An original mathematical model describing the photo fermentation process is proposed. The model represents the first attempt to describe the photo fermentative hydrogen production and polyhydroxybutyrate accumulation, simultaneously. The mathematical model is derived from mass balance principles and consists of a system of ordinary differential equations describing the biomass growth, the nitrogen and the substrate degradation, the hydrogen and other catabolites production, and the polyhydroxybutyrate accumulation in photo fermentation systems. Moreover, the model takes into account important inhibiting phenomena, such as the self-shading and the substrate inhibition, which can occur during the evolution of the process. The calibration was performed using a real experimental data set and it was supported by the results of a sensitivity analysis study. The results showed that the most sensitive parameters for both hydrogen and PHB production were the hydrogen yield on substrate, the catabolites yield on substrate, and the biomass yield. Successively, a different experimental data set was used to validate the model. Performance indicators showed that the model could efficiently be used to simulate the photo fermentative hydrogen and polyhydroxybutyrate production by Rhodopseudomonas palustris. For instance, the index of agreement of 0.95 was observed for the validated hydrogen production trend. Moreover, the model well predicted the maximum PHB accumulation in bacterial cells. Indeed, the predicted and observed accumulated PHB were 4.5 and 4.8%, respectively. Further numerical simulations demonstrated the model consistency in describing process inhibiting phenomena. Numerical simulations showed that the acetate and nitrogen inhibition phenomena take place when concentrations are higher than 12.44 g L-1 and lower than 4.76 mg L-1, respectively. Finally, the potential long term hydrogen production from accumulated polyhydroxybutyrate in bacterial cells was studied via a fast-slow analysis technique.
Citation: Grazia Policastro, Vincenzo Luongo, Luigi Frunzo, Nick Cogan, Massimiliano Fabbricino. A mechanistic mathematical model for photo fermentative hydrogen and polyhydroxybutyrate production[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 7407-7428. doi: 10.3934/mbe.2023321
An original mathematical model describing the photo fermentation process is proposed. The model represents the first attempt to describe the photo fermentative hydrogen production and polyhydroxybutyrate accumulation, simultaneously. The mathematical model is derived from mass balance principles and consists of a system of ordinary differential equations describing the biomass growth, the nitrogen and the substrate degradation, the hydrogen and other catabolites production, and the polyhydroxybutyrate accumulation in photo fermentation systems. Moreover, the model takes into account important inhibiting phenomena, such as the self-shading and the substrate inhibition, which can occur during the evolution of the process. The calibration was performed using a real experimental data set and it was supported by the results of a sensitivity analysis study. The results showed that the most sensitive parameters for both hydrogen and PHB production were the hydrogen yield on substrate, the catabolites yield on substrate, and the biomass yield. Successively, a different experimental data set was used to validate the model. Performance indicators showed that the model could efficiently be used to simulate the photo fermentative hydrogen and polyhydroxybutyrate production by Rhodopseudomonas palustris. For instance, the index of agreement of 0.95 was observed for the validated hydrogen production trend. Moreover, the model well predicted the maximum PHB accumulation in bacterial cells. Indeed, the predicted and observed accumulated PHB were 4.5 and 4.8%, respectively. Further numerical simulations demonstrated the model consistency in describing process inhibiting phenomena. Numerical simulations showed that the acetate and nitrogen inhibition phenomena take place when concentrations are higher than 12.44 g L-1 and lower than 4.76 mg L-1, respectively. Finally, the potential long term hydrogen production from accumulated polyhydroxybutyrate in bacterial cells was studied via a fast-slow analysis technique.
[1] | G. Pagliano, V. Ventorino, A. Panico, O. Pepe, Integrated systems for biopolymers and bioenergy production from organic waste and by-products: A review of microbial processes, Biotechnol. Biofuels, 10 (2017), 1–24. https://doi.org/10.1186/s13068-017-0802-4 doi: 10.1186/s13068-017-0802-4 |
[2] | A. Ghimire, S. Valentino, L. Frunzo, F. Pirozzi, P. N. L. Lens, G. Esposito, Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures, Bioresour. Technol., 217 (2016), 157–164. https://doi.org/10.1016/j.biortech.2016.03.017 doi: 10.1016/j.biortech.2016.03.017 |
[3] | V. Luongo, A. Ghimire, L. Frunzo, M. Fabbricino, G. d'Antonio, F. Pirozzi, et al., Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products, Bioresour. Technol., 228 (2017), 171–175. https://doi.org/10.1016/j.biortech.2016.12.079 doi: 10.1016/j.biortech.2016.12.079 |
[4] | D. Ghosh, I. F. Sobro, P. C. Hallenbeck, Stoichiometric conversion of biodiesel derived crude glycerol to hydrogen: Response surface methodology study of the effects of light intensity and crude glycerol and glutamate concentration, Bioresour. Technol., 106 (2012), 154–160. https://doi.org/10.1016/j.biortech.2011.12.021 doi: 10.1016/j.biortech.2011.12.021 |
[5] | D. Das, T. N. Veziroglu, Advances in biological hydrogen production processes, Int. J. Hydrogen Energy, 33 (2008), 6046–6057. https://doi.org/10.1016/j.ijhydene.2008.07.098 doi: 10.1016/j.ijhydene.2008.07.098 |
[6] | N. Basak, D. Das, The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art, World J. Microbiol. Biotechnol., 23 (2007), 31–42. https://doi.org/10.1007/s11274-006-9190-9 doi: 10.1007/s11274-006-9190-9 |
[7] | I. Monroy, E. Guevara-López, G. Buitrón, A mechanistic model supported by data-based classification models for batch hydrogen production with an immobilized photo-bacteria consortium, Int. J. Hydrogen Energy, 41 (2016), 22802–22811. https://doi.org/10.1016/j.ijhydene.2016.10.100 doi: 10.1016/j.ijhydene.2016.10.100 |
[8] | V. Luongo, M. R. Mattei, L. Frunzo, B. D'Acunto, K. Gupta, S. Chellam, et al., A transient biological fouling model for constant flux microfiltration, Math. Biosci. Eng., 20 (2021), 1274–1296. https://doi.org/10.3934/mbe.2023058 doi: 10.3934/mbe.2023058 |
[9] | F. Russo, A. Tenore, M. R. Mattei, L. Frunzo, Multiscale modelling of the start-up process of anammox-based granular reactors, Math. Biosci. Eng., 19 (2022), 10374–10406. https://doi.org/10.3934/mbe.2022486 doi: 10.3934/mbe.2022486 |
[10] | J. D. Padilla-de la-Rosa, M. A. Garćia-Raḿirez, A. C. Gschaedler-Mathis, A. I. Ǵomez-Guzḿan, J. R. Soĺis-Pacheco, O. Gonźalez-Reynoso, Estimation of metabolic fluxes distribution in Saccharomyces cerevisiae during the production of volatile compounds of Tequila, Math. Biosci. Eng., 18 (2021), 5094–5113. https://doi.org/10.3934/mbe.2021259 doi: 10.3934/mbe.2021259 |
[11] | H. J. Dudley, Z. J. Ren, D. M. Bortz, Competitive exclusion in a DAE model for microbial electrolysis cells, Math. Biosci. Eng., 17 (2020), 6217–6239. https://doi.org/10.3934/mbe.2020329 doi: 10.3934/mbe.2020329 |
[12] | A. Tenore, M. R. Mattei, L. Frunzo, Modelling the ecology of phototrophic-heterotrophic biofilms, Commun. Nonlinear Sci. Numer. Simul., 94 (2021), 105577. https://doi.org/10.1016/j.cnsns.2020.105577 doi: 10.1016/j.cnsns.2020.105577 |
[13] | F. Russo, V. Luongo, M. R. Mattei, L. Frunzo, Mathematical modeling of metal recovery from E-waste using a dark-fermentation-leaching process, Sci. Rep., 12 (2022), 1–17. https://doi.org/10.1038/s41598-022-08106-2. doi: 10.1038/s41598-022-08106-2 |
[14] | S. Sobieszek, M. J. Wade, G. S. K. Wolkowicz, Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow, Math. Biosci. Eng., 17 (2020), 7045–7073. https://doi.org/10.3934/mbe.2020363 doi: 10.3934/mbe.2020363 |
[15] | Y. Z. Wang, Q. Liao, X. Zhu, J. Li, D. J. Lee, Effect of culture conditions on the kinetics of hydrogen production by photosynthetic bacteria in batch culture, Int. J. Hydrogen Energy, 36 (2011), 14004–14013. https://doi.org/10.1016/j.ijhydene.2011.04.005 doi: 10.1016/j.ijhydene.2011.04.005 |
[16] | G. Policastro, V. Luongo, L. Frunzo, M. Fabbricino, A comprehensive review of mathematical models of photo fermentation, Crit. Rev. Biotechnol., 41 (2021), 628–648. https://doi.org/10.1080/07388551.2021.1873241 doi: 10.1080/07388551.2021.1873241 |
[17] | J. Obeid, J. P. Magnin, J. M. Flaus, O. Adrot, J. C. Willison, R. Zlatev, Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus, Int. J. Hydrogen Energy, 34 (2009), 180–185. https://doi.org/10.1016/j.ijhydene.2008.09.081 doi: 10.1016/j.ijhydene.2008.09.081 |
[18] | P. Sevinç, U. Gündüz, I. Eroglu, M. Yücel, Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus, Int. J. Hydrogen Energy, 37 (2012), 16430–16436. https://doi.org/10.1016/j.ijhydene.2012.02.176 |
[19] | V. Gadhamshetty, A. Sukumaran, N. Nirmalakhandan, M. T. Myint, Photofermentation of malate for biohydrogen production-A modeling approach, Int. J. Hydrogen Energy, 33 (2008), 2138–2146. https://doi.org/10.1016/j.ijhydene.2008.02.046 doi: 10.1016/j.ijhydene.2008.02.046 |
[20] | D. Puyol, E. M. Barry, T. Hülsen, D. J. Batstone, A mechanistic model for anaerobic phototrophs in domestic wastewater applications: Photo-anaerobic model (PAnM), Water Res., 116 (2017), 241–253. https://doi.org/10.1016/j.watres.2017.03.022 doi: 10.1016/j.watres.2017.03.022 |
[21] | A. Reungsang, N. Zhong, Y. Yang, S. Sittijunda, A. Xia, Q. Liao, Hydrogen from photo fermentation, in Bioreactors for Microbial Biomass and Energy Conversion, Springer, Singapore, (2018), 221–317. https://doi.org/10.1007/978-981-10-7677-0_7 |
[22] | A. Adessi, R. De Philippis, Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: A review, Int. J. Hydrogen Energy, 39 (2014), 3127–3141. https://doi.org/10.1016/j.ijhydene.2013.12.084 doi: 10.1016/j.ijhydene.2013.12.084 |
[23] | V. Montiel-Corona, S. Revah, M. Morales, Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: Effect of flushing method, bicarbonate addition, and outdoor-indoor conditions, Int. J. Hydrogen Energy, 40 (2015), 9096–9105. https://doi.org/10.1016/j.ijhydene.2015.05.067 |
[24] | C. Z. Lazaro, M. Bosio, J. D. S. Ferreira, M. B. A. Varesche, E. L. Silva, The biological hydrogen production potential of agroindustrial residues, Waste Biomass Valorization, 6 (2015), 273–280. https://doi.org/10.1007/s12649-015-9353-8 doi: 10.1007/s12649-015-9353-8 |
[25] | X. Wang, Y. Fang, Y. Wang, J. Hu, A. Zhang, X. Ma, et al., Single-stage photo-fermentative hydrogen production from hydrolyzed straw biomass using Rhodobacter sphaeroides, Int. J. Hydrogen Energy, 43 (2018), 13810–13820. https://doi.org/10.1016/j.ijhydene.2018.01.057 doi: 10.1016/j.ijhydene.2018.01.057 |
[26] | A. Adessi, R. De Philippis, Hydrogen production: photofermentation, in Microbial Technologies in Advanced Biofuels Production, Springer, Boston, USA, (2012), 53–75. https://doi.org/10.1007/978-1-4614-1208-3_4 |
[27] | D. Zhang, N. Xiao, K. T. Mahbubani, E. A. del Rio-Chanona, N. K. H. Slater, V. S. Vassiliadis, Bioprocess modelling of biohydrogen production by Rhodopseudomonas palustris: Model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency, Chem. Eng. Sci., 130 (2015), 68–78. https://doi.org/10.1016/j.ces.2015.02.045 doi: 10.1016/j.ces.2015.02.045 |
[28] | Y. T. Chen, S. C. Wu, C. M. Lee, Relationship between cell growth, hydrogen production and poly-β-hydroxybutyrate (PHB) accumulation by Rhodopseudomonas palustris WP3-5, Int. J. Hydrogen Energy, 37 (2012), 13887–13894. https://doi.org/10.1016/j.ijhydene.2012.06.024 doi: 10.1016/j.ijhydene.2012.06.024 |
[29] | E. Touloupakis, E. G. Poloniataki, D. F. Ghanotakis, P. Carlozzi, Production of biohydrogen and/or poly-β-hydroxybutyrate by Rhodopseudomonas sp. using various carbon sources as substrate, Appl. Biochem. Biotechnol., 193 (2021), 307–318. https://doi.org/10.1007/s12010-020-03428-1 doi: 10.1007/s12010-020-03428-1 |
[30] | S. C. Wu, S. Z. Liou, C. M. Lee, Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5, Bioresour. Technol., 113 (2012), 44–50. https://doi.org/10.1016/j.biortech.2012.01.090 doi: 10.1016/j.biortech.2012.01.090 |
[31] | G. Policastro, V. Luongo, M. Fabbricino, Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: Effect of substrate concentration and nitrogen source, J. Environ. Manage., 271 (2020), 111006. https://doi.org/10.1016/j.jenvman.2020.111006 doi: 10.1016/j.jenvman.2020.111006 |
[32] | H. Koku, I. Eroǧlu, U. Gündüz, M. Yücel, L. Türker, Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001, Int. J. Hydrogen Energy, 28 (2003), 381–388. https://doi.org/10.1016/S0360-3199(02)00080-0 doi: 10.1016/S0360-3199(02)00080-0 |
[33] | D. J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G. Pavolostathis, A. Rozzi, et al., The IWA anaerobic digestion model no 1 (ADM1), Water Sci. Technol., 45 (2002), 65–73. https://doi.org/10.2166/wst.2002.0292 doi: 10.2166/wst.2002.0292 |
[34] | P. Carlozzi, A. Sacchi, Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor, J. Biotechnol., 88 (2001), 239–249. https://doi.org/10.1016/S0168-1656(01)00280-2 |
[35] | G. Sin, D. J. W. De Pauw, S. Weijers, P. A. Vanrolleghem, An efficient approach to automate the manual trial and error calibration of activated sludge models, Biotechnol. Bioeng., 100 (2008), 516–528. https://doi.org/10.1002/bit.21769 doi: 10.1002/bit.21769 |
[36] | J. C. Refsgaard, B. Storm, Construction, calibration and validation of hydrological models, in Distributed Hydrological Modelling, Springer, Dordrecht, (1990), 41–54. https://doi.org/10.1007/978-94-009-0257-2_3 |
[37] | J. Cariboni, D. Gatelli, R. Liska, A. Saltelli, The role of sensitivity analysis in ecological modelling, Ecol. Modell., 203 (2007), 167–182. https://doi.org/10.1016/j.ecolmodel.2005.10.045 doi: 10.1016/j.ecolmodel.2005.10.045 |
[38] | D. B. Panaro, L. Frunzo, M. R. Mattei, V. Luongo, G. Esposito, Calibration, validation and sensitivity analysis of a surface-based ADM1 model, Ecol. Modell., 460 (2021), 109726. https://doi.org/10.1016/j.ecolmodel.2021.109726 doi: 10.1016/j.ecolmodel.2021.109726 |
[39] | V. M. G. Molla, Sensitivity Analysis for ODEs and DAEs, MATLAB Central File Exchange, 2022. Available from: https://www.mathworks.com/matlabcentral/fileexchange/1480-sensitivity-analysis-for-odes-and-daes. |
[40] | G. Policastro, M. Giugliano, V. Luongo, R. Napolitano, M. Fabbricino, Carbon catabolite repression occurrence in photo fermentation of ethanol-rich substrates, J. Environ. Manage., 297 (2021), 113371. https://doi.org/10.1016/j.jenvman.2021.113371 doi: 10.1016/j.jenvman.2021.113371 |
[41] | L. Akbari, B. M. Vaziri, Comprehensive modeling of photo-fermentation process for prediction of hydrogen production, Int. J. Hydrogen Energy, 42 (2017), 14449–14457. https://doi.org/10.1016/j.ijhydene.2017.04.119 doi: 10.1016/j.ijhydene.2017.04.119 |
[42] | J. Wang, W. Wan, Kinetic models for fermentative hydrogen production: A review, Int. J. Hydrogen Energy, 34 (2009), 3313–3323. https://doi.org/10.1016/j.ijhydene.2009.02.031 doi: 10.1016/j.ijhydene.2009.02.031 |
[43] | J. B. McKinlay, Y. Oda, M. Ruhl, A. L. Posto, U. Sauer, C. S. Harwood, Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle, J. Biol. Chem., 289 (2014), 1960–1970. https://doi.org/10.1074/jbc.M113.527515 doi: 10.1074/jbc.M113.527515 |
[44] | J. de Jesús Franco-León, E. Arriola-Guevara, L. A. Suárez-Hernández, G. Toriz, G. Guatemala-Morales, R. I. Corona-González, Influence of supplemented nutrients in tequila vinasses for hydrogen and polyhydroxybutyrate production by photofermentation with Rhodopseudomonas pseudopalustris, Bioresour. Technol., 329 (2021), 124865. https://doi.org/10.1016/j.biortech.2021.124865 doi: 10.1016/j.biortech.2021.124865 |
[45] | C. Guillevin, R. Guillevin, A. Miranville, A. Perrillat-Mercerot, Analysis of a mathematical model for brain lactate kinetics, Math. Biosci. Eng., 15 (2018), 1225–1242. https://doi.org/10.3934/mbe.2018056 doi: 10.3934/mbe.2018056 |
[46] | J. Keener, J. Sneyd, Mathematical Physiology, Ⅱ: Systems Physiology, Springer, New York, USA, 2009. https://doi.org/10.1007/978-0-387-79388-7_2 |