Research article Special Issues

Dynamic analysis of a phytoplankton-fish model with the impulsive feedback control depending on the fish density and its changing rate


  • Received: 12 November 2022 Revised: 18 December 2022 Accepted: 01 February 2023 Published: 27 February 2023
  • This paper proposes and studies a comprehensive control model that considers fish population density and its current growth rate, providing new ideas for fishing strategies. First, we established a phytoplankton-fish model with state-impulse feedback control based on fish density and rate of change. Secondly, the complex phase sets and impulse sets of the model are divided into three cases, then the Poincar$ \acute{\mbox{e}} $ map of the model is defined and its complex dynamic properties are deeply studied. Furthermore, some necessary and sufficient conditions for the global stability of the fixed point (order-$ 1 $ limit cycle) have been provided even for the Poincar$ \acute{\mbox{e}} $ map. The existence conditions for periodic solutions of order-$ k $($ k \ge 2 $) are discussed, and the influence of dynamic thresholds on system dynamics is shown. Dynamic thresholds depend on fish density and rate of change, i.e., the form of control employed is more in line with the evolution of biological populations than in earlier studies. The analytical method presented in this paper also plays an important role in analyzing impulse models with complex phase sets or impulse sets.

    Citation: Huidong Cheng, Hui Xu, Jingli Fu. Dynamic analysis of a phytoplankton-fish model with the impulsive feedback control depending on the fish density and its changing rate[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8103-8123. doi: 10.3934/mbe.2023352

    Related Papers:

  • This paper proposes and studies a comprehensive control model that considers fish population density and its current growth rate, providing new ideas for fishing strategies. First, we established a phytoplankton-fish model with state-impulse feedback control based on fish density and rate of change. Secondly, the complex phase sets and impulse sets of the model are divided into three cases, then the Poincar$ \acute{\mbox{e}} $ map of the model is defined and its complex dynamic properties are deeply studied. Furthermore, some necessary and sufficient conditions for the global stability of the fixed point (order-$ 1 $ limit cycle) have been provided even for the Poincar$ \acute{\mbox{e}} $ map. The existence conditions for periodic solutions of order-$ k $($ k \ge 2 $) are discussed, and the influence of dynamic thresholds on system dynamics is shown. Dynamic thresholds depend on fish density and rate of change, i.e., the form of control employed is more in line with the evolution of biological populations than in earlier studies. The analytical method presented in this paper also plays an important role in analyzing impulse models with complex phase sets or impulse sets.



    加载中


    [1] Y. Wang, W. Jiang, H. Wang, Stability and global Hopf bifurcation in toxic phytoplankton zooplankton model with delay and selective harvesting, Nonlinear Dyn., 73 (2013), 881–896. https://doi.org/10.1007/s11071-013-0839-2 doi: 10.1007/s11071-013-0839-2
    [2] M. P. Sissenwine, J. G. Shepherd, An alternative perspective on recruitment overfishing and biological reference points, Can. J. Fish. Aquat. Sci., 44 (1987), 913–918. https://doi.org/10.1139/f87-110 doi: 10.1139/f87-110
    [3] S. A. Khamis, J. M. Tchuenche, M. Lukka, M. Heilioe, Dynamics of fisheries with prey reserve and harvesting, Int. J. Comput. Math., 88 (2011), 1776–1802. https://doi.org/10.1080/00207160.2010.527001 doi: 10.1080/00207160.2010.527001
    [4] M. R. Garvie, C. Trenchea, Predator-prey systems depend on a prey refuge, J. Theor. Biol., 360 (2014), 271–278. https://doi.org/10.1016/j.jtbi.2014.07.016 doi: 10.1016/j.jtbi.2014.07.016
    [5] W. Zheng, J. Sugie, Global asymptotic stability and equiasymptotic stability for a time-varying phytoplankton-zooplankton-fish system, Nonlinear Anal. Real World Appl., 46 (2019), 116–136. https://doi.org/10.1016/j.nonrwa.2018.09.015 doi: 10.1016/j.nonrwa.2018.09.015
    [6] T. Yang, Impulsive Control Theory, Springer-Verlag, 2001. https://doi.org/10.1007/3-540-47710-1
    [7] S. Tang, Y. Xiao, R. A. Cheke, Multiple attractors of host-parasitoid models with integrated pest management strategies: Eradication, persistence and outbreak, Theor. Popul. Biol., 73 (2008), 181–197. https://doi.org/10.1016/j.tpb.2007.12.001 doi: 10.1016/j.tpb.2007.12.001
    [8] L. Qian, Q. Lu, J. Bai, Z. Feng, Dynamics of a prey-dependent digestive model with state-dependent impulsive control, Int. J. Bifurcation Chaos, 22 (2012), 1250092–1250103. https://doi.org/10.1142/S0218127412500927 doi: 10.1142/S0218127412500927
    [9] S. Sun, C. Guo, C. Qin, Dynamic behaviors of a modified predator-prey model with state-dependent impulsive effects, Adv. Differ. Equations, (2016), 1–13. https://doi.org/10.1186/s13662-015-0735-9 doi: 10.1186/s13662-015-0735-9
    [10] T. Ghiocel, Specific differential equations for generating pulse sequences, Math. Prob. Eng., 2010 (2009), 242–256. https://doi.org/10.1155/2010/324818 doi: 10.1155/2010/324818
    [11] T. Yuan, K. Sun, A. Kasperski, L. Chen, Nonlinear modelling and qualitative analysis of a real chemostat with pulse feeding, Discrete Dyn. Nat. Soc., 2010 (2010), 179–186. https://doi.org/10.1155/2010/640594 doi: 10.1155/2010/640594
    [12] X. Yu, S. Yuan, T. Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment, Appl. Math. Comput., 347 (2019), 249–264. https://doi.org/10.1016/j.amc.2018.11.005 doi: 10.1016/j.amc.2018.11.005
    [13] K. Sun, T. Zhang, Y. Tian, Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy, Appl. Math. Comput., 292 (2017), 253–271. https://doi.org/10.1016/j.amc.2016.07.046 doi: 10.1016/j.amc.2016.07.046
    [14] X. Jiang, R. Zhang, Z. She, Dynamics of a diffusive predator prey system with ratio-dependent functional response and time delay, Int. J. Biomath., 13 (2020), 2050036. https://doi.org/10.1142/S1793524520500369 doi: 10.1142/S1793524520500369
    [15] Y. Luo, L. Zhang, Z. Teng, T. Zheng, Stability and bifurcation for a stochastic differential algebraic Holling-Ⅱ predator-prey model with nonlinear harvesting and delay, Int. J. Biomath., 14 (2020), 2150019. https://doi.org/10.1142/S1793524521500194 doi: 10.1142/S1793524521500194
    [16] G. Zeng, L. Chen, L. Sun, Existence of periodic solution of order one of planar impulsive autonomous system, J. Comput. Appl. Math., 186 (2006), 466–481. https://doi.org/10.1016/j.cam.2005.03.003 doi: 10.1016/j.cam.2005.03.003
    [17] L. Chen, K. Shimamoto, Emerging roles of molecular chaperones in plant innate immunity, J. Gen. Plant Pathol., 77 (2011), 1–9. https://doi.org/10.1007/s10327-010-0286-6 doi: 10.1007/s10327-010-0286-6
    [18] G. Jiang, Q. Lu, Impulsive state feedback control of a predator-prey model, J. Comput. Appl. Math., 200 (2007), 193–207. https://doi.org/10.1016/j.cam.2005.12.013 doi: 10.1016/j.cam.2005.12.013
    [19] L. Nie, Z. Teng, L. Hu, J. Peng, Qualitative analysis of a modified Leslie-Gower and Holling-type Ⅱ predator-prey model with state dependent impulsive effects, Nonlinear Anal. Real World Appl., 11 (2019), 1364–1373. https://doi.org/10.1016/j.nonrwa.2009.02.026 doi: 10.1016/j.nonrwa.2009.02.026
    [20] X. Hou, J. Fu, H. Cheng, Sensitivity analysis of pesticide dose on predator-prey system with a prey refuge, J. Appl. Anal. Comput., 12 (2022), 270–293. https://doi.org/10.11948/20210153 doi: 10.11948/20210153
    [21] Z. Zheng, Y. Zhang, S. Jing, Nonlinear impulsive differential and integral inequalities with nonlocal jump conditions, J. Inequalities Appl., 2018 (2018), 1–22. https://doi.org/10.1186/s13660-018-1762-3 doi: 10.1186/s13660-018-1762-3
    [22] P. Ghosh, J. F. Peters, Impulsive differential equation model in methanol poisoning detoxification, J. Math. Chem., 58 (2020), 126–145. https://doi.org/10.1007/s10910-019-01076-3 doi: 10.1007/s10910-019-01076-3
    [23] Q. Liu, M. Zhang, L. Chen, State feedback impulsive therapy to SIS model of animal infectious diseases, Phys. A Stat. Mech. Appl., 516 (2019), 222–232. https://doi.org/10.1016/j.physa.2018.09.161 doi: 10.1016/j.physa.2018.09.161
    [24] Y. Tian, S. Tang, R. A. Cheke, Nonlinear state-dependent feedback control of a pest-natural enemy system, Nonlinear Dyn., 94 (2018), 2243–2263. https://doi.org/10.1007/s11071-018-4487-4 doi: 10.1007/s11071-018-4487-4
    [25] M. U. Akhmet, On the general problem of stability for impulsive differential equations, J. Math. Anal. Appl., 288 (2018), 182–196. https://doi.org/10.1016/j.jmaa.2003.08.001 doi: 10.1016/j.jmaa.2003.08.001
    [26] J. Fu, X. Chun, M. Lei, Algebraic structure and poisson integral method of snake-like robot systems, Front. Phys., 9 (2021), 643016. https://doi.org/10.3389/fphy.2021.643016 doi: 10.3389/fphy.2021.643016
    [27] J. Fu, L. Zhang, S. Cao, C. Xiang, W. Zao, A symplectic algorithm for constrained hamiltonian systems, Axioms, 11 (2022), 217. https://doi.org/10.3390/axioms11050217 doi: 10.3390/axioms11050217
    [28] S. Cao, J. Fu, Symmetry theories for canonicalized equations of constrained Hamiltonian system, Nonlinear Dyn., 92 (2018), 1947–1954. https://doi.org/10.1007/s11071-018-4173-6 doi: 10.1007/s11071-018-4173-6
    [29] C. Liu, P. Liu, Complex dynamics in a harvested nutrient-phytoplankton-zooplankton model with seasonality, Math. Prob. Eng., 2014 (2014), 1–13. https://doi.org/10.1155/2014/521917 doi: 10.1155/2014/521917
    [30] A. Sharma, A. Sharma, K. Agnihotri, Dynamical analysis of a harvesting model of phytoplankton-zooplankton interaction, World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phys. Quant. Eng., 8 (2015), 1013–1018.
    [31] L. S. Chen, H. D. Cheng, Modeling of integrated pest control drives the rise of semi-continuous dynamical system theory (in Chinese), Math. Model. Appl., 10 (2021), 1–16. https://doi.org/10.19943/j.2095-3070.jmmia.2021.01.01 doi: 10.19943/j.2095-3070.jmmia.2021.01.01
    [32] D. Li, Y. Liu, H. Cheng, Dynamic complexity of a phytoplankton-fish model with the impulsive feedback control by means of poincare map, Complexity, 2020 (2020), 1–13. https://doi.org/10.1155/2020/8974763 doi: 10.1155/2020/8974763
    [33] S. Tang, B. Tang, A. Wang, Y. Xiao, Holling Ⅱ predatorCprey impulsive semi-dynamic model with complex Poincare map, Nonlinear Dyn., 81 (2015), 1575–1596. https://doi.org/10.1007/s11071-015-2092-3 doi: 10.1007/s11071-015-2092-3
    [34] Y. Tian, K. Sun, L. Chen, Geometric approach to the stability analysis of the periodic solution in a semi-continuous dynamic system, Int. J. Biomath., 7 (2014), 157–163. https://doi.org/10.1142/S1793524514500181 doi: 10.1142/S1793524514500181
    [35] P. Feketa, V. Klinshov, L. L. Cken, A survey on the modeling of hybrid behaviors: how to account for impulsive jumps properly, Commun. Nonlinear Sci. Numer. Simul., 1 (2021), 105955. https://doi.org/10.1016/j.cnsns.2021.105955 doi: 10.1016/j.cnsns.2021.105955
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1213) PDF downloads(59) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog