Taking into account the impacts of the fear by predator, anti-predation response, refuge for prey, additional food supplement for predator and the delayed fear induced by the predator, we establish a delayed predator-prey model in this paper. We analyze the persistence and extinction of species and the existence and uniqueness of a coexistence fixed point. Particularly, we investigate the local asymptotic stability of the equilibrium by use of the characteristic equation theory of a variational matrix. Applying the Hopf bifurcation theorem, we investigate and obtain the bifurcation thresholds of the parameters of fear, refuge coefficient, the quality and quantity of additional food and the anti-predation delayed response produced by prey. Finally we give some examples to verify our theoretical findings and clarify the detailed influences of these parameters on the system dynamics. The main conclusions reveal that these parameters play an important role in the long-term behaviors of species and should be applied correctly to preserve the continuous development of species.
Citation: Yuanfu Shao. Bifurcations of a delayed predator-prey system with fear, refuge for prey and additional food for predator[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 7429-7452. doi: 10.3934/mbe.2023322
Taking into account the impacts of the fear by predator, anti-predation response, refuge for prey, additional food supplement for predator and the delayed fear induced by the predator, we establish a delayed predator-prey model in this paper. We analyze the persistence and extinction of species and the existence and uniqueness of a coexistence fixed point. Particularly, we investigate the local asymptotic stability of the equilibrium by use of the characteristic equation theory of a variational matrix. Applying the Hopf bifurcation theorem, we investigate and obtain the bifurcation thresholds of the parameters of fear, refuge coefficient, the quality and quantity of additional food and the anti-predation delayed response produced by prey. Finally we give some examples to verify our theoretical findings and clarify the detailed influences of these parameters on the system dynamics. The main conclusions reveal that these parameters play an important role in the long-term behaviors of species and should be applied correctly to preserve the continuous development of species.
[1] | A. Lotka, Elements of Mathematical Biology, Dover Publications, New York, 1956. |
[2] | V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, C. Ferrari, Venezia, 1927. |
[3] | Z. Ma, S. Wang, A delay-induced predator-prey model with holling type functional response and habitat complexity, Nonlinear Dynam., 93 (2018), 1519–1544. http://dx.doi.org/10.1007/s11071-018-4274-2 doi: 10.1007/s11071-018-4274-2 |
[4] | Y. Shao, Y. Li, Dynamical analysis of a stage structured predator-prey system with impulsive diffusion and generic functional response, Appl. Math. Comput., 220 (2013), 472–481. https://doi.org/10.1016/j.amc.2013.05.063 doi: 10.1016/j.amc.2013.05.063 |
[5] | J. Tripathi, S. Tyagi, S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonlinear Sci. Numer. Simul., 30 (2015), 45–69. https://doi.org/10.1016/j.cnsns.2015.06.00 doi: 10.1016/j.cnsns.2015.06.00 |
[6] | J. Roy, D. Barman, S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment, BioSystems, 197 (2020), 104176. https://doi.org/10.1016/j.biosystems.2020.104176 doi: 10.1016/j.biosystems.2020.104176 |
[7] | A. Das, G. P. Samanta, Modelling the fear effect in a two-species predator-prey system under the influence of toxic substances, Rend. Circolo Mat. Palermo Ser., 70 (2021), 1501–1526. https://doi.org/10.1007/s12215-020-00570-x doi: 10.1007/s12215-020-00570-x |
[8] | H. K. Qi, X. Z. Meng, Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect, Appl. Math. Lett., 113 (2021), 106846. https://doi.org/10.1016/j.aml.2020.106846 doi: 10.1016/j.aml.2020.106846 |
[9] | S. Creel, D. Christianson, S. Liley, J. A. Winnie, Predation risk affects reproductive physiology and demography of elk, Science, 315 (2007), 960. https://doi.org/10.1126/science.1135918 doi: 10.1126/science.1135918 |
[10] | R. Boonstra, D. Hik, G. R. Singleton, A, Tinnikov, The impact of predator-induced stress on the snowshoe hare, Cycle Ecol. Monogr., 68 (1998), 371–394. https://doi.org/10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2 doi: 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2 |
[11] | K. B. Altendorf, J. W. Laundre, C. A. L. Gonzalez, J. S. Brown, Assessing effects of predation risk on foraging behavior of mule deer, J. Mammal., 82 (2001), 430–439. |
[12] | X. Wang, L. Y. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1 |
[13] | J. P. Suraci, M. Clinchy, L. M. Dill, C. Roberts, L. Y. Zanette, Fear of large carnivores causes a trophic cascade, Nat. Commun., 2016 (2016), 10698. https://doi.org/10.1038/ncomms10698 doi: 10.1038/ncomms10698 |
[14] | M. Das, G. P. Samanta, A prey-predator fractional order model with fear effect and group defense, Int. J. Dyn. Control, 9 (2021), 334–349. https://doi.org/10.1007/s40435-020-00626-x doi: 10.1007/s40435-020-00626-x |
[15] | M. Das, G. P. Samanta, A delayed fractional order food chain model with fear effect and prey refuge, Math. Comput. Simul., 178 (2020), 218–245. https://doi.org/10.1016/j.matcom.2020.06.015 doi: 10.1016/j.matcom.2020.06.015 |
[16] | J. P. Tripathi, S. Abbas, M. Thakur, Dynamical analysis of a prey-predator model with Beddington-DeAngelis type function response incorporating a prey refuge, Nonlinear Dyn., 80 (2015), 177–196. https://doi.org/10.1007/s11071-014-1859-2 doi: 10.1007/s11071-014-1859-2 |
[17] | A. Das, G. P. Samanta, A prey-predator model with refuge for prey and additional food for predator in a fluctuating environment, Phys. A, 538 (2020), 122844. https://doi.org/10.1016/j.physa.2019.122844 doi: 10.1016/j.physa.2019.122844 |
[18] | M. S. Lambert, Control of norway rats in the agricultural environment: Alternatives to rodenticide use, Ph. D thesis, University of Leicester, 2003. |
[19] | K. L. Pangle, S. D. Peacor, O. E. Johannsson, Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate, Ecology, 88 (2007), 402–412. https://doi.org/10.1890/06-0768 doi: 10.1890/06-0768 |
[20] | M. M. Mullin, E. F. Stewart, F. J. Fuglister, Ingestion by planktonic grazers as a function of concentration of food, Limnol. Oceanogr, 20 (1975), 259–262. https://doi.org/10.4319/lo.1975.20.2.0259 doi: 10.4319/lo.1975.20.2.0259 |
[21] | Y. Wang, J. Wang, Influence of prey refuge on predator-prey dynamics, Nonlinear Dyn., 67 (2012), 191–201. https://doi.org/10.1007/s11071-011-9971-z doi: 10.1007/s11071-011-9971-z |
[22] | A. Das, G. P. Samanta, Stochastic prey-predator model with additional food for predator, Phys. A, 512 (2018), 121–141. https://doi.org/10.1016/j.physa.2018.08.138 doi: 10.1016/j.physa.2018.08.138 |
[23] | A. Das, G. P. Samanta, Modelling the fear effect on a stochastic prey-predator system with additional food for predator, J. Phys. A Math. Theor., 51 (2018), 465601. https://doi.org/10.1088/1751-8121/aae4c6 doi: 10.1088/1751-8121/aae4c6 |
[24] | T. P. Sullivan, W. Klenner, Influence of diversionary food on red squirrel populations and damage to crop trees in young lodgepole pine forest, Ecol. Appl., 3 (1993), 708–718. http://dx.doi.org/10.2307/1942102 doi: 10.2307/1942102 |
[25] | M. R. Wade, M. P. Zalucki, S. D. Wratten, A. Robinson, Conservation biological control of arthropods using artificial food sprays, Biol. Control, 45 (2008), 185–199. http://dx.doi.org/10.1016/j.biocontrol.2007.10.024 doi: 10.1016/j.biocontrol.2007.10.024 |
[26] | S. Mondal, A. Maiti, G. P. Samanta, Effects of fear and additional food in a delayed predator-prey model, Biophys. Rev. Lett., 13 (2019), 157–177. https://doi.org/10.1142/S1793048018500091 doi: 10.1142/S1793048018500091 |
[27] | Moorland Working Group, Diversionary feeding of hen harriers on grouse moors a practical guide, Scottish Natural Heritage, 1999. |
[28] | P. D. N. Srinivasu, D. K. K. Vamsi, V. S. Ananth, Additional food supplements as a tool for biological conservation of predator-prey systems involving type III functional response: A qualitative and quantitative investigation, J. Theor. Biol., 455 (2018), 303–318. https://doi.org/10.1016/j.jtbi.2018.07.019 doi: 10.1016/j.jtbi.2018.07.019 |
[29] | K. D. Prasad, B. Prasad, Qualitative analysis of additional food provided predator-prey system with anti-predator behavior in prey, Nonlinear Dynam., 96 (2019), 1765–1793. https://doi.org/10.1007/s11071-019-04883-0 doi: 10.1007/s11071-019-04883-0 |
[30] | A. Martin, S. Ruan, Predator-prey models with delay and prey harvesting, J. Math. Biol., 43 (2001), 247–267. https://doi.org/10.1007/s002850100095 doi: 10.1007/s002850100095 |
[31] | P. Pandaya, S. Samantab, N. Palc, J. Chattopadhyaya, Delay induced multiple stability switch and chaos in a predator-prey model with fear effect, Math. Comput. Simul., 172 (2020), 134–158. https://doi.org/10.1016/j.matcom.2019.12.015 doi: 10.1016/j.matcom.2019.12.015 |
[32] | D. Sahoo, G. P. Samanta, Comparison between two tritrophic food chain models with multiple delays and anti-predation effect, Int. J. Biomath., 14 (2021), 2150010. https://doi.org/10.1142/S1793524521500108 doi: 10.1142/S1793524521500108 |
[33] | Y. Kuang, Delay Differential Equation with Application in Population Dynamics, Academic Press, 1993. |
[34] | W. Kong, Y. F. Shao, The long time behavior of equilibrium status of a predator-prey system with delayed fear in deterministic and stochastic scenarios, J. Math., 2022 (2022), 3214358. https://doi.org/10.1155/2022/3214358 doi: 10.1155/2022/3214358 |
[35] | B. K. Das, D. Sahoo, G. P. Samanta, Impact of fear in a delay-induced predator–prey system with intraspecific competition within predator species, Math. Comput. Simul., 191 (2022), 134–156. https://doi.org/10.1016/j.matcom.2021.08.005 doi: 10.1016/j.matcom.2021.08.005 |
[36] | Y. F. Shao, Global stability of a delayed predator-prey system with fear and Holling-type II functional response in deterministic and stochastic environments, Math. Comput. Simul., 200 (2022), 65–77. https://doi.org/10.1016/j.matcom.2022.04.013 doi: 10.1016/j.matcom.2022.04.013 |
[37] | R. K. Upadhyay, A. Mukhopadhyay, S. R. K. Iyengar, Influence of environmental noise on the dynamics of a realistic ecological model, Fluct. Noise Lett., 7 (2007), 61–77. https://doi.org/10.1142/S0219477507003696 doi: 10.1142/S0219477507003696 |
[38] | Q. Liu, D. Q. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic predator-prey model with stage structure for predator and Holling type II functional response, J. Nonlinear Sci., 28 (2018), 1151–1187. https://doi.org/10.1007/s00332-018-9444-3 doi: 10.1007/s00332-018-9444-3 |
[39] | C. Xu, M. Liao, P. Li, Y. Guo, Z. Liu, Bifurcation properties for fractional order delayed BAM neural networks, Cognit. Comput., 13 (2021), 322–356. https://doi.org/10.1007/s12559-020-09782-w doi: 10.1007/s12559-020-09782-w |
[40] | C. Xu, D. Mu, Z. Liu, Y. Pang, M. Liao, P. Li, et al., Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks, Nonlinear Anal. Model. Control, 27 (2022), 1–24. https://doi.org/10.15388/namc.2022.27.28491 doi: 10.15388/namc.2022.27.28491 |