ω

uζn

|x|2
dx +

∫
Ω

ζnupdx = 0.

Since ∫
Ω

uξ∆ηndx ≤
(∫

Ω

upξdx
) 1

p

‖ηn‖W2,p′ → 0 as n→ ∞,

and ∣∣∣∣∣∫
Ω

u〈∇ηn,∇ξ〉dx
∣∣∣∣∣ ≤ (∫

Ω

up|∇ξ|dx
) 1

p

‖∇ξ‖L∞‖ηn‖W1,p′ as n→ ∞,
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then we conclude that u satisfies

−

∫
Ω

u∆ξdx + µ

∫
Ω

uξ
|x|2

dx +

∫
Ω

ξupdx = 0, (4.18)

which proves that u satisfies the equation in the sense of distributions. By standard regularity u is C2

in Ω∗, and by the maximum principle u(x) ≤ c20Γµ(x) in Br0 ⊂ Ω. Integrating by part as in the proof of
Lemma 3.2 we obtain that u satisfies∫

Ω

(
uL∗µξ + ξup

)
dγµ(x) = 0 for every ξ ∈ Xµ(Ω). (4.19)

Finally, if u is a signed solution, then |u| is a subsolution. For ε > 0 we set Kε = {x ∈ RN :
dist (x,K) ≤ ε}. If ε is small enough Kε ⊂ Ω. Let v := vε be the solution of

−∆v +
µ

|x|2
v + vp = 0 in Ω \ Kε ,

v = |u|b∂Kε
on ∂Kε ,

v = |u|b∂Ω on ∂Ω.

(4.20)

Then |u| ≤ vε . Furthermore, by Keller-Osserman estimate as in [22, Lemma 1.1], there holds

vε(x) ≤ c21dist (x,Kε)−
2

p−1 for all x ∈ Ω \ Kε , (4.21)

where c21 > 0 depends on N, p and µ. Using local regularity theory and the Arzela-Ascoli Theorem,
there exists a sequence {εn} converging to 0 and a function v ∈ C2(Ω \ K) ∩ C(Ω̄ \ K) such that {vεn}

converges to v locally uniformly in Ω̄ \ K and in the C2
loc(Ω \ K)-topology. This implies that v is a

positive solution of (1.37) in Ω \ K. Hence it is a solution in Ω. This implies that u ∈ Lp(Ω) and
|u(x)| ≤ v(x) ≤ c20Γµ(x) in Ω∗. We conclude as in the nonnegative case that u is a weak solution in Ω.
�
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11. Chen H, Véron L (2014) Semilinear fractional elliptic equations with gradient nonlinearity
involving measures. J Funct Anal 266: 5467–5492.

12. Chen H, Quaas A, Zhou F (2017) On nonhomogeneous elliptic equations with the Hardy-Leray
potentials. arXiv:1705.08047.

13. Chen H, Zhou F (2018) Isolated singularities for elliptic equations with inverse square potential
and source nonlinearity. Discrete Cont Dyn-A 38: 2983–3002.

14. Chen H, Alhomedan S, Hajaiej H, et al. (2017) Fundamental solutions for Schrödinger operators
with general inverse square potentials. Appl Anal 1–24.

15. Cignoli R, Cottlar M (1974) An Introduction to Functional Analysis. Amsterdam: North-Holland.

16. Cı̂rstea F (2014) A complete classification of the isolated singularities for nonlinear elliptic
equations with inverse square potentials. Mem Am Math Soc 227: No. 1068.

17. Cı̂rstea F, Du Y (2007) Asymptotic behavior of solutions of semilinear elliptic equations near an
isolated singularity. J Funct Anal 250: 317–346.

18. Dupaigne L (2002) A nonlinear elliptic PDE with the inverse square potential. J Anal Math 86:
359-398.

19. Folland G, Sitaram A (1997) The uncertainty principle: A mathematical survey. J Fourier Anal
Appl 3: 207–238.

20. Frank R (2011) Sobolev inequalities and uncertainty principles in mathematical physics.
part I, unpublished notes of a course given at the LMU, Munich. Available From:
http://www.math.caltech.edu/ rlfrank/sobweb1.pdf.

Mathematics in Engineering Volume 1, Issue 3, 391–418.



418

21. Gilbarg D, Trudinger N (1983) Elliptic Partial Differential Equations of Second Order. Springer-
Verlag, 224.
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32. Véron L (2017) Local and Global Aspects of Quasilinear Degenerate Elliptic Equations.
Quasilinear Elliptic Singular Problems. World Scientific Publishing Co Pte Ltd, Hackensack,
NJ, 457.

c© 2019 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 1, Issue 3, 391–418.

http://creativecommons.org/licenses/by/4.0

	Introduction
	L1 data
	The subcritical case
	The linear equation
	Dirac masses
	Measures in *
	Proof of Theorem B
	Proof of Theorem C

	The supercritical case

