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Abstract: This paper proposes and studies a comprehensive control model that considers fish
population density and its current growth rate, providing new ideas for fishing strategies. First, we
established a phytoplankton-fish model with state-impulse feedback control based on fish density and
rate of change. Secondly, the complex phase sets and impulse sets of the model are divided into three
cases, then the Poincaré map of the model is defined and its complex dynamic properties are deeply
studied. Furthermore, some necessary and sufficient conditions for the global stability of the fixed
point (order-1 limit cycle) have been provided even for the Poincaré map. The existence conditions for
periodic solutions of order-k(k ≥ 2) are discussed, and the influence of dynamic thresholds on system
dynamics is shown. Dynamic thresholds depend on fish density and rate of change, i.e., the form of
control employed is more in line with the evolution of biological populations than in earlier studies.
The analytical method presented in this paper also plays an important role in analyzing impulse models
with complex phase sets or impulse sets.

Keywords: Poincaré map; current growth rate; population density of fish; impulse feedback control;
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1. Introduction

Phytoplankton is the primary producer of water, it not only provides natural live bait for fish directly
or indirectly, but also is the main producer of dissolved oxygen in water body, which is the basis of
water productivity. Its quantity determines the density of herbivorous zooplankton, and also determines
the output of herbivorous fish. Therefore, the amount of harvested adult fish yields basically depends
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on the phytoplankton density. Fish is not only a beneficial food source for human beings, but also an
important economic source for fishermen. So, it is of great significance to study phytoplankton-fish
models in Marine ecosystems. For example, the commercially valuable phytoplankton-fish predation
model proposed in [1] discusses the impact of different factors on the level of fishery. Recent studies [2–
5] suggest that persistent or overfishing of specific fish species may lead to the extinction of this species.
This prompted the researchers to conduct a more in-depth study of the dynamic properties of the fish
and their harvesting.

The basic mathematical tool for designing impulse control system is impulse differential equation
theory. Impulse control is a normal form of control based on impulse differential equations [6]. There
are many transient changes in nature, such as pest control, glucose regulation, vaccination, etc. [7–
9]. When these situations occur, they are not disordered, they develop and change with regularity.
To describe them, scholars put forward the time impulse differential equation [10, 11]. Not all the
changes are regular like green tide bursts, there are also some changes that are irregular and not limited
by time. Scholars from mathematics put forward the state impulse differential equation model to
describe them [12, 13]. In recent years, pulsed semi-continuous dynamical systems are widely used
in population dynamics [14, 15]. For example, Zeng et al. [16] generalized the Poincaré-Bendixon
theorem for ordinary differential equations, and explored the properties of order-1 periodic solutions
of predator-prey models with state feedback control. Chen et al. [17] first proposed the method of
applying successor functions to study the dynamical simplicity of semi-continuous dynamical systems.
Jiang et al. [18, 19] applied Poincaré map to obtain the existence and stability conditions of the order-
1 periodic solution of the impulsive semi-dynamic system. Hou et al. [20] investigated a class of
predator-prey models with shelter and nonlinear impulse feedback control using Poincaré map. Due
to the importance of pulsed semi-continuous dynamic systems in population, impulsive differential
equations have attracted more and more attention in recent years, and have been applied in various
fields from population dynamics to chemical regulation systems [21–28].

In previous studies, most existing models only consider population size, rather than population
growth rate, when proposing control strategies [29, 30]. Usually, when a population reaches a
threshold, the number of organisms released during the pulse is independent of population density. A
biological point of view, a fixed threshold cannot be combined with the actual situation of the
biological population to determine the control strategy. In reality, there are two situations of
population growth: 1) The population density is small, but the rate of change is high, which often
occurs in the early stage of population growth; 2) The population density is large, but the rate of
change is small. Therefore, the threshold of the model needs to consider both the population density
and the rate of change, which is more realistic. In the process of biological population control, it is
necessary to comprehensively consider different factors, so that the adopted control method is more in
line with the development law of biological populations [31]. Based on the above analysis, this paper
proposes and studies a comprehensive control model that comprehensively considers fish population
density and its current growth rate, and deeply studies the complex dynamic properties of the model,
showing the impact of dynamic thresholds on system dynamics.

The rest of this article is organized as follows: In Section 2, we present a new phytoplankton-
fish capture model with a new control strategy that takes into account the density of fish growth as
well as the current fish population. In Section 3, we construct the Poincaré map for the model, and
then analyze some properties of the Poincaré map. Then, in Section 4, we discuss the existence of
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periodic solutions of order-k(k ≥ 1) of the model, as well as the uniqueness and global stability of
periodic solutions of order-1. Then, some numerical simulations are performed in Section 5. Finally,
our findings are discussed in Section 6.

2. Model formulation

To formulate our model, we first introduce the following notations:

Table 1. Biological significance of parameters.

parameters biological significance
u (t) ∈ R+: the population of phytoplankton at time t ∈ R+
v (t) ∈ R+: the population of fish at time t ∈ R+
r: the intrinsic growth rate of phytoplankton
α: the absorption rate of phytoplankton by fish
β: the conversion rate of biomass
d: the mortality rate of fish
a: the rate at which phytoplankton release toxins
b: the half-saturation constant
H: the threshold at which fish are allowed to be caught
δ: the maximum capture rate,0 < δ < 1
γ: the half-saturation constant,γ > 0
τ: the reduced number of phytoplankton,τ > 0
θ: the morphology parameters,θ > 0

Furthermore let au
b+u represent the number of fish, due to the distribution of phytoplankton toxicants,

and all parameters are positive and 0 < δ < 1. Then, Li et al. proposed the following phytoplankton-
fish model with the impulsive feedback control [32]

du
dt = (r − αv(t))u(t),
dv
dt =

(
βu(t) − d − au(t)

b+u(t)

)
v(t),

 v < H,

u(t+) = u(t)
(
1 − δu(t)

u(t)+γ

)
v(t+) = v(t)− τ

1+θv(t) ,

 v = H,
(2.1)

Now, it is known that the state pulse capture strategy in (2.1) has certain shortcomings, as it only
considers the population size and does not consider the population growth rate. In addition, the control
of the pulse model in literature [33, 34] is also single. We propose a feedback control model that
considers both population density and population rate, which brings difficulties to the analysis of the
model. In literature [32–34], the pulse set and phase set are straight lines on the plane, while in this
paper, the phase set is a curve and the determination of phase set is complicated, which also adds a lot
of difficulties to the numerical simulation. More precisely, the control threshold is described by

a1v + b1
dv
dt
= H, (2.2)
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where a1 and b1 are positive constants, satisfying a1 + b1 = 1, and they are the weight coefficients
that control the rate of change in fish population and the rate of change in fish population density,
respectively. In real life, we should fish reasonably when a1v+ b1

dv
dt ≥ H is met. We only assumes that

fishing is carried out when a1v + b1
dv
dt = H is reached. Then, we reach a model in the following form:

du
dt = (r − αv(t))u(t),
dv
dt =

(
βu(t) − d − au(t)

b+u(t)

)
v(t),

 a1v + b1
dv
dt < H,

u(t+) = u(t)
(
1 − δu(t)

u(t)+γ

)
,

v(t+) = v(t)− τ
1+θv(t) ,

 a1v + b1
dv
dt = H,

(2.3)

which is known as a semi-continuous dynamic system [33, 35]. Without the feedback control, the
system (2.3) reduces to an ODE system du

dt = (r − αv(t))u(t),
dv
dt =

(
βu(t) − d − au(t)

b+u(t)

)
v(t).

(2.4)

According to reference [24], we know that system (2.4) has two equilibrium points in the range
of real numbers: a saddle point, O(0, 0) and a stable positive equilibrium E∗(u∗, v∗), if and only if,
(d + a − βb)2

≥ 4βbd and d + a > βb. Where,

v∗ =
r
α
, u∗ =

d + a − βb +
√

(d + a − βb)2 + 4βbd
2β

determined by the intersection of the two nullclines

L1 : ν =
r
α

; L2 : u =
d + a − βb +

√
(d + a − βb)2 + 4βbd

2β
.

Next, we construct the Poincaré map to investigate the dynamics of system (2.3).
[Note]:When du

dt < 0 and dv
dt < 0 , the growth rate of its phytoplankton and fish populations is

negative. Mathematically speaking, their numbers gradually decrease, and with the increase of time,
they will become extinct without control.

3. Poincaré map of system (2.3) and its properties

By using the Eq (2.2) and the second equation in (2.3), we obtain

v =
H

a1 + b1βu − b1d − ab1u
b+u

. (3.1)

From a biological point of view, we only consider the properties of the model in region R+2 = {(u, v), u ≥
0, v ≥ 0}. To reveal the properties of the Poincaré map, without loss of generality, we assume the initial
population size v+0 of the fish population satisfies

a1v+0 + b1
(
dv+0 /dt

)
< H,
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and the initial point
(
u+0 , v

+
0

)
satisfies

M(v) =
H

a1 + b1βσ(u) − b1d − ab1σ(u)
b+σ(u)

,

where M (v) = (θv−1)+
√

(θv−1)2+4θ(τ+v)
2θ . Then, in order to define the impulse set and phase set of the model,

we introduce the following sets:

ΣN =

{
(u, v), u ≥ 0, v ≥ 0,M(v) =

H

a1 + b1βσ(u) − b1d − ab1σ(u)
b+σ(u)

}
,

ΣM =

{
(u, v), u ≥ 0, v ≥ 0, v =

H

a1 + b1βu − b1d − ab1u
b+u

}
,

where

σ(u) =
−γ + u +

√
−4γδu + γ2 + 2γu + u2

2(1 − δ)
.

We further assume ΣN and ΣM intersect with L2 at A+ and A−, respectively, then assume ΣN and ΣM

intersect with x at B1
(
u1, 0

)
and B2

(
u2, 0

)
, respectively. Then, depending on the locations of ΣN and

v∗, namely, the positive equilibrium point, we can define the impulse set and phase set of the Poincaré
map.

3.1. Case I: v∗ ≥ H
a1+b1βu∗−b1d− ab1u∗

b+u∗

In this case, E∗ is above the impulse set ΣM (see Figure 1(a)). Thus, there exists a point T on the
ΣN , at which the trajectory of (2.3) is tangent to the ΣN . Denote the intersection between the trajectory
and ΣM by Q1. Then, we define the impulse set by

M1 =

 (u, v)| v =
H

a1 + b1βu − b1d − ab1u
b+u

, u ≥ uQ1

 ,
and the phase set by

N1 =

 (u, v)| v =
H

a1 + b1βσ(u) − b1d − ab1σ(u)
b+σ(u)

, u ≥ uQ1

(
1 −

δuQ1

uQ1 + γ

) .
3.2. Case II: v∗ < H

a1+b1βu∗−b1d− ab1u∗

b+u∗
and vW− >

H
a1+b1βσ(u∗)−b1d− ab1σ(u∗)

b+σ(u∗)

In this case, E∗ is below the impulse set ΣM (see Figure 1(b)). We first assume that ΓM is the
trajectory passing through M in the system. If there is a point W on the ΣM ,so that ΓW is just tangent
to the ΣM, when v∗ < H

a1+b1βu∗−b1d− ab1u∗

b+u∗
and vW− >

H
a1+b1βσ(u∗)−b1d− ab1σ(u∗)

b+σ(u∗)

, there must be a point T on the

ΣN so that ΓT is just tangent to the ΣN and ΓT tangent to the ΣM at the point Q2. Then, in this case, we
define the impulse set by
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M2 =

 (u, v)| v =
H

a1 + b1βu − b1d − ab1u
b+u

, u ≥ uQ2

 ,
and the corresponding phase set by

N2 =

 (u, v)| v =
H

a1 + b1βσ(u) − b1d − ab1σ(u)
b+σ(u)

, u ≥ uQ2

(
1 −

δuQ2

uQ2 + γ

) .

Figure 1. The phase set and impulsive set for Cases I, II and III, respectively.

3.3. Case III: vW− <
H

a1+b1βσ(u∗)−b1d− ab1σ(u∗)
b+σ(u∗)

In this case, E∗ is below the impulse set ΣM, as shown in Figure 1(c). Thus, there is a trajectory
denoted by ΓW− that is tangent to ΣM at W, and intersects the ΣN at point P1 and point P2, respectively.
Thus, we define the impulse set as

M3 =

 (u, v)| v =
H

a1 + b1βu − b1d − ab1u
b+u

, u ≥ uW

 ,
and the phase set as

N3 =

 (u, v)| v =
H

a1 + b1βσ(u∗) − b1d − ab1σ(u∗)
b+σ(u∗)

, u ∈
(
0, uP2

]
∪

[
uP1 ,+∞

) .
Based on the above defined impulse and phase sets, we are now ready to construct the Poincaré

map. To this end, let

A+k = (u+k , v
+
k ) =

u+k , H

a1 + b1βσ(u+k ) − b1d − ab1σ(u+k )
b+σ(u+k )

 ∈ ΣN ,
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where 0 < u+k < +∞, and define the trajectory

π
(
t, t0, A+k

) ∆
=

(
u(t, t0, A+k ), v(t, t0, A+k )

)
passing through A+k that will reach the ΣM at point Ak+1 (uk+1, vk+1) at time t1, where

vk+1 = v
(
t1, t0, (u+k , v

+
k )

)
=

H

a1 + b1βuk+1 − b1d − ab1uk+1
b+uk+1

.

Then, there is

u+k+1 = u

t1, t0,

u+k , H

a1+b1βσ(u+k )−b1d−
ab1σ(u+k )

b+σ(u+k )




∆
= u

u+k , H

a1+b1βσ(u+k )−b1d−
ab1σ(u+k )

b+σ(u+k )

 ∆= P(u+k ).

It means that u+k+1 is determined by u+k . Since point Ak+1 is on the impulse set, Ak+1 jump to point

A+k+1

u+k+1,
H

a1 + b1βσ(u+k+1) − b1d − ab1σ(u+k+1)
b+σ(u+k+1)

 ,
where

u+k+1 =

(
1 −

δuk+1

uk+1 + γ

)
uk+1 =

(
1 −

δP(u+k )
P(u+k ) + γ

)
P(u+k ) ∆= Gm(u+k ). (3.2)

From model (2.3), we obtain
du
dv
=

(r − αv)u
(βu − d − au

b+u )v
≜ w(u, v),

u

 H

a1 + b1βσ(u+k ) − b1d − ab1σ(u+k )
b+σ(u+k )

 = u+0 .
(3.3)

Let v+0 =
H

a1+b1βσ(u+k )−b1d−
ab1σ(u+k )

b+σ(u+k )

, u+0 = S , then we obtain that (u+0 , v
+
0 ) is in ΣN .

We define

u(v) = u

S , H

a1 + b1βσ(u+k ) − b1d − ab1σ(u+k )
b+σ(u+k )

 ∆= u(S , v).

Then, according to the model (3.2),

u(S , v) = S +
∫ v

H

a1+b1βσ(u+k )−b1d−
ab1σ(u+k )

b+σ(u+k )

ω(u(S , s), s)ds. (3.4)
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From Eqs (3.2) and (3.3), the Poincaré map expression of system (2.2) is

Gm(S ) =


1 −

δu

S , H

a1+b1βσ(u+k )−b1d−
ab1σ(u+k )

b+σ(u+k )


u

S , H

a1+b1βσ(u+k )−b1d−
ab1σ(u+k )

b+σ(u+k )

 + γ


u

S , H

a1 + b1βσ(u+k ) − b1d − ab1σ(u+k )
b+σ(u+k )

 . (3.5)

Then, we can show that it has the following properties in Theorem 3.1.

Theorem 3.1. If H
a1+b1βu∗−b1d− ab1u∗

b+u∗
< v∗, then the trajectory ΓT intersects with ΣM at point Q1(uQ1 , vQ1),

and we have:

(i) The domain of Gm(S ) is (0, u1), Gm(S ) is monotonically decreasing on (0, uT ], and monotonically
increasing on (uT , u1).

(ii) Gm(S ) is continuously differentiable on (0, u1).

(iii) When Gm(uT ) > uT , it has a unique fixed point on (uT ,+∞) (see Figure 2(b)). When Gm(uT ) < uT ,
it has a unique fixed point on (0, uT ) (see Figure 2(a)). When Gm(uT ) = uT , uT is the fixed point.

Figure 2. The Poincaré map Gm(S ) related to the impulsive point series S . The parameter
values are as follows: r = 1.444, α = 0.1, β = 0.1, d = 0.5, a = 0.1, b = 1, δ = 0.4, γ = 1.
(c)a1 = 0.8, b1 = 0.2, H = 16, θ = 0.6, τ = 16. (b)H = 15, θ = 1, τ = 18.

Proof. (i) Note that E∗(u∗, v∗) is a linear center and H
a1+b1βu∗−b1d− ab1u∗

b+u∗
< v∗. Taking any point A+k (u+k , v

+
k )

on ΣN , the trajectory ΓA+k
will reach the M1. So the domain of Gm(S ) is (0, u1).

For any u+k1
, u+k2
∈

[
uT , u1

)
, and where u+k1

< u+k2
, it is easy to get

µ(u+k1
, v+k1

) < µ(u+k2
, v+k1

),
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which implies that there is Gm(u+k1
) < Gm(u+k2

). Therefore, Gm(S ) is monotonically increasing on[
uT , u1

)
.

When u+k1
, u+k2
∈ (0, uT ), u+k1

< u+k2
. The trajectory ΓA+k1

from point A+k1

(
u+k1
, v+k1

)
and the trajectory ΓA+k2

from point A+k2

(
u+k2
, v+k2

)
will pass through L2 and intersect ΣN at points A+k11

(
u+k11
, v+k11

)
and A+k21

(
u+k21
, v+k21

)
,

respectively. Here u+ki1
(i = 1, 2) ∈

[
uT , u1

)
and u+k11

> u+k21
. It can be seen that Gm(u+k1

) > Gm(u+k2
).

Therefore, Gm(S ) is monotonically decreasing on (0, uT ).
(ii) Equation (3.2) suggests that w(u, v) is continuously differentiable. Thus, Gm(S ) is continuously

differentiable in the first quadrant.
(iii) When Gm(uT ) = uT , then uT is the fixed point of function Gm(S ).
If Gm(uT ) > uT , Gm(uT ) − uT > 0. Since 0 < δ < 1, there must be a value S ∗, such that

Gm(S ∗) = S ∗
(
1 −

δS ∗

S ∗ + γ

)
= S ∗

(
1 − δ −

δγ

S ∗ + γ

)
< S ∗ (1 − δ) < S ∗.

So there is at least one ũ ∈ (uT , S ∗), satisfying Gm(ũ) = ũ.
When Gm(uT ) < uT , let Gm(uT ) = u1 < uT . We know that Gm(S ) is monotonically decreasing on

(0, uT ], so Gm(u1) > Gm(uT ) = u1, and because Gm(uT ) < uT , so there is at least one ũ ∈ (u1, uT ),
satisfies Gm(ũ) = ũ.

From the above analysis, we know that Gm(S ) has at least one fixed point. Next, we prove the
uniqueness by contradiction. Assume the system has two fixed points, ũ1 and ũ2 respectively, so that
Gm(ũ1) = ũ1 and Gm(ũ2) = ũ2. Let ũ1 < ũ2, we define

dũ1ũ2 (u) = u(v, ũ2) − u(v, ũ1).

Differentiate the last equation with respect to t obtain

d′ũ1ũ2
(u) = u′(v, ũ2) − u′(v, ũ1)

= r−αv
v

[
ũ2

βũ2−d− aũ2
b+ũ2

−
ũ1

βũ1−d− aũ1
b+ũ1

]
.

Let

g (u) =
u

βu − d − au
b+u

,

then

g′ (u) =
−d − a

(
u

b+u

)2(
βu − d − au

b+u

)2 < 0,

so

g(ũ2) < g(ũ1),

that is

d′ũ1ũ2
(u) < 0,
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i.e.

dũ1ũ2(a1 + b1βσ(u+k ) − b1d −
ab1σ(u+k )
b + σ(u+k )

) > dũ1ũ2(a1 + b1βu+k − b1d −
ab1u+k
b + u+k

).

From system (2.3):

ũ1=µ (ũ1)
(
1 − δµ(ũ1)

µ(ũ1)+γ

)
= µ (ũ1)

(
1 − δ + δγ

µ(ũ1)+γ

)
=

[
µ (ũ2) − dũ1ũ2(a1 + b1βu+k − b1d − ab1u+k

b+u+k
)
] (

1 − δ + δγ

µ(ũ1)+γ

)
= µ (ũ2)

(
1 − δ + δγ

µ(ũ1)+γ

)
− dũ1ũ2(a1 + b1βu+k − b1d − ab1u+k

b+u+k
)
(
1 − δ + δγ

µ(ũ1)+γ

)
> µ (ũ2)

(
1 − δ + δγ

µ(ũ2)+γ

)
−

ũ1dũ1 ũ2 (a1+b1βu+k −b1d−
ab1u+k
b+u+k

)

µ(ũ1)

= ũ2 −
ũ1dũ1 ũ2 (a1+b1βu+k −b1d−

ab1u+k
b+u+k

)

µ(ũ1) ,

that is

ũ1dũ1ũ2(a1 + b1βu+k − b1d − ab1u+k
b+u+k

)

µ (ũ1)
> ũ2 − ũ1 = dũ1ũ2

(
a1 + b1βσ(u+k ) − b1d −

ab1σ(u+k )
b + σ(u+k )

)
.

It is easy to know that ũ1
µ(ũ1) < 1 if a1 + b1βu∗ − b1d − ab1u∗

b+u∗ < v∗, so

dũ1ũ2(a1 + b1βu+k − b1d − ab1u+k
b+u+k

)

>
ũ1dũ1 ũ2 (a1+b1βu+k −b1d−

ab1u+k
b+u+k

)

µ(ũ1)

> dũ1ũ2

(
a1 + b1βσ(u+k ) − b1d − ab1σ(u+k )

b+σ(u+k )

)
,

which is contradictory with

dũ1ũ2

(
a1 + b1βσ(u+k ) − b1d −

ab1σ(u+k )
b + σ(u+k )

)
> dũ1ũ2

(
a1 + b1βu+k − b1d −

ab1u+k
b + u+k

)
.

The fixed point is unique. □

When H
a1+b1βu∗−b1d− ab1u∗

b+u∗
> v∗ and ΓT intersects with ΣM (case II), Gm(S ) of system (2.3) has similar

properties with case I.

Theorem 3.2. Suppose H
a1+b1βu∗−b1d− ab1u∗

b+u∗
> v∗. Then, then trajectory ΓW− is tangent to ΣM at W and

intersect ΣN at point P1
(
uP1 , vP1

)
and point P2

(
uP2 , vP2

)
, respectively, where uP1 > uP2 . Furthermore,

Gm(S ) has the following properties:

(i) The domain of Gm(S ) is
(
0, uP2

]
∪

[
uP1 , u

1
)
, and Gm(S ) is monotonically decreasing on

(
0, uP2

]
and

monotonically increasing on
[
uP1 , u

1
)
.
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(ii) When Gm(uP2) ≤ uP2 , there is a unique fixed point on
(
0, uP2

]
(see Figure 3(a)). When Gm(uP2) >

uP2 , there is no fixed point (see Figure 3(b)).

Figure 3. The Poincaré map Gm(S ) related to the impulsive point series S . The parameter
values are as follows: r = 1.444, α = 0.1, β = 0.15, d = 0.5, a = 0.5, b = 1, γ = 1. (a)
a1 = 0.6, b1 = 0.4, H = 13, δ = 0.7, θ = 1, τ = 18. (b) a1 = 0.8, b1 = 0.2, H = 16, δ = 0.4,
θ = 0.6, τ = 65.

Proof. (i) Because E∗(u∗, v∗) is the center point, if H
a1+b1βu∗−b1d− ab1u∗

b+u∗
> v∗ and the trajectory ΓW− is

tangent to ΣM at W and intersect with the ΣN at point P1
(
uP1 , vP1

)
and point P2

(
uP2 , vP2

)
, respectively,

uP1 > uP2 . Then, take any point A+k (u+k , v
+
k ) in ΣN , if u+k ∈

(
0, uP2

]
∪

[
uP1 ,+∞

)
, the trajectory ΓA+k

will
reach the M3 at point Ak+1(uk, vk), if u+k ∈

(
uP2 , uP1

)
the ΓA+k

has no intersection with the M3. So the
domain of Gm(S ) is

(
0, uP2

]
∪

[
uP1 , u

1
)
.

For any u+k1
, u+k2
∈

[
uP1 , u

1
)

and u+k1
< u+k2

easy to get

µ(u+k1
, v+k1

) < µ(u+k2
, v+k2

),

so Gm(u+k1
) < Gm(u+k2

). Therefore, Gm(S ) is monotonically increasing on
[
uP1 , u

1
)
.

When u+k1
, u+k2

∈
(
0, uP2

]
, u+k1

< u+k2
. The trajectory from A+k1

(
u+k1
, v+k1

)
and A+k2

(
u+k2
, v+k2

)
will pass

through the L2 intersect with the ΣN at point A+k11

(
u+k11
, v+k11

)
and point A+k21

(
u+k21
, v+k21

)
, respectively. Then,

u+ki1
(i = 1, 2) ∈

[
u32, u1

)
and u+k11

> u+k21
. So Gm(u+k1

) > Gm(u+k2
), therefore, Gm(S ) is monotonically

decreasing on
(
0, uP2

]
.

(ii) Consider the relationship between Gm(uP2) and uP2:
(a) When Gm(uP2) ≤ uP2 (see Figure 3(a)), we assume Gm(uP2) = u1 ≤ uP2 . We know that Gm(S ) is
monotonically decreasing on (0, uP2], so Gm(uP2) ≥ Gm(uP2) = u1, and because Gm(uP2) ≤ uP2 , so there
is a point ũ ∈

(
u1, uP2

]
satisfies Gm(ũ) = ũ.

(b) When Gm(uP2) > uP2 (see Figure 3(b)), there is no ũ ∈
(
0, uP2

]
to satisfies Gm(ũ) = ũ.
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For any uk ∈
(
uP1 , u

1
)
, trajectory of point Ak(uk, vk) on ΣN is tangent to the ΣM at point A+k (u+k , v

+
k ).

The point A+k (u+k , v
+
k ) will be pulsed to Ak+1(uk+1, vk+1). To get uk+1 < u+k < uk, that is uk+1 , uk, so there

is no ũ ∈
(
uP1 , u

1
)

satisfies Gm(ũ) = ũ. □

4. The order-k (k ≥ 1) periodic solution of the semi-continuous dynamic system (2.3) and its
stability

Theorem 3.1 has proved that system (2.3) has a fixed point under certain conditions, that is, the
system has an order-1 periodic solution. Below, we will give more properties of the order-1 solution,
and also the existence of the order-k solutions.

Theorem 4.1. The order-1 periodic solution of system (2.3) is globally asymptotically stable if
H

a1+b1βu∗−b1d− ab1u∗

b+u∗
< v∗ and Gm(uQ1) > uQ1 .

Proof. When Gm(uQ1) > uQ1 , Gm(S ) has a fixed point ũ on (uQ1 , u
1), that is, Gm(ũ) = ũ from the (iii)

of Theorem 3.1. For any point A+0 (u+0 , v
+
0 ) in ΣN , where u+0 > uQ1 , ΓA+0

will intersect ΣM at the point
p+1 (u+1 , v

+
1 ), which is Gm(u+0 ) = u+1 , repeating the above process,

Gm(Gm(u+0 )) = G2
m(u+0 ),

that is,
Gm(u+1 ) = u+2 ,

further available,
u+n = Gn

m(u+0 ), n = 1, 2, · · ·

Then, we have the following three cases:
Case 1: uQ1 < u+0 ≤ ũ. Since Gm(uQ1) > uQ1 and Gm(S ) is monotonously increasing on (uQ1 ,+∞).

Let Gm(u+i ) = u+i+1 yields

u+0 < Gm(u+0 ) = u+1 ≤ Gm(ũ) = ũ,
u+0 < Gm(u+0 ) < Gm(u+1 ) = Gm

2(u+0 ) ≤ Gm(ũ) = ũ,

Following the same fashion, we obtain that

u+0 < Gm(u+0 ) < ... < Gn
m(u+0 ) < ... < ũ.

Then we can get

lim
n→+∞

Gm
n(u0

+) = ũ.

Case 2: ũ < u+0 < u1. In this case, we have

ũ = Gm(ũ) < Gm(u+0 ),

and

ũ = Gm(ũ) < Gm
2(u+0 ) < G(u+0 ).
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By mathematical induction,

ũ = Gm(ũ) < ... < Gm
n(u+0 ) < Gm

n−1(u+0 ) < · · ·

Thus,

lim
n→+∞

Gm
n(u0

+) = ũ.

Case 3: 0 < u+0 < uQ1 . Since Gm(uQ1) > uQ1 and Gm(S ) is decreasing on (0, uQ1), we obtain that
Gm(u+0 ) > Gm(uQ1) > uQ1 for any u+0 ∈ (0, uQ1). So, we can conclude that Gm(u+0 ) > uQ1 . When
uQ1 < Gm(u+0 ) < ũ, this is the situation in Case 1; when Gm(u+0 ) > ũ, this is Case 2 above.

Thus, we always have

lim
n→+∞

Gm
n(u0

+) = ũ.

The conclusion is proved. □

Theorem 4.2. The semi-continuous dynamical system (2.3) has a stable order-1 periodic solution or
an order-2 periodic solution when H

a1+b1βu∗−b1d− ab1u∗

b+u∗
< v∗, Gm(uQ1) < uQ1 and G2

m(uQ1) < uQ1 .

Proof. Take a point A+0 (u+0 , v
+
0 ) on ΣN . Since E∗ is a center point, ΓA+0

will intersect ΣM at point A1(u1, v1),
where u1 = µ(u+0 , v

+
0 ). p1 will reach point p+1 (u+1 , v

+
1 ) by an impulse, so Gm(u+0 ) = u+1 . Repeat the above

process
u+n = Gn

m(u+0 ) = Gm(Gn−1
m (u+0 )), (n = 1, 2, · · · ).

When uQ1 ≤ u+0 < u1, Gm(S ) is increasing on [uQ1 , u
1) and from the (i) of Theorem 3.1, we know there

is no fixed point on [uQ1 , u
1). Therefore, there is a positive integer i that satisfies

u+i−1 = Gm(u+i−2) < uQ1

and
u+i = Gm(u+i−1) < Gm(uQ1) < uQ1 .

When 0 < u+0 < uQ1 , the ΓA+0
will pass through the L2 and intersects the ΣN at p

′

0(u
′

0,H−
τ

1+θH ), where
0 < u

′

0 < uQ1 , this can be transformed into the above situation.
So, for any u+0 ∈ (0, u1), there always be i satisfies

Gm(uQ1) < Gm
i(u+0 ) < uQ1 (i ≥ 1).

So, we just consider the initial point p+0 (u+0 , v
+
0 ), where uQ1 ≤ u+0 < Gm(uQ1). Since Gm(S ) is

monotonically decreasing on [Gm(uQ1), uQ1], we have

Gm[Gm(uQ1), uQ1] ⊂ [Gm(uQ1), uQ1].

Let Gm(u+0 ) , u+0 and G2
m(u+0 ) , u+0 . Consider the following four situations:

Case I: uQ1 ≥ u+0 > Gm
2(u+0 ) > Gm(u+0 ) ≥ Gm(uQ1). According to the monotonicity of Gm(S ):

u+2 = Gm(u+1 ) > Gm(u+2 ) = u+3 > Gm(u+0 ) = u+1 ,
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furthermore,

u+4 = Gm(u+3 ) < Gm(u+0 ) = u+0 .

Thus, there is

uQ1 ≥ u+0 > u+2 > u+4 > u+3 > u+1 ≥ Gm(uQ1).

Proved by mathematical induction:

uQ1 ≥ u+0 > u+2 > ... > u+2n > u+2n+2 > ... > u+2n+1 > u+2n−1 > ... > u+1 ≥ Gm(uQ1).

Case II: uQ1 ≥ u+1 > u+0 > u+2 ≥ Gm(uQ1). Gm(S ) is monotonically decreasing on [Gm(uQ1), uQ1]. So,

u+3 = Gm(u+2 ) > Gm(u+0 ) = u+1 > Gm(u+1 ) = u+2 ,

and

u+4=Gm(u+3 ) < Gm(u+1 ) = u+2 < Gm(u+2 ) = u+3 ,

then

uQ1 ≥ u+3 > u+1 > u+0 > u+2 > u+4 ≥ G(uQ1),

so

uQ1 ≥ ... > u+2n+1 > u+2n−1 > ... > u+3 > u+1 > u+0 > u+2 > u+4 > ... > u+2n > ... ≥ G(uQ1).

Case III: uQ1 ≥ u+1 > u+2 > u+0 ≥ Gm(uQ1).
To get

uQ1 ≥ u+1 > u+3 > ... > u+2n−1 > ... > u+2n+1 > u+2n > ... > u+2 > u+0 ≥ Gm(uQ1).

Case IV: uQ1 ≥ u+2 > u+0 > u+1 ≥ Gm(uQ1).
This situation is similar to Case I, can get

Gm(uQ1) ≤ u+2n+1 < u+2n−1 < ... < u+1 < u+0 < u+2 < ... < u+2n < u+2n+1 < ... ≤ uQ1 .

For Case I and Case III, there is ũ ∈ (uQ1 ,Gm(uQ1)), so that

lim
n→∞

u2n
+ = lim

n→∞
u2n−1

+ = ũ,

That is to say, in these two cases, system (2.3) has a stable order-1 periodic solution.
For case II and case IV, ũ1 , ũ2 and

lim
n→∞

u2n−1
+ = ũ1,

lim
n→∞

u2n
+ = ũ2,

That is to say, system (2.3) has a stable order-2 periodic solution in these two cases. □
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Theorem 4.3. Let H1 < uQ1 and Gm(uQ1) < uQ1 . Then, the necessary and sufficient condition for the
order-1 periodic solution of system (2.3) to be globally stable is G2

m(u+) < u+ for any u+ ∈ (0, uQ1].

Proof. Sufficiency:
When Gm(uQ1) < uQ1 , there exists ũ ∈ (Gm(uQ1), uQ1) which satisfies Gm(ũ) = ũ.
For any u+ ∈ (ũ, uQ1), we make u+1 = Gm(u+) and u+2 = Gm(u+1 ) = G2

m(u+), since G2
m(u+) < u+ < uQ1 to

get ũ > u+1 > Gm(uQ1), uQ1 > u+2 > u+4 > ũ > u+3 > u+1 > Gm(uQ1), so, uQ1 > u+2n > ũ > u+2n+1 > Gm(uQ1).
So

lim
n→∞

u2n
+ = lim

n→∞
u2n+1

+ = ũ.

Necessity: If G2
m(u+) < u+ is not true for any u+ ∈ [ũ, uQ1], there exists a maximum u0 ∈ [ũ, uQ1]

satisfies Gm
2(u0) ≥ u0. There u1 and G2

m(u1) < u1 for any ũ − ε < u1 < ũ + ε, where ε > 0. From
the continuity of G2

m(u) on the [u0, u1] there is at least one u⃗ ∈ [u0, u1] and Gm
2(u⃗) = u⃗. This is

contradictory. □

Theorem 4.4. If Gm(uQ1) < uQ1 and there is u+m, such that u+m = min
{
u+ : Gm(u+) = uQ1

}
, the

system (2.3) has a order-3 periodic solution if G2
m(uQ1) < u+m.

Proof. If Gm(uQ1) < uQ1 , there is a order-1 periodic solution in
(
Gm(uQ1), uQ1

)
, i.e., Gm(ũ) = ũ, here,

ũ ∈
(
Gm(uQ1), uQ1

)
. Since Gm(ũ) = ũ, so there is u+m such that u+m ∈ (0, ũ) and Gm(u+m) = uQ1 . Further,

G3
m(u+m) = G2

m(uQ1) < u+m, on the other hand, lim
x→0

G3
m(x) > x, so there is at least one value of u⃗, such that

Gm
3(u⃗) = u⃗. □

Remark 4.1. Using the similar arguments, we can show that if Gk−1
m (uQ1) < u+m, where Gm(u+m) = uQ1 ,

then the system (2.3) has an order-k (k ≥ 2) periodic solution.

[Note]: Global asymptotic stability means: A solution u (t) is called asymptotically stable if it is
stable and there exists a number ε0 > 0, such that, for any other solution v (t) with ∥u (t0) − v (t0)∥ < ε0,
the following holds:limt→∞ ∥u (t) − v (t)∥ = 0 [35].

Figure 4. The order-2 periodic solution of Cases III.
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5. Simulations and discussion

In this section, we carry out some numerical simulations, illustrating our theoretical findings in
previous sections and then discuss these results from a biological point of view.

Figure 4(a) is the trajectory of the order-2 periodic solution of the model. Figure 4(b),(c) is the
time series of phytoplankton density and fish density under the simulated order-2 periodic solution,
respectively. The existence of the order-2 periodic solution of the system indicates that after two
fishing in a period of time, the population returns to the initial point, so the population shows this
stable periodic change.

In Figure 5(a), we numerically illustrate our mathematical findings in Theorem 3.2, corresponding
to the cases in Figure 3. In sub-figure a, we see the only order-1 periodic solution (see Figure 5(a)),
and in the case of Figure 3(b), there is no order-1 periodic solution (see Figure 5(b)).

Figure 6 shows that when the weight parameters a1 and b1 change, the pulse and phase sets change
significantly. That is to say, the comprehensive fishing measures that comprehensively consider the
fish population density and the current fish growth rate are compared to the fishing measures that only
consider the fish population density. The model will generate more complex pulse sets and phase sets.
Below, we discuss which of the two fishing measures is more biologically appropriate.

From Figure 7, we see that, no matter what the value of r is, the smaller the weight of a1, the
greater the weight of b1, the longer the single period of the order-1 periodic solution, that is, the
comprehensive control measures that take into account the fish population density and the current
growth rate are longer than the cycle time of the system that only considers the fish population density.
That is, the comprehensive fishing measures that comprehensively consider the fish population density
and the current fish growth rate are more reasonable than the fishing measures that only consider the
fish population density.

It can be seen from Figure 8 that the trajectories of different initial points, eventually. This illustrates
the global asymptotic stability of the order-1 periodic solution. This provides theoretical support for
the application of state-dependent feedback control in ecosystem balance.

Figure 5. Periodic solutions in the case of Figures 3 (a) and (b), respectively.
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Figure 6. The impulse and phase sets of the system (2.3) with different weighted parameters
a1 and b1.

Figure 7. The time t of a single period of the order-1 periodic solution with the growth rate
r of phytoplankton.
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Figure 8. The path curve of system (2.3) starting from the points a and b.

6. Conclusions

In this paper, we propose an integrated control model that takes into account fish population
densities and their current growth rates. The control form adopted is more in line with the
development law of biological populations, so that fish can be harvested in time, and more economic
benefits can be obtained. We delve into the complex dynamics of the model and illustrate the effect of
dynamic thresholds on system dynamics. In this paper, the existence and stability of periodic
solutions of order-1, and the existence of periodic solutions of order-k (k ≥ 1) are proved. The
correctness of the theoretical results was verified by numerical simulation, indicating that the
phytoplankton and fish population densities can maintain periodic oscillations through effective
control strategies, that is, the population size can be controlled within a stable range.

The results of this paper are an extension of literature [32], and we believe that the innovation of
this model is as follows:

1) This paper employs dynamic thresholds determined by fish population density and current fish
growth rate. Fixed thresholds are a special case of dynamic thresholds, which are extensions of fixed
thresholds. For example, when a1 = 1, b1 = 0 in model (2.3), it is the case of a fixed threshold.

2) The dynamic properties of the model can be better investigated using the method of Poincaré map.
The application of control methods and research methods make the model (2.3) have more complex
dynamics than the literature [32] as Theorems 3.1 and 3.2.

Due to the synthesis of various factors affecting the development of the population, the control
method adopted in this paper is more realistic, and the obtained research results have practical guiding
significance. The analysis method proposed in this paper also has reference value in analyzing impulse
models with complex phase sets or impulse sets.
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