This paper investigates a two-dimensional chemotaxis-haptotaxis model
{ut=Δu−χ∇⋅(u∇v)−ξ∇⋅(u∇w),x∈R2, t>0,vt=Δv−v+u,x∈R2, t>0,wt=−vw,x∈R2, t>0,
where χ and ξ are positive parameters. It is proved that, for any suitable smooth initial data (u0,v0,w0), this model admits a unique global strong solution if ‖u0‖L1<8πχ. Compared to the result by Calvez and Corrias (Calvez and Corrias, 2008 [
Citation: Meng Liu, Yuxiang Li. Global solvability of a chemotaxis-haptotaxis model in the whole 2-d space[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 7565-7593. doi: 10.3934/mbe.2023327
[1] | Tianyuan Xu, Shanming Ji, Chunhua Jin, Ming Mei, Jingxue Yin . EARLY AND LATE STAGE PROFILES FOR A CHEMOTAXIS MODEL WITH DENSITY-DEPENDENT JUMP PROBABILITY. Mathematical Biosciences and Engineering, 2018, 15(6): 1345-1385. doi: 10.3934/mbe.2018062 |
[2] | Changwook Yoon, Sewoong Kim, Hyung Ju Hwang . Global well-posedness and pattern formations of the immune system induced by chemotaxis. Mathematical Biosciences and Engineering, 2020, 17(4): 3426-3449. doi: 10.3934/mbe.2020194 |
[3] | Xu Song, Jingyu Li . Asymptotic stability of spiky steady states for a singular chemotaxis model with signal-suppressed motility. Mathematical Biosciences and Engineering, 2022, 19(12): 13988-14028. doi: 10.3934/mbe.2022652 |
[4] | Xiaoli Hu, Shengmao Fu . Global boundedness and stability for a chemotaxis model of Boló’s concentric sclerosis. Mathematical Biosciences and Engineering, 2020, 17(5): 5134-5146. doi: 10.3934/mbe.2020277 |
[5] | Dongxiu Wang, Fugeng Zeng, Lei Huang, Luxu Zhou . Persistence and boundedness in a two-species chemotaxis-competition system with singular sensitivity and indirect signal production. Mathematical Biosciences and Engineering, 2023, 20(12): 21382-21406. doi: 10.3934/mbe.2023946 |
[6] | Chris Cosner, Nancy Rodríguez . On the Allee effect and directed movement on the whole space. Mathematical Biosciences and Engineering, 2023, 20(5): 8010-8030. doi: 10.3934/mbe.2023347 |
[7] | Chichia Chiu, Jui-Ling Yu . An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences and Engineering, 2007, 4(2): 187-203. doi: 10.3934/mbe.2007.4.187 |
[8] | Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421 |
[9] | Wenjie Zhang, Lu Xu, Qiao Xin . Global boundedness of a higher-dimensional chemotaxis system on alopecia areata. Mathematical Biosciences and Engineering, 2023, 20(5): 7922-7942. doi: 10.3934/mbe.2023343 |
[10] | Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319 |
This paper investigates a two-dimensional chemotaxis-haptotaxis model
{ut=Δu−χ∇⋅(u∇v)−ξ∇⋅(u∇w),x∈R2, t>0,vt=Δv−v+u,x∈R2, t>0,wt=−vw,x∈R2, t>0,
where χ and ξ are positive parameters. It is proved that, for any suitable smooth initial data (u0,v0,w0), this model admits a unique global strong solution if ‖u0‖L1<8πχ. Compared to the result by Calvez and Corrias (Calvez and Corrias, 2008 [
In the present work, we shall consider a chemotaxis-haptotaxis model
{ut=Δu−χ∇⋅(u∇v)−ξ∇⋅(u∇w)+μu(1−u−w),τvt=Δv−v+u,wt=−vw+ηu(1−u−w), | (1.1) |
where χ and ξ are positive parameters. In the model (1.1), u represents the density of cancer cell, v and w denote the density of matrix degrading enzymes (MDEs) and the extracellular matrix (ECM) with the positive sensitivity χ, ξ, respectively. Such an important extension of chemotaxis to a more complex cell migration mechanism has been proposed by Chaplain and Lolas [3] to describe the cancer cell invasion of tissue. In that process, cancer invasion is associated with the degradation of ECM, which is degraded by MDEs secreted by cancer cells. Besides random motion, the migration of invasive cells is oriented both by a chemotaxis mechanism and by a haptotaxis mechanism.
In the past ten more years, the global solvability, boundedness and asymptotic behavior for the corresponding no-flux or homogeneous Neumann boundary-initial value problem in bounded domain and its numerous variants have been widely investigated for certain smooth initial data. For the full parabolic system of (1.1), Pang and Wang [4] studied the global boundedness of classical solution in the case τ=1 in 2D domains, and the global solvability also was established for three dimension. When η=0 and τ=1, Tao and Wang [5] proved the existence and uniqueness of global classical solution for any χ>0 in 1D intervals and for small χμ>0 in 2D domains, and Tao [6] improved the results for any μ>0 in two dimension; Cao [7] proved for small χμ>0, the model (1.1) processes a global and bounded classical solution in 3D domains.
When τ=0, the second equation of (1.1) becomes an elliptic function. In the case of η>0, Tao and Winkler [8] proved the global existence of classical solutions in 2D domains for any μ>0. In the case of η=0, the global existence and boundedness for this simplified model under the condition of μ>(N−2)+Nχ in any N-D domains in [9]. Moreover, the stabilization of solutions with on-flux boundary conditions was discussed in [10]. For the explosion phenomenon, Xiang [11] proved that (1.1) possess a striking feature of finite-time blow-up for N≥3 with μ=η=τ=0; the blow-up results for two dimension was discussed in [2] with wt=−vw+ηw(1−w) and μ=0.
When χ=0, the system (1.1) becomes a haptotaxis-only system. The local existence and uniqueness of classical solutions was proved in [12]. In [13,14,15], the authors respectively established the global existence, the uniform-in-time boundedness of classical solutions and the asymptotic behavior. Very recently, Xiang[11] showed that the pure haptotaxis term cannot induce blow-up and pattern for N≤3 or τ=0 in the case of μ=η=0.
Without considering the effect of the haptotaxis term in (1.1), we may have the extensively-studied Keller-Segel system, which was proposed in [16] to describe the collective behavior of cells under the influence of chemotaxis
{∂tu=Δu−χ∇⋅(u∇v),τ∂tv=Δu−λv+u | (1.2) |
with u and v denoting the cell density and chemosignal concentration, respectively. There have been a lot of results in the past years (see [17,18,19,20,21], for instance). Here we only mention some global existence and blow-up results in two dimensional space. For the parabolic-elliptic case of (1.2) with λ=0, 8πχ was proved to be the mass threshold in two dimension in [22,23,24] (see also [25,26] for related results in the bounded domain); namely, the chemotactic collapse (blowup) should occur if and only if ‖u0‖L1 is greater than 8πχ. If ‖u0‖L1<8πχ, the existence of free-energy solutions were improved in [22]. Furthermore, the asymptotic behavior was given by a unique self-similar profile of the system (see also [27] for radially symmetric results concerning self-similar behavior). For the results in the threshold 8πχ, we refer readers for [28,29,30] for more details. For the parabolic-elliptic model in higher dimensions (N≥3) in (1.2), the solvability results were discussed in [31,32,33,34] with small data in critical spaces like LN2(RN),LN2w(RN),MN2(RN), i.e., those which are scale-invariant under the natural scaling. Blowing up solutions to the parabolic-elliptic model of (1.2) in dimension N≥3 have been studied in [35,36,37,38].
In the case τ=1, Calvez and Corrias [1] showed that under hypotheses u0ln(1+|x|2)∈L1(R2) and u0lnu0∈L1(R2), any solution exists globally in time if ‖u0‖L1<8πχ. In [39], the extra assumptions on u0 were removed, while the condition on mass was restricted to ‖u0‖L1<4πχ. The value 4πχ appeared since a Brezis-Merle type inequality played an essential role there. These results were improved in [40,41] to global existence of all solutions with ‖u0‖L1<8πχ by two different method. Furthermore the global existence of solutions was also obtained under some condition on u0 in the critical case ‖u0‖L1=8πχ in[40]. The blow-up results of the parabolic-parabolic case in the whole space were discussed in [42,43] with the second equation was replaced by ∂tv=Δu+u.
However, the global solvability and explosion phenomenon of chemotaxis-haptotaxis model in the whole space have never been touched. Here we consider the global solvability of a simplified model of (1.1)
{ut=Δu−χ∇⋅(u∇v)−ξ∇⋅(u∇w),x∈R2, t>0,vt=Δv−v+u,x∈R2, t>0,wt=−vw,x∈R2, t>0,u(x,0)=u0(x), v(x,0)=v0(x), w(x,0)=w0(x),x∈R2. | (1.3) |
Main results. We assume that the initial data satisfies the following assumptions:
(u0,v0,w0)∈H2(R2)×H3(R2)×H3(R2) and u0,v0,w0 are nonnegative, | (1.4) |
u0∈L1(R2,ln(1+|x|2)dx) and u0lnu0∈L1(R2) | (1.5) |
and
Δw0∈L∞(R2) and ∇√w0∈L∞(R2). | (1.6) |
Theorem 1.1. Let χ>0, ξ>0 and the initial data (u0,v0,w0) satisfy (1.4)–(1.6). If m:=‖u0‖L1<8πχ, then the corresponding chemotaxis-haptotaxis system (1.3) possesses a unique global-in-time, nonnegative and strong solution (u,v,w) fulfilling that for any T<∞
(u,v,w)∈C(0,T;H2(R2)×H3(R2)×H3(R2)). |
Remark 1.1. Our theorem extends the previous results in two aspects. First, our result agrees with that in [1] by setting w=0, which proved that if ‖u0‖L1<8πχ, then the Cauchy problem of the system (1.2) admits a global solution. Secondly, our theorem extends Theorem 1.1 in [2], where the authors proved that 4πχ is the critical mass of the system (1.3) in bounded domains, implying the negligibility of haptotaxis on global existence.
We obtain the critical mass value using the energy method in [1,22]. The energy functional:
F(u,v,w)(t)=∫R2ulnu−χ∫R2uv−ξ∫R2uw+χ2∫R2(v2+|∇v|2),∀t∈(0,Tmax) | (1.7) |
as shown in [2] comes out to be the key ingredient leading to the global existence of solutions under the smallness condition for the mass. Under the assumption
‖u0‖L1<8πχ | (1.8) |
and (1.5), we can derive an integral-type Gronwall inequality for F(t). As a result, we can get a priori estimate for the ∫R2ulnu, which is the key step to establish the global existence of solutions to the system (1.3).
The rest of this paper is organized as follows. In Section 2, we prove local-in-time existence of the solution, and obtain the blow-up criteria for the solution. In Section 3, we give the proof of the Theorem 1.1.
In the following, (u)+ and (u)− will denote the positive and negative part of u as usual, while Lp:=Lp(R2).
We now establish the local existence and uniqueness of strong solutions to system (1.3). Our strategy is first to construct an iteration scheme for (1.3) to obtain the approximate solutions and then to derive uniform bounds for the approximate solutions to pass the limit.
Lemma 2.1. Let χ>0, ξ>0 and u0≥0. Then, there exists a maximal existence time Tmax>0, such that, if the initial data (u0,v0,w0) satisfy (1.4), then there exists a unique solution (u,v,w) of (1.3) satisfying for any T<Tmax, and
(u,v,w)∈C(0,T;H2(R2)×H3(R2)×H3(R2)). | (2.1) |
Furthermore, u, v and w are all nonnegative.
Proof. To obtain the local solution, we follow similar procedures of an iterative scheme developed in [45,46]. We construct the solution sequence (uj,vj,wj)j≥0 by iteratively solving the Cauchy problems of the following system
{∂tuj+1=Δuj+1−χ∇⋅(uj+1∇vj)−ξ∇⋅(uj+1∇wj),x∈R2, t>0,∂tvj+1=Δvj+1−vj+1+uj,x∈R2, t>0,∂twj+1=−vj+1wj+1,x∈R2, t>0,u(x,0)=u0(x), v(x,0)=v0(x), w(x,0)=w0(x),x∈R2. | (2.2) |
We first set (u0(x,t),v0(x,t),w0(x,t))=(u0(x),v0(x),w0(x)). We point out that the system is decouple, then by the linear parabolic equations theory in [44,Theorem Ⅲ.5.2], we can obtain the unique solution u1,v1∈V1,122([0,T]×R2), then we get w1∈C1([0,T],H1(R2)) by directly solving the ordinary equation. Similarly, we define (uj,vj,wj) iteratively.
In the following, we shall prove the convergence of the iterative sequences {uj,vj,wj}j≥1 in C(0,T;X) with X:= H2×H3×H3 for some small T>0. To obtain the uniform estimates, we may use the standard mollifying procedure. However, since the procedure is lengthy, we omit the details, like in the proofs of Theorem 1.1 in [45] and Theorem 2.1 in [46].
Uniform estimates: We will use the induction argument to show that the iterative sequences {uj,vj,wj}j≥1 are in C(0,T;X) with X:= H2×H3×H3 for some small T>0, which means that there exists a constant R>0 such that, for any j, the following inequality holds for a small time interval
sup0≤t≤T(‖uj‖H2+‖vj‖H3+‖wj‖H3)≤R, | (2.3) |
where R=2{‖u0‖H2+‖v0‖H3+‖w0‖H3}+8. Due to the definition of R, the case j=0 is obvious. Then, we need to show that (2.3) is also true for j+1. This will be done by establishing the energy estimate for (uj+1,vj+1,wj+1). First, we begin with the estimate of vj+1.
(ⅰ) Estimates of vj+1. Taking the L2 inner product of the second equation of (2.2) with vj+1, integrating by parts and using Young's inequality, we have
12ddt‖vj+1(t)‖2L2+‖∇vj+1‖2L2=−∫R2(vj+1)2+∫R2vj+1uj≤−12‖vj+1‖2L2+12‖uj‖2L2. | (2.4) |
To show the H1 estimate of vj+1, we will multiply the second equation of (2.2) by ∂tvj+1, integrating by parts and then obtain
12ddt‖∇vj+1(t)‖2L2+‖∂tvj+1‖2L2=−∫R2vj+1∂tvj+1+∫R2uj∂tvj+1≤12‖∂tvj+1‖2L2+‖vj+1‖2L2+‖uj‖2L2. | (2.5) |
For the H2 estimate of vj+1, by Young's inequality, we have
12ddt‖∇2vj+1(t)‖2L2+‖∇Δvj+1‖2L2=−∫R2(Δvj+1)2+∫R2Δvj+1Δuj≤−12‖Δvj+1‖2L2+12‖Δuj‖2L2. | (2.6) |
Similarly, integrating by parts, it is clear that for all t∈(0,T)
ddt‖∇3vj+1(t)‖2L2=2∫R2∇3vj+1∇3(Δvj+1−vj+1+uj)=−2∫R2|∇4vj+1|2−2∫R2|∇3vj+1|2−2∫R2∇4vj+1∇2uj≤−‖∇4vj+1‖2L2−2‖∇3vj+1‖2L2+‖∇2uj‖2L2, |
togethering with (2.3)–(2.6) and adjusting the coefficients carefully, we can find a positive constant α such that
ddt‖vj+1(t)‖2H3+α(‖vj+1‖2H4+‖∂tvj+1‖2L2)≤c1(‖vj+1‖2H3+‖uj‖2H2) | (2.7) |
with c1>0. Here after ci(i=2,3...) denotes the constant independent of R. Integrating on (0,t), we can obtain for all t∈(0,T)
‖vj+1(t)‖2H3+α∫t0(‖vj+1(s)‖2H4+‖∂tvj+1(s)‖2L2)≤ec1T‖v0‖2H3+ec1TTsupt∈(0,T)‖uj(t)‖2H2≤ec1T‖v0‖2H3+ec1TTR2≤2‖v0‖2H3+2, | (2.8) |
by choosing T>0 small enough to satisfy ec1T<2 and TR2<1.
(ⅱ) The estimate of wj+1. In fact, the third component of the above solution of (2.2) can be expressed explicitly in terms of vj+1. This leads to the representation formulae
wj+1(x,t)=w0(x)e−∫t0vj+1(x,s)ds, | (2.9) |
∇wj+1(x,t)=∇w0(x)e−∫t0vj+1(x,s)ds−w0(x)e−∫t0vj+1(x,s)ds∫t0∇vj+1(x,s)ds | (2.10) |
as well as
Δwj+1(x,t)=Δw0(x)e−∫t0vj+1(x,s)ds−2e−∫t0vj+1(x,s)ds∇w0(x)⋅∫t0∇vj+1(x,s)ds+w0(x)e−∫t0vj+1(x,s)ds|∫t0∇vj+1(x,s)ds|2−w0(x)e−∫t0vj+1(x,s)ds∫t0Δvj+1(x,s)ds. | (2.11) |
From (2.9), we can easily get for t∈(0,T)
‖wj+1‖Lp≤‖w0‖Lp,∀p∈(1,∞]. | (2.12) |
From (2.10), by (2.8), the definition of R and the following inequality
‖∫t0f(x,s)ds‖Lp={∫R2|∫t0f(x,s)ds|pdx}1p≤{tp−1∫R2∫t0|f|pdsdx}1p≤tsups∈(0,t)‖f(s)‖Lp,for all p∈(1,∞), | (2.13) |
we can obtain
‖∇wj+1‖L2≤‖∇w0‖L2+‖w0e−∫t0vj+1ds∫t0∇vj+1ds‖L2≤‖∇w0‖L2+‖w0‖L∞‖∫t0∇vj+1ds‖L2≤‖∇w0‖L2+‖w0‖L∞Tsupt∈(0,T)‖∇vj+1‖L2≤‖∇w0‖L2+c2R2T≤‖∇w0‖L2+1 | (2.14) |
by setting T small enough to satisfy c2R2T<1.
Similarly, by the embedding H2↪W1,4 and (2.13), we can obtain from (2.11) for all t∈(0,T)
‖Δwj+1‖L2≤‖Δw0‖L2+2‖∇w0∫t0∇vj+1ds‖L2+‖w0|∫t0∇vj+1ds|2‖L2 +‖w0∫t0Δvj+1ds‖L2≤‖Δw0‖L2+2‖∇w0‖L4‖∫t0∇vj+1ds‖L4+‖w0‖L∞‖|∫t0∇vj+1ds|2‖L2 +‖w0‖L∞‖∫t0Δvj+1ds‖L2≤‖Δw0‖L2+2‖∇w0‖L4Tsupt∈(0,T)‖∇vj+1‖L4+‖w0‖L∞T2supt∈(0,T)‖∇vj+1‖2L2 +‖w0‖L∞Tsupt∈(0,T)‖Δvj+1‖L2≤‖Δw0‖L2+c3R2T+c3R3T2≤‖Δw0‖L2+2 | (2.15) |
by setting T small enough to satisfy c3R2T<1 and c3R3T2<1.
Now we deduce the L2 norm of ∇3wj+1. According to the equation of w and Hölder inequality, we can easily get for all t∈(0,T)
ddt‖∇3wj+1(t)‖2L2=2∫R2∇3wj+1∇3wj+1t=−2∫R2∇3wj+1∇3(vj+1wj+1)≤2‖∇3wj+1‖L2‖∇3(vj+1wj+1)‖L2≤c4‖∇3wj+1‖L2‖∇3wj+1vj+1+3∇2wj+1∇vj+1+3∇2vj+1∇wj+1+∇3vj+1wj+1‖L2≤c4{‖∇3wj+1‖2L2‖vj+1‖L∞+‖∇3wj+1‖L2‖∇2wj+1‖L4‖∇vj+1‖L4+‖∇3wj+1‖L2‖∇2vj+1‖L2‖∇wj+1‖L∞+‖∇3wj+1‖L2‖∇3vj+1‖L2‖wj+1‖L∞}. | (2.16) |
By Galiardo-Nirenberg inequality, we have
‖∇2wj+1‖L4≤c5‖∇3wj+1‖34L2‖wj+1‖14L∞,‖∇wj+1‖L∞≤c5‖∇3wj+1‖12L2‖wj+1‖12L∞. |
Together with Young's inequality, (2.8), (2.12) and (2.16), we can get
ddt‖∇3wj+1(t)‖2L2≤c6(‖vj+1‖2H3+1)‖∇3wj+1‖2L2+c6‖∇wj+1‖2L∞≤c7R2‖∇3wj+1‖2L2+c6‖∇w0‖2L∞≤c7R2‖∇3wj+1‖2L2+c7R2. | (2.17) |
Then, we can deduce from Gronwall's inequality that for all t∈(0,T)
‖∇3wj+1‖2L2≤ec7R2T3‖∇3w0‖2L2+ec7R2T3c7R2T≤2‖∇3w0‖2L2+2 | (2.18) |
by setting T small enough to satisfy ec7R2T3<2 and c7R2T<1.
Combining with (2.12)–(2.15) and (2.18), we can see that
‖wj+1‖H3≤2‖w0‖H3+5. | (2.19) |
(ⅲ) Estimates of uj+1. Taking the L2 inner product of the equation of uj+1 in (2.2), integrating by part we obtain
12ddt‖uj+1(t)‖2L2+‖∇uj+1‖2L2=χ∫R2uj+1∇vj⋅∇uj+1+ξ∫R2uj+1∇wj⋅∇uj+1≤‖uj+1‖L2‖∇vj‖L∞‖∇uj+1‖L2+‖uj+1‖L2‖∇wj‖L∞‖∇uj+1‖L2. | (2.20) |
By (2.8), (2.19) and (2.20) and the embedding H3↪W1,∞, we can see for all t∈(0,T)
12ddt‖uj+1(t)‖2L2+‖∇uj+1‖2L2≤c8R2‖uj+1‖2L2+12‖∇uj+1‖2L2. | (2.21) |
Now we turn to show the L2-estimate of ∇uj+1. Multiplying −Δuj+1 to both sides of the first equation of (2.3) and integrating by parts, we obtain for all t∈(0,T)
12ddt‖∇uj+1(t)‖2L2+‖Δuj+1‖2L2=χ∫R2Δuj+1∇⋅(uj+1∇vj)+ξ∫R2Δui+1∇⋅(ui+1∇wj)=I1+I2. | (2.22) |
By Hölder inequality and Young's inequality, it yields that
I1≤c9‖Δuj+1‖L2‖∇(uj+1∇vj)‖L2≤c10‖Δuj+1‖L2{‖uj+1‖H1‖vj‖H2}≤14‖Δuj+1‖2L2+c210‖vj‖2H2‖uj+1‖2H1. |
Applying the similar procedure to I2, we can obtain
I2≤14‖Δuj+1‖2L2+c210‖wj‖2H2‖uj+1‖2H1, |
which entails that for all t∈(0,T)
12ddt‖∇uj+1(t)‖2L2+12‖Δuj+1‖2L2≤c11R2‖uj+1‖2H1. | (2.23) |
Similar as (2.16), we can get
ddt‖∇2uj+1(t)‖2L2=2∫R2∇2uj+1∇2uj+1t=2∫R2∇2uj+1{∇2(Δuj+1−χ∇⋅(uj+1∇vj)−ξ∇⋅(uj+1∇wj))}=2∫R2∇2uj+1∇2Δuj+1−2χ∫R2∇2uj+1∇3(uj+1∇vj)−2ξ∫R2∇2ui+1∇3(uj+1∇wj)=−2‖∇3uj+1‖2L2+2χ∫R2∇3uj+1∇2(uj+1∇vj)+2ξ∫R2∇3ui+1∇2(ui+1∇wj)≤−‖∇3uj+1‖2L2+c12{‖∇2(uj+1∇vj)‖2L2+‖∇2(ui+1∇wj)‖2L2}≤−‖∇3uj+1‖2L2+c13R2‖uj+1‖2H2. | (2.24) |
Together with (2.21), (2.23) and (2.24), and adjusting the coefficients carefully, we can find a positive constant β such that
ddt‖uj+1(t)‖2H2+β‖uj+1‖2H3≤c14R2‖uj+1‖2H2, | (2.25) |
which implies from Gronwall's inequality that
‖uj+1‖2H2+β∫t0‖uj+1‖2H3⩽ec14R2T‖u0‖2H2≤2‖u0‖2H2,for all t∈(0,T), | (2.26) |
by choosing T small enough to satisfy ec14R2T<2.
Combining (2.8), (2.19) and (2.26), we can get for all t∈(0,T)
‖uj+1‖H2+‖vj+1‖H2+‖wj+1‖H3≤2{‖u0‖H1+‖v0‖H2+‖w0‖H3}+7≤R, | (2.27) |
by the definition of R.
Convergence: The derivation of the relevant estimates of uj+1−uj, vj+1−vj and wj+1−wj are similar to the ones of uj+1, vj+1 and wj+1, so we omit the details. For simplicity, we denote δfj+1:=fj+1−fj. Subtracting the j-th equations from the (j+1)-th equations, we have the following equations for δuj+1,δvj+1 and δwj+1 :
{∂tδuj+1=Δδuj+1−χ∇⋅(δuj+1∇vj)−χ∇⋅(uj∇δvj)−ξ∇⋅(δuj+1∇wj)−ξ∇⋅(uj∇δwj),∂tδvj+1=Δδvj+1−δvj+1+δuj,[1mm]∂tδwj+1=−vj+1δwj+1−δvj+1wj+1. | (2.28) |
(ⅰ) Estimates of δvj+1. Using the same procedure as proving (2.8), we can obtain that for all t∈(0,T)
‖δvj+1(t)‖2H3+α∫t0(‖δvj+1(s)‖2H4+‖∂tδvj+1(s)‖2L2)ds≤ec15Tc15Tsup0≤t≤T‖δuj(t)‖2H2. | (2.29) |
(ⅱ) Estimates of δwj+1. According to the third equation of (2.28), we have for all t∈(0,T)
δwj+1(t)=−∫t0e−∫tsvj+1(τ)dτwj+1(s)δvj+1(s)ds. | (2.30) |
Using the same procedure as proving (2.19) entails that for all t∈(0,T)
‖δwj+1‖L2⩽supt∈(0,T)‖wj+1‖L∞supt∈(0,T)‖δvj+1‖L2T⩽c16RTsupt∈(0,T)‖δvj+1‖L2, |
‖∇δwj+1‖L2⩽‖∫t0∇wj+1(s)δvj+1(s)ds‖L2+‖∫t0wj+1(s)∇δvj+1(s)ds‖L2+‖∫t0wj+1δvj+1∫ts∇vj+1dτds‖L2⩽c17RTsupt∈(0,T)‖δvj+1‖L2+c17RTsupt∈(0,T)‖∇δvj+1‖L2+c17R2T2supt∈(0,T)‖δvj+1‖L2⩽c18(R2+R)Tsupt∈(0,T)‖δvj+1‖H1,‖Δδwj+1‖L2=‖−∫t0Δ{e−∫tsvj+1dτwj+1δvj+1}ds‖L2⩽Tsupt∈(0,T)‖Δ{e−∫tsvj+1dτwj+1δvj+1}‖L2⩽Tsupt∈(0,T){(‖vj+1‖2H2T2+‖vj+1‖H2T)‖wj+1‖H2‖δvj+1‖H2}⩽c19(R3+R2)Tsupt∈(0,T)‖δvj+1‖H2 |
and
‖∇3δwj+1‖2L2⩽ec20R2TTsupt∈(0,T)‖δvj+1‖H3, |
which imply that for all t∈(0,T)
‖δwj+1‖H3≤c21(R3+R2+R)Tsup0≤t≤T‖δuj(t)‖H2. | (2.31) |
by setting T<1.
(ⅲ) Estimates of δuj+1. Using the same procedure as proving (2.26) entails that for all t∈(0,T)
sup0≤t≤T‖δuj+1‖2H2+β∫t0‖δuj+1‖2H3⩽ec22RTc22RTsup0≤t≤T(‖δvj‖2H3+‖δwj‖2H2). | (2.32) |
Combining with (2.29), (2.31) and (2.32), we can obtain for all t∈(0,T)
sup0≤t≤T(‖δuj+1‖H2+‖δvj+1‖H3+‖δwj+1‖H3)≤ec23(R3+R2+R)Tc23(R3+R2+R)Tsup0≤t≤T(‖δuj‖H2+‖δvj‖H3+‖δwj‖H3). | (2.33) |
Taking T>0 small enough, we can find a constant r∈(0,1) such that
sup0≤t≤T(‖δuj+1‖H2+‖δvj+1‖H3+‖δwj+1‖H3)≤rsup0≤t≤T(‖δuj‖H2+‖δvj‖H3+‖δwj‖H3) | (2.34) |
for any j≥1 and t∈(0,T). From the above inequality, we find that (uj,vj,wj) is a Cauchy sequence in the Banach space C(0,T;X) for some small T>0, and thus its corresponding limit denoted by (u,v,w) definitely exists in the same space.
Uniqueness: If (ˉu,ˉv,ˉw) is another local-in-time solution of system (1.3), (˜u,˜v,˜w):=(u−ˉu,v−ˉv,w−ˉw) solves
{∂t˜u=Δ˜u−χ∇⋅(˜u∇ˉv)−χ∇⋅(u∇˜v)−ξ∇⋅(˜u∇ˉw)−ξ∇⋅(u∇˜w),x∈R2, 0<t≤T,∂t˜v=Δ˜v−˜v+˜u,x∈R2, 0<t≤T,∂t˜w=−v˜w−˜vˉw,x∈R2, 0<t≤T,˜u(x,0)=˜v(x,0)=˜w(x,0)=0,x∈R2, |
where T is any time before the maximal time of existence. Following a same procedure as (2.34), we can deduce that ˜u=˜v=˜w=0, which implies the uniqueness of the local solution.
Nonnegativity: The nonnegativity of wj can be easily obtained by (2.9) and the nonnegativity of w0. We will use the induction argument to show that uj and vj are nonnegative for all j>0. We assume that uj and vj are nonnegative. If we apply the maximum principle to the second equation of (2.2), we find vj+1 is nonnegative (uj is nonnegative). Then we turn to deal with uj+1. Let us decompose uj+1=uj+1+−uj+1−, where uj+1+={uj+1uj+1≥00uj+1<0anduj+1−={−uj+1uj+1≤00uj+1>0. Now multiplying the negative part uj+1− on both sides of the first equation of (2.2) and integrating over [0,t]×R2, we can get
∫t0∫R2∂tuj+1uj+1−dxds=−∫t0‖∇(uj+1−)‖2L2ds+χ∫t0∫R2uj+1∇vj⋅∇uj+1−+ξ∫R2uj+1∇wj⋅∇uj+1−≤C∫t0‖(uj+1)−‖2L2(‖∇vj‖2L∞+‖∇wj‖2L∞)+12‖∇(uj+1−)‖2L2ds |
by Young's inequality and the fact the weak derivative of uj+1− is −∇uj+1 if uj+1−<0, otherwise zero. Since uj+1−, ∂tuj+1∈L2(0,T;L2(R2)), we can have
∫t0∫R2∂tuj+1(uj+1)−dxds=12(‖(uj+1−)(0)‖L2−‖(uj+1−)(0)‖L2), |
together with the above inequality, it holds that
‖(uj+1−)(t)‖2L2≤‖(uj+1−)(0)‖2L2exp(C∫t0(‖∇vj‖2L∞+‖∇wj‖2L∞)ds). |
Due to the fact uj+1−(0) is nonnegative, we can deduce that uj+1 is nonnegative. This completes the proof of Lemma 2.1.
Remark 2.1. Since the above choice of T depends only on ‖u0‖H2(R2), ‖v0‖H3(R2) and ‖w0‖H3(R2), it is clear by a standard argument that (u,v,w) can be extended up to some Tmax≤∞. If Tmax<∞ in Lemma 2.1, then
lim supt→Tmax(‖u(t)‖H2(R2)+‖v(t)‖H3(R2)+‖w(t)‖H3(R2))=∞. | (2.35) |
In order to show the H2×H3×H3-boundedness of (u,v,w), it suffices to estimate a suitable Lp-norm of u, with some large, but finite p.
Lemma 2.2. Suppose that χ,ξ>0 and the initial data (u0,v0,w0) satisfy all the assumptions presented in Lemma 2.1. Then for every K>0 there is C>0 such that whenever (u,v,w)∈C(0,T;H2(R2)×H3(R2)×H3(R2)) solves (1.3) for some T>0 and q0>2 satisfies
‖u(⋅,t)‖Lq0≤K,for allt∈(0,T), | (2.36) |
then
‖u(t)‖H2(R2)+‖v(t)‖H3(R2)+‖w(t)‖H3(R2)≤Cfor allt∈(0,T). | (2.37) |
Proof. Firstly, we suppose that for some q0>2 and K>0
‖u(t)‖Lq0(R2)≤K,for all t∈(0,T). | (2.38) |
By the Duhamel principle, we represent u and v of the following integral equations
u(t)=etΔu0−χ∫t0e(t−τ)Δ∇⋅(u∇v)(τ)dτ−ξ∫t0e(t−τ)Δ∇⋅(u∇w)(τ)dτ | (2.39) |
and
v(t)=e−t(−Δ+1)v0+∫t0e−(t−τ)(−Δ+1)u(τ)dτ. | (2.40) |
where etΔf(x)=∫R2G(x−y,t)f(y)dy and
G(x,t)=Gt(x):=1(4πt)exp(−|x|24t) |
is the Gaussian heat kernel. The following well-known Lp−Lq estimates of the heat semigroup play an important role in the proofs [47,48]. For 1⩽p⩽q⩽∞ and f∈Lq(R2), we have
‖etΔf‖Lp⩽(4πt)−(1q−1p)‖f‖Lq,‖∇etΔf‖Lp⩽C3t−12−(1q−1p)‖f‖Lq, |
where C3 is a constant depending on p and q. Then, according to (2.39), we can see that for q0>2 and all t∈(0,T)
‖u(t)‖L∞≤‖u0‖L∞+χ∫t0(t−τ)−12−1q0‖u⋅∇v‖Lq0dτ+ξ∫t0(t−τ)−12−1q0‖u⋅∇w‖Lq0dτ≤‖u0‖L∞+Kχ∫t0(t−τ)−12−1q0‖∇v‖L∞dτ+Kξ∫t0(t−τ)−12−1q0‖∇w‖L∞dτ. | (2.41) |
From (2.40) and the above Lp−Lq estimates of the heat semigroup, we have
‖v(t)‖Lq≤‖v0‖Lq+∫t0e−(t−τ)(t−τ)−(1q0−1q)‖u(t)‖Lq0dτ≤C4,∀q∈(1,∞] | (2.42) |
and by the embedding H3(R2)↪W1,∞(R2)
‖∇v(t)‖L∞≤‖∇v0‖L∞+∫t0e−(t−τ)(t−τ)−12−1q0‖u(t)‖Lq0dτ≤C5, | (2.43) |
where C4 and C5 depend on ‖v0‖H3 and K in (2.38).
According to the equation of w, we can see that for some C6=C6(‖w0‖H3,‖v0‖H2,K,T)>0 and all t∈(0,T)
‖∇w(t)‖L∞≤‖∇w0e−∫t0v(s)ds‖L∞+‖w0e−∫t0v(s)ds∫t0∇v(s)ds‖L∞≤‖w0‖H3+‖w0‖L∞supt∈(0,T)‖∇v(t)‖L∞T≤C6 | (2.44) |
by the embedding H3(R2)↪W1,∞(R2). Inserting (2.43) and (2.44) into (2.41), this yields for all t∈(0,T)
‖u(t)‖L∞≤‖u0‖L∞+KC5χ∫t0(t−τ)−12−1q0dτ+KC6ξ∫t0(t−τ)−12−1q0dτ≤C7, | (2.45) |
where C7 depends on ‖u0‖H2, ‖v0‖H2, ‖w0‖H3, K and T.
Integrating by parts and by Young's inequality, we can obtain from the second equation of (1.3) that for all t∈(0,T)
12ddt‖∂tv(t)‖2L2+‖∇∂tv‖2L2=−∫R2(∂tv)2+∫R2∂tv∂tu≤−12‖∂tv‖2L2+12‖∂tu‖2L2 | (2.46) |
and
12ddt‖∇v(t)‖2L2+‖Δv‖2L2=∫R2vΔv+∫R2uΔv≤−‖∇v‖2L2+12‖u‖2L2+12‖Δv‖2L2. | (2.47) |
Similarly, according to the first equation of (1.3), (2.43) and (2.44), we have for all t∈(0,T)
12ddt‖u(t)‖2L2+‖∇u‖2L2=χ∫R2u∇v⋅∇u+ξ∫R2u∇w⋅∇u≤χ22‖u∇v‖2L2+ξ22‖u∇w‖2L2+12‖∇u‖2L2≤χ2C252‖u‖2L2+ξ2C262‖u‖2L2+12‖∇u‖2L2 | (2.48) |
and by (2.27) for some θ>0
12ddt‖∂tu(t)‖2L2+‖∇∂tu‖2L2=χ∫R2∂tu∇v⋅∇∂tu+χ∫R2u∂t∇v⋅∇∂tu+ξ∫R2∂tu∇w⋅∇∂tu+ξ∫R2u∇∂tw⋅∇∂tu≤C8(‖∇v‖L∞+‖∇w‖L∞)(θ‖∂tu‖2L2+1θ‖∇∂tu‖2L2)+C8‖u‖L∞(θ‖∇∂tv‖2L2+θ‖∇∂tw‖2L2+2θ‖∇∂tu‖2L2)≤C8(C5+C6)θ‖∂tu‖2L2+C8(C5+C6+2C7)θ‖∇∂tu‖2L2+θC8C7(‖∇∂tv‖2L2+‖∇∂tw‖2L2). | (2.49) |
Now we turn to estimate the last term of the right side of (2.49). According to the third equation of (1.3), (2.42) and (2.43), we obtain for some C9>0
‖∇∂tw‖2L2≤‖∇v‖2L2‖w‖2L∞+‖∇w‖2L2‖v‖2L∞≤‖w0‖2L∞‖∇v‖2L2+C24(‖∇w0‖2L2+T2supt∈(0,T)‖∇v‖2L∞‖w0‖2L2)≤C9‖∇v‖2L2+C9. | (2.50) |
Combining with (2.46)–(2.50) and setting θ>0 to satisfy C8(C5+C6+2C7)θ<12, we can obtain such Gronwall-type inequality
ddt{‖∂tv(t)‖2L2+‖∇v(t)‖2L2+‖u(t)‖2L2+‖∂tu(t)‖2L2}+C10(‖∇∂tv‖2L2+‖∇u‖2L2+‖∇v‖2L2+‖Δv‖2L2+‖∇∂tu‖2L2)≤C10(‖∂tv‖2L2+‖∇v‖2L2+‖u‖2L2+‖∂tu‖2L2+1),for all t∈(0,T), | (2.51) |
then by direct integration, we can have for some C11=C11(‖w0‖H3,‖v0‖H2,‖u0‖H2,K,T)>0
∫t0(‖∇∂tv‖2L2+‖∇u‖2L2+‖∇v‖2L2+‖Δv‖2L2+‖∇∂tu‖2L2) +{‖∂tv‖2L2+‖∇v‖2L2+‖u‖2L2+‖∂tu‖2L2}≤C11,for all t∈(0,T). | (2.52) |
By (2.42) and (2.52) and the second equation of v in (1.3), we have
‖Δv‖L2≤‖∂tv‖L2+‖v‖L2+‖u‖L2≤C12,for all t∈(0,T), | (2.53) |
where C12=C12(‖w0‖H3,‖v0‖H2,‖u0‖H2,K,T). Hence by the equation of w and Young's inequality, we obtain for some C13=C13(‖w0‖H3,‖v0‖H2,‖u0‖H2,K,T)>0
‖Δw‖L2≤‖Δw0‖L2+2‖∇w0‖L4‖∫t0∇v‖L4+‖w0‖L∞‖|∫t0∇v|2‖L2+‖w0‖L∞‖∫t0Δv‖L2≤‖Δw0‖L2+2‖∇w0‖L4supt∈(0,T)‖∇v‖L4T+‖w0‖L∞supt∈(0,T)‖∇v‖2L4T+‖w0‖L∞supt∈(0,T)‖Δv‖L2T≤C13,for all t∈(0,T). | (2.54) |
By (2.42) and (2.43) and the embedding W2,2(R2)↪W1,4(R2), we can see
ddt‖∇3w(t)‖2L2⩽C{‖∇3w‖2L2‖v‖L∞+‖∇3w‖L2‖∇2w‖L4‖∇v‖L4+‖∇3w‖L2‖∇2v‖L2‖∇w‖L∞+‖∇3w‖L2‖w‖L∞‖∇3v‖L2}≤C14‖∇3w‖2L2+C14‖∇3v‖2L2+C14,for all t∈(0,T). | (2.55) |
Integrating on (0,t), we have
‖∇3w‖2L2≤C15‖∇3w0‖2L2+C15∫t0‖∇3v‖2L2+C15,for all t∈(0,T). | (2.56) |
Now we turn to estimate the second integral of the right side of (2.56). Applying ∇ to the second equation of (1.3) and rewriting the equation as ∇Δv=∇vt+∇v−∇u, then by (2.52) we have that
∫t0‖∇3v‖2L2≤∫t0‖∇vt‖2L2+∫t0‖∇v‖2L2+∫t0‖∇u‖2L2≤C11,for all t∈(0,T). | (2.57) |
Inserting (2.57) into (2.56), we can obtain that for some C16>0
‖∇3w‖L2≤C16,for all t∈(0,T). | (2.58) |
Now we deduce the L2-norm of ∇u and ∇2u. We multiply the first equation of (1.3) by −Δu, integrate by parts and then obtain
12ddt‖∇u(t)‖2L2+‖Δu‖2L2=χ∫R2Δu∇⋅(u∇v)+ξ∫R2Δu⋅∇(u∇w)=χ∫R2Δu∇u⋅∇v+χ∫R2uΔuΔv+ξ∫R2Δu∇u⋅∇w+ξ∫R2uΔuΔw=I1+I2+I3+I4. | (2.59) |
Then by (2.42), (2.45) and (2.52), Hölder's inequality and Young's inequality, we have
I1+I2⩽χ‖∇v‖L∞‖Δu‖L2‖∇u‖L2+χ‖Δv‖L2‖Δu‖L2‖u‖L∞⩽14‖Δu‖2L2+C17‖∇u‖2L2+C17. |
Similarly, according to (2.43), (2.45) and (2.56), we can obtain
I3+I4⩽χ‖∇v‖L∞‖Δu‖L2‖∇u‖L2+χ‖Δv‖L2‖Δu‖L2‖u‖L∞⩽14‖Δu‖2L2+C17‖∇u‖2L2+C18. |
Then we have
12ddt‖∇u(t)‖2L2+12‖Δu‖2L2≤C19‖∇u‖2L2+C19. |
Integrating on (0,t), we have for some C20>0
‖∇u‖L2≤C20,for all t∈(0,T). | (2.60) |
Rewriting the first equation of (1.3) as Δu=ut+χ∇⋅(u∇v)+ξ∇⋅(u∇w), and by (2.42)–(2.44), (2.53) and (2.54), we have for some C21>0
‖Δu‖L2≤‖∂tu‖L2+χ‖∇u⋅∇v‖L2+χ‖uΔv‖L2+ξ‖∇u⋅∇w‖L2+ξ‖uΔw‖L2≤‖∂tu‖L2+χ‖∇u‖L2‖∇v‖L∞+χ‖Δv‖L2‖u‖L∞+ξ‖∇u‖L2‖∇w‖L∞+ξ‖Δw‖L2‖u‖L∞≤C21. | (2.61) |
For the L2-norm of ∇3v, integrating by parts, we deduce that
ddt‖∇3v(t)‖2L2=2∫R2∇3v∇3(Δv−v+u)=−2∫R2|∇4v|2−2∫R2|∇3v|2+2∫R2∇3v∇3u≤−‖∇4v‖2L2−2‖∇3v‖2L2+‖∇2u‖2L2, |
then by (2.61) and Gronwall's inequality, we can see that for all t∈(0,T)
‖∇3v(t)‖L2≤C22. | (2.62) |
Putting (2.52)–(2.54), (2.58) and (2.60)–(2.62) together, we conclude that for some C>0
‖u(t)‖H2(R2)+‖v(t)‖H3(R2)+‖w(t)‖H3(R2)≤C,∀t∈(0,T), | (2.63) |
which completes the proof.
As a preparation, we first state some results concerning the system which will be used in the proof of Theorem 1.1.
Lemma 3.1. The local-in-time classical solution (u,v,w) of system (1.3) satisfies
‖u(t)‖L1=‖u0‖L1:=M,∀t∈(0,Tmax) | (3.1) |
and
‖v(t)‖L1=‖u0‖L1+(‖v0‖L1−‖u0‖L1)e−t,∀t∈(0,Tmax). | (3.2) |
Proof. Integrating the first and second equation of (1.3) on R2, we can obtain
ddt∫R2u=∫R2Δu−χ∫R2∇⋅(u∇v)−ξ∫R2∇⋅(u∇w)=0 |
and
ddt∫R2v=∫R2Δv−∫R2v+∫R2u=−∫R2v+∫R2u, |
which can easily yield (3.1) and (3.2).
The following energy
F(t)=∫R2ulnu−χ∫R2uv−ξ∫R2uw+χ2∫R2(v2+|∇v|2) |
plays a key role in the proof. The main idea of the proof is similar to the strategy introduced in [2].
Lemma 3.2. Assume that (1.4) and (1.5) holds. Let (u,v,w) be the local-in-time classical solution of system (1.3). Then F(t) satisfies
F(t)+χ∫t0∫R2v2t+∫t0∫R2u|∇(lnu−χv−ξw)|2=F(0)+ξ∫t0∫R2uvw,∀t∈(0,Tmax). | (3.3) |
Proof. We use the same ideas as in the proofs of [45,Theorem 1.3], [46,Lemma 3.1] and [1,Theorem 3.2]. The equation of u can be written as ut=∇⋅(u∇(lnu−χv−ξw)). Multiplying by lnu−χv−ξw and integrating by parts, we obtain
−∫R2u|∇(lnu−χv−ξw)|2=∫R2ut(lnu−χv−ξw)=ddt∫R2(ulnu−χuv−ξuw)+χ∫R2uvt+ξ∫R2uwt. | (3.4) |
Substituting the second and third equation of (1.3) into (3.4) and integrating by parts, we have
−∫R2u|∇(lnu−χv−ξw)|2=ddt∫R2(ulnu−χuv−ξuw)+χ∫R2(vt−Δv+v)vt+ξ∫R2uvw=ddt∫R2(ulnu−χuv−ξuw)−χ∫R2v2t+χ2ddt∫R2(v2+|∇v|2)+ξ∫R2uvw, | (3.5) |
which, upon being integrated from 0 to t, yields simply that (3.3). We give some lemmas to deal with the term ∫R2ulnu in (1.7).
Lemma 3.3. ([1,Lemma 2.1]) Let ψ be any function such that eψ∈L1(R2) and denote ˉu=Meψ(∫R2eψdx)−1 with M a positive arbitrary constant. Let E:L1+(R2)→R∪{∞} be the entropy functional
E(u;ψ)=∫R2(ulnu−uψ)dx |
and let RE:L1+(R2)→R∪{∞} defined by
RE(u∣ˉu)=∫R2uln(uˉu)dx |
be the relative (to ˉu) entropy.
Then E(u;ψ) and RE(u∣ˉu) are finite or infinite in the same time and for all u in the set U={u∈L1+(R2),∫R2u(x)dx=M} and it holds true that
E(u;ψ)−E(ˉu;ψ)=RE(u∣ˉu)≥0. |
Next, we give a Moser-Trudinger-Onofri inequality.
Lemma 3.4. ([1,Lemma 3.1]) Let H be defined as H(x)=1π1(1+|x|2)2. Then
∫R2eφ(x)H(x)dx≤exp{∫R2φ(x)H(x)dx+116π∫R2|∇φ(x)|2dx}, | (3.6) |
for all functions φ∈L1(R2,H(x)dx) such that |∇φ(x)|∈L2(R2,dx).
Lemma 3.5. ([1,Lemma 2.4]) Let ψ be any function such that eψ∈L1(R2), and let f be a non-negative function such that (f1{f≤1})∈L1(R2)∩L1(R2,|ψ(x)|dx). Then there exists a constant C such that
∫R2f(x)(lnf(x))−dx≤C−∫{f≤1}f(x)ψ(x)dx. |
With the help of Lemma 3.2–3.5, we now use the subcritical mass condition (1.8) to derive a Gronwall-type inequality and to get a time-dependent bound for ‖(ulnu)(t)‖L1.
Lemma 3.6. Under the subcritical mass condition (1.8) and (1.5), there exists C=C(u0,v0,w0)>0 such that
‖(ulnu)(t)‖L1+‖v(t)‖2H1≤CeξKγt,∀t∈(0,Tmax), | (3.7) |
where K>0 and γ are defined by (3.8) and (3.10) below, respectively.
Proof. According to the third equation of (1.3), we have for all t∈(0,T)
‖w‖L∞≤‖w0‖L∞:=K, | (3.8) |
then we apply the estimate of (3.3) to find that
F(t)+∫t0∫R2u|∇(lnu−χv−ξw)|2≤F(0)+ξK∫t0∫R2uv,∀t∈(0,Tmax). | (3.9) |
For our later purpose, since M<8πχ, we first choose some positive constant γ>0 small enough to satisfy
χ−M(χ+γ)28π>0, | (3.10) |
then by the definition of F(t) in (1.7), we use (3.1) and (3.8) to deduce that
F(t)=∫R2ulnu−χ∫R2uv−ξ∫R2uw+χ2∫R2(v2+|∇v|2)≥∫R2ulnu−(χ+γ)∫R2uv−ξKM+χ2∫R2(v2+|∇v|2)+γ∫R2uv. | (3.11) |
Similar as the calculation shown in [1], we set ˉu(x,t)=Me(χ+γ)v(x,t)H(x)(∫R2e(χ+γ)v(x,t)H(x)dx)−1, where H(x) is defined in Lemma 3.4. Then, we can apply the Entropy Lemma 3.3 with ψ=(χ+γ)v+lnH to obtain
E(u;(χ+γ)v+lnH)≥E(ˉu;(χ+γ)v+lnH)=MlnM−Mln(∫R2e(χ+γ)v(x,t)H(x)dx). | (3.12) |
Furthermore, applying Lemma 3.4 with φ=(χ+γ)v to the last term in the right hand side of (3.12), we have that
E(u;(χ+γ)v+lnH)=∫R2ulnu−(χ+γ)∫R2uv−∫R2ulnH≥MlnM−Mln(∫R2e(χ+γ)v(x,t)H(x)dx)≥MlnM−M(χ+γ)∫R2vH−M(χ+γ)216π∫R2|∇v|2. | (3.13) |
Then by Young's inequality, we have M(χ+γ)∫R2vH≤M(χ+γ)216π∫R2v2+4Mπ∫R2H2. Together with (3.13) and the fact \int_{\mathbb{R}^{2}} H^2(x) dx = \frac{1}{3\pi} , we can easily obtain
\begin{align} &\int_{\mathbb{R}^2} u \ln u-(\chi+\gamma) \int_{\mathbb{R}^2} u v-\int_{\mathbb{R}^2} u \ln H\\ \geq &M \ln M-M(\chi+\gamma)\int_{\mathbb{R}^{2}} vH-\frac{M(\chi+\gamma)^2}{16\pi}\int_{\mathbb{R}^{2}}|\nabla v|^{2}\\ \geq &M \ln M-\frac{M(\chi+\gamma)^2}{16\pi}\int_{\mathbb{R}^{2}}v^{2}-\frac{M(\chi+\gamma)^2}{16\pi}\int_{\mathbb{R}^{2}}|\nabla v|^{2}- \frac{4}{3}M. \end{align} | (3.14) |
Substituting (3.14) into (3.11), we have
\begin{align} F(t)&\geq\int_{\mathbb{R}^2} u \ln u-(\chi+\gamma) \int_{\mathbb{R}^2} u v+\frac{\chi}{2} \int_{\mathbb{R}^2}\left(v^{2}+|\nabla v|^{2}\right)+\gamma\int_{\mathbb{R}^2} u v-\xi KM \\&\geq M \ln M+\int_{\mathbb{R}^2} u \ln H+\left(\frac{\chi}{2}-\frac{M(\chi+\gamma)^2}{16\pi}\right)\int_{\mathbb{R}^2}\left(v^{2}+|\nabla v|^{2}\right)+ \gamma\int_{\mathbb{R}^2} u v-(\xi K+ \frac{4}{3})M \\&\geq M \ln M+\int_{\mathbb{R}^2} u \ln H+\gamma\int_{\mathbb{R}^2} u v-(\xi K+ \frac{4}{3})M \end{align} | (3.15) |
by (3.10). Now we turn to estimate the second term on the right side of (3.15). We set \phi(x) = \ln (1+|x|^2) , then we can obtain by Young's inequality
\begin{align*} &\ \frac{d}{dt}\int_{\mathbb{R}^2} u\phi = \int_{\mathbb{R}^2} u_t\phi = \int_{\mathbb{R}^2} u \nabla \phi\cdot\nabla(\ln u-\chi v-\xi w)\nonumber\\ \leq&\int_{\mathbb{R}^2}u|\nabla \phi|^{2}+\frac{1}{4}\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2},\quad \text{for all}\ t\in(0,T_{\max}). \end{align*} |
By the fact |\nabla \phi(x)| = \left|\frac{2x}{1+|x|^2}\right|\leq1 , we have
\begin{align*} \frac{d}{dt}\int_{\mathbb{R}^2} u\phi\leq \int_{\mathbb{R}^2}u+\frac{1}{4}\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2}\leq M+\frac{1}{4}\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2}, \end{align*} |
upon being integrated from 0 to t , which yields simply that for all t\in(0, T_{\max})
\begin{eqnarray} \int_{\mathbb{R}^2} u\ln (1+|x|^2)\leq\int_{\mathbb{R}^2} u_0\ln (1+|x|^2)+Mt+\frac{1}{4}\int_0^t\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2}. \end{eqnarray} | (3.16) |
By the definition of H(x) , we have for all t\in(0, T_{\max})
\begin{align} \int_{\mathbb{R}^2} u \ln H& = -2\int_{\mathbb{R}^2}u\ln (1+|x|^2)- M\ln \pi \\&\geq-2\int_{\mathbb{R}^2} u_0\ln (1+|x|^2)-2Mt-\frac{1}{2}\int_0^t\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2}- M\ln \pi. \end{align} | (3.17) |
Substituting (3.15) and (3.17) into (3.9), we have for all t\in(0, T_{\max})
\begin{eqnarray} \gamma\int_{\mathbb{R}^2} u v\leq \xi K \int_0^t \int_{\mathbb{R}^{2} } u v+2Mt+F(0)+2\int_{\mathbb{R}^2}u_0\ln (1+|x|^2)+(\ln \pi+\xi K+ \frac{4}{3}-\ln M )M. \end{eqnarray} | (3.18) |
From (1.4), we have assumed for convenience that u_{0} \ln u_{0} and u_0\ln (1+|x|^2) belongs to L^{1}(\mathbb{R}^2) for convenience. Then we conclude an integral-type Gronwall inequality as follows
\begin{eqnarray} \gamma\int_{\mathbb{R}^2} u v\leq \xi K \int_0^t \int_{\mathbb{R}^{2} } u v+2Mt+C_1, \quad \forall t \in\left(0, T_{\max}\right), \end{eqnarray} | (3.19) |
where C_1 = F(0)+2\int_{\mathbb{R}^2}u_0\ln (1+|x|^2)+(\ln \pi+\xi K+ \frac{4}{3}-\ln M)M is a finite number. Solving the integral-type Gronwall inequality (3.19) via integrating factor method, we infer that for some C_2 > 0
\int_{\mathbb{R}^2} u v+\int_{0}^{t} \int_{\mathbb{R}^2} u v \leq C_{2} e^{\frac{\xi K}{\gamma} t}, \quad \forall t \in\left(0, T_{\max}\right) . |
Then by (3.9), one can simply deduce that F(t) grows no great than exponentially as well:
\begin{eqnarray} F(t) \leq C_{3} e^{\frac{\xi K}{\gamma} t}, \quad \forall t \in\left(0, T_{\max}\right). \end{eqnarray} | (3.20) |
Similarly, this along with (1.7) shows that for some C_4 > 0
\begin{eqnarray} \int_{\mathbb{R}^2} u\ln u+\int_{\mathbb{R}^2} v^{2}+\int_{\mathbb{R}^2}|\nabla v|^{2} \leq C_{4} e^{\frac{\xi K}{\gamma} t}, \quad \forall t \in\left(0, T_{\max}\right). \end{eqnarray} | (3.21) |
According to Lemma 3.5 with \psi = -(1+\delta) \ln \left(1+|x|^{2}\right) , for arbitrary \delta > 0 in order to have e^{-(1+\delta) \ln \left(1+|x|^{2}\right)} \in L^{1}\left(\mathbb{R}^{2}\right) , we have for all t \in(0, T_{\max})
\begin{align} &\int_{\mathbb{R}^{2}} u(\ln u)_{-} d x\\ \leq & (1+\delta) \int_{\mathbb{R}^{2}} u \ln \left(1+|x|^{2}\right) d x+C_5 \\ \leq & (1+\delta) \left\{\int_{\mathbb{R}^2} u_0\ln (1+|x|^2)+Mt+\frac{1}{4}\int_0^t\int_{\mathbb{R}^2} u|\nabla(\ln u-\chi v-\xi w)|^{2}\right\}+C_5\\ \leq &\frac{1+\delta}{4}\left\{F(0)-F(t)+ \xi K \int_0^t \int_{\mathbb{R}^{2} } u v\right\}+M(1+\delta)t+C_6\\ \leq &C_{7}e^{\frac{\xi K}{\gamma} t} \end{align} | (3.22) |
for some C_i > 0 (i = 5, 6, 7) . Finally, the identity
\begin{eqnarray} \int_{\mathbb{R}^{2}}|u \ln u| d x = \int_{\mathbb{R}^{2}} u \ln u d x+2 \int_{\mathbb{R}^{2}} u(\ln u)_{-} d x \end{eqnarray} | (3.23) |
gives that \|(u \ln u)(t)\|_{L^{1}}\leq C_{8}e^{\frac{\xi K}{\gamma} t} for some C_8 > 0 . Together with (3.21), this easily yield (3.7).
Next, we wish to raise the regularity of u based on the local L^{1} -boundedness of u \ln u . In particular, for subcritical mass M , we have \int_{\mathbb{R}^{2}}(u(x, t)-k)_{+} d x \leq M for any k > 0 , while for k > 1 we have for all t \in(0, T_{\max})
\begin{align} \int_{\mathbb{R}^{2}}(u(x, t)-k)_{+} d x & \leq \frac{1}{\ln k} \int_{\mathbb{R}^{2}}(u(x, t)-k)_{+} \ln u(x, t) d x \\ & \leq \frac{1}{\ln k} \int_{\mathbb{R}^{2}} u(x, t)(\ln u(x, t))_{+} d x\leq \frac{C e^{\frac{\xi K}{\gamma} t}}{\ln k}. \end{align} | (3.24) |
Lemma 3.7. Under the condition (1.5) and (1.8), for any T \in(0, T_{\max}) , there exists C(T) > 0 such that the local solution (u, v, w) of (1.1) verifies that for any p\geq2
\begin{eqnarray} \int_{\mathbb{R}^{2}} u^{p}(x, t) d x \leq C(T),\ \forall t \in\left(0, T\right], \end{eqnarray} | (3.25) |
where C(T) = 2^p\bar{C}(T)+(2k)^{p-1}M with k and \bar{C}(T) respectively given by (3.37) and (3.40) below, which are finite for any T > 0 .
Proof. Let k > 0 , to be chosen later. We derive a non-linear differential inequality for the quantity Y_{p}(t): = \int_{\mathbb{R}^{2}}(u(x, t)-k)_{+}^{p} d x , which guarantees that the L^{p} -norm of u remains finite.
Multiplying the equation of u in (1.3) by p(u-k)_{+}^{p-1} yields, using integration by parts,
\begin{align} &\frac{d}{d t} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x \\ = &-4 \frac{(p-1)}{p} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x -(p-1) \chi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} \Delta v d x-p k \chi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} \Delta v d x \\ & -(p-1)\xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} \Delta w d x-p k \xi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} \Delta w d x \\ = &I_1+I_2+I_3+I_4+I_5. \end{align} | (3.26) |
Now using the equation of v in (1.3) and the nonnegativity of v , one obtains
\begin{eqnarray} I_2& = &-(p-1)\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} \Delta v dx \\& = &(p-1)\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p}(-v_t-v+u)dx \\&\leq&-(p-1)\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p}v_t+(p-1)\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1}dx+(p-1)k\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p}dx \end{eqnarray} | (3.27) |
and
\begin{eqnarray} I_3& = &-p k \chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} \Delta vdx\\& = &pk\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}(-v_t-v+u)dx\\&\leq&-pk \chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}v_tdx+pk\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p}dx+pk^2\chi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}dx. \end{eqnarray} | (3.28) |
Using Gagliardo-Nirenberg inequality \int_{\mathbb{R}^{2}} f^{4}(x) d x \leq C \int_{\mathbb{R}^{2}} f^{2}(x) d x \int_{\mathbb{R}^{2}}|\nabla f(x)|^{2} d x with f = (u-k)_{+}^{\frac{p}{2}} and Hölder inequality, we obtain for \varepsilon > 0
\begin{align} \left|\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} v_t d x\right| & \leq\left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{2 p} d x\right)^{\frac{1}{2}}\left\|v_t\right\|_{L^{2}} \\ & \leq C\left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x\right)^{1 / 2}\left\|v_t\right\|_{L^{2}} \\ & \leq C(p)\varepsilon\left\| v_t\right\|_{L^{2}}^{2} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+\frac{2}{\varepsilon p} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x. \end{align} | (3.29) |
Similarly, we have, for p \geq \frac{3}{2}
\begin{align} \left|\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} v_t d x\right| \leq & \left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{2(p-1)} d x\right)^{\frac{1}{2}}\left\| v_t\right\|_{L^{2}} \\ \leq& \left(C(M, p)+C(p) \int_{\mathbb{R}^{2}}(u-k)_{+}^{2 p} d x\right)^{\frac{1}{2}}\left\| v_t\right\|_{L^{2}} \\ \leq & C(M, p)\left\| v_t\right\|_{L^{2}}+ C(p)\varepsilon\left\| v_t\right\|_{L^{2}}^{2} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x \\ &+\frac{p-1}{\varepsilon p^2 k} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x. \end{align} | (3.30) |
Then we can see that
\begin{eqnarray} I_2+I_3&\leq &(p-1)\int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1}dx+\frac{(p-1)}{p} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x \\&\ &+C(p,\chi)(k+1)\left\|v_{t} \right\|_{L^{2}}^2 \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+ C(M,p,\chi)k\left\|v_{t} \right\|_{L^{2}} \\&\ &+(2p-1)k\chi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+pk^2\chi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} d x \end{eqnarray} | (3.31) |
by setting \varepsilon = 4\chi . According to the equation of w and v and (3.8), one obtains for all t\in(0, T)
\begin{align} -\Delta w(x, t) = & -\Delta w_{0}(x) \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s}+2 \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s} \nabla w_{0}(x) \cdot \int_{0}^{t} \nabla v(x, s) \mathrm{d} s \\&-w_{0}(x) \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s} \left|\int_{0}^{t} \nabla v(x, s) \mathrm{d} s\right|^{2}+w_{0}(x) \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s} \int_{0}^{t} \Delta v(x, s) \mathrm{d} s \\ \leq&\|\Delta w_{0}\|_{L^{\infty}}-\mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s}\left(\sqrt{w_0}\int_{0}^{t} \nabla v(x, s) \mathrm{d} s-\frac{\nabla w_{0}}{\sqrt{w_0}} \right)^2+\mathrm{e}^{-\int_{0}^{t} v(x, s)ds}\frac{\left|\nabla w_{0}\right|^2}{w_0} \\&+w_{0}(x) \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s} \int_{0}^{t} \left(v_s(x,s)+v-u\right) \mathrm{d} s. \end{align} | (3.32) |
Here to estimate the last integral of the right side of (3.32) we first note (1.7) guarantees that
\begin{aligned} w_{0}(x) \mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s} \int_{0}^{t} \left(v_s(x,s)+v-u\right) \mathrm{d}s&\leq \|w_{0}\|_{L^{\infty}}\mathrm{e}^{-\int_{0}^{t} v(x, s) \mathrm{d} s}\left[v(x,t)-v_0+\int_{0}^{t} v(x, s)\mathrm{d} s\right]\\&\leq \|w_{0}\|_{L^{\infty}}v+\frac{\|w_{0}\|_{L^{\infty}}}{\mathrm{e}}, \quad \forall t \in\left(0, T\right) \end{aligned} |
by the nonnegativity of w_0 and v_0 and the fact \mathrm{e}^{-x}x\leq\frac{1}{\mathrm{e}} for all x > 0 . Substituting (3.8) and (3.32) into (3.26), we have
\begin{align*} I_4+I_5 = &-(p-1)\xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} \Delta w d x-p k\xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} \Delta w d x\nonumber\\ \leq&(p-1)K\xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p}v d x+ (p-1)K_1 \xi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} dx\nonumber\\&+p k K\xi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}v d x+p k K_1 \xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}d x, \end{align*} |
where K_1 = \|\Delta w_{0}\|_{L^{\infty}}+4\|\nabla \sqrt{w_{0}}\|_{L^{\infty}}^2+\frac{K}{\mathrm{e}} . Applying similar procedure as (3.29) and (3.30) to \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} vdx and \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} vdx , this yields
\begin{align} I_4+I_5\leq&\frac{(p-1)}{p} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x+C(p,K,\xi)k\left\| v\right\|_{L^{2}}^{2} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+ C(M, p,K,\xi)k\left\| v\right\|_{L^{2}}\\&+(p-1)K_1 \xi \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} dx+p k K_1\xi\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1}d x \end{align} | (3.33) |
by setting \varepsilon = 2K\xi . Combining (3.26), (3.31) and (3.33), we have for all t\in(0, T)
\begin{align} &\frac{d}{d t} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x\\ \leq&-2\frac{(p-1)}{p} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right|^{2} d x+(p-1) \int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} dx \\&+[(2p-1)k\chi+(p-1)K_1\xi]\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} dx+(pk^2\chi+pkK_1\xi)\int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} dx \\&+C(p,K,\chi,\xi)(k+1)\left(\left\|\partial_{t} v\right\|_{L^{2}}^2+\left\| v\right\|_{L^{2}}^2\right) \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+ C(M,p,K,\chi,\xi)k\left(\left\|\partial_{t} v\right\|_{L^{2}}+\left\| v\right\|_{L^{2}}\right). \end{align} | (3.34) |
Next, we estimate the nonlinear and negative contribution -2\frac{(p-1)}{p} \int_{\mathbb{R}^{2}}|\nabla(u-k)_{+}^{\frac{p}{2}}|^{2} d x in terms of \int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} dx , with the help of the Sobolev's inequality \|f\|_{L^2}^2\leq c_1 \|\nabla f\|_{L^1}^2 . Indeed, by (3.24),
\begin{align} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} d x & = \int_{\mathbb{R}^{2}}\left((u-k)_{+}^{\frac{(p+1)}{2}}\right)^{2} d x \leq c_1\left(\int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{\frac{(p+1)}{2}}\right| d x\right)^{2} \\ & = C(p)\left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{\frac{1}{2}}\left|\nabla(u-k)_{+}^{\frac{p}{2}}\right| d x\right)^{2} \\ & \leq C(p) \int_{\mathbb{R}^{2}}(u-k)_{+} d x \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{p / 2}\right|^{2} d x \\ & \leq C(p) \frac{C e^{\frac{\xi K}{\gamma} T}}{\ln k} \int_{\mathbb{R}^{2}}\left|\nabla(u-k)_{+}^{p / 2}\right|^{2} d x, \quad \forall 0 < t \leq T. \end{align} | (3.35) |
Moreover, since for p \geq 2 it holds true that
\begin{equation} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p-1} d x \leq \int_{\mathbb{R}^{2}}(u-k)_{+} d x+\int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x. \end{equation} | (3.36) |
Inserting (3.35) and (3.36) into (3.34) gives for p \geq 2 and 0 < t \leq T that
\begin{equation*} \begin{aligned} &\frac{d}{d t} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x \\& \leq(p-1)\left(1-\frac{2\ln k}{p C(p)C e^{\frac{\xi K}{\gamma} T}}\right) \int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} d x \\ &\quad+C(p,K,\chi,\xi)k\left(1+\left\|\partial_{t} v\right\|_{L^{2}}^2+\left\| v\right\|_{L^{2}}^2\right) \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x+ C(M,p,K,\chi,\xi)k\left(\left\|\partial_{t} v\right\|_{L^{2}}+\left\| v\right\|_{L^{2}}+1\right). \end{aligned} \end{equation*} |
For any fixed p we can choose k = k(p, T) sufficiently large such that
\begin{equation} \delta: = \frac{2\ln k}{p C(p)C e^{\frac{\xi K}{\gamma} T}}-1 > 0, \end{equation} | (3.37) |
namely, k = \exp\left(\frac{(1+\delta)p C(p)C e^{\frac{\xi K}{\gamma} T}}{2}\right) . For such a k , using the interpolation
\begin{aligned} \int_{\mathbb{R}^{2}}(u-k)_{+}^{p} d x & \leq\left(\int_{\mathbb{R}^{2}}(u-k)_{+} d x\right)^{\frac{1}{p}}\left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} d x\right)^{\left(1-\frac{1}{p}\right)} \\ & \leq M^{\frac{1}{p}}\left(\int_{\mathbb{R}^{2}}(u-k)_{+}^{p+1} d x\right)^{\left(1-\frac{1}{p}\right)}, \end{aligned} |
we end up with the following differential inequality for Y_{p}(t) , p\geq2 fixed and 0 < t \leq T
\begin{align} \frac{d}{d t} Y_{p}(t)& \leq-(p-1) M^{-\frac{1}{p-1}} \delta Y_{p}^{\beta}(t)+c_{2}(p,K,\chi,\xi)k\left(1+\left\|\partial_{t} v\right\|_{L^{2}}^2+\left\| v\right\|_{L^{2}}^2\right) Y_{p}(t) \\&\quad+c_{3}(M,p,K,\chi,\xi)k\left(1+\left\|\partial_{t} v\right\|_{L^{2}}^2+\left\| v\right\|_{L^{2}}^2\right), \end{align} | (3.38) |
where \beta = \frac{p}{p-1} > 1 . Let us write the differential inequality (3.38) as follows for simplicity:
\begin{equation} \frac{d}{d t} Y_{p}(t) \leq-\tilde{C} Y_{p}^{\beta}(t)+g(t) Y_{p}(t)+g(t), \quad 0 < t \leq T, \end{equation} | (3.39) |
where g(t) = \bar{C}(M, p, K, \chi, \xi)k\left(1+\left\|\partial_{t} v\right\|_{L^{2}}^2+\left\| v\right\|_{L^{2}}^2\right) and \tilde{C} = (p-1) M^{-\frac{1}{p-1}} \delta > 0 . According to (3.7), (3.9) and (3.20), we can see that g(t)\leq \bar{C}(M, p, K, \chi, \xi)ke^{\frac{\xi Kt}{\gamma}} . Then by comparison inequality, we show that there exists a constant \bar{C}(T) such that for all t\in(0, T)
\begin{align} Y_{p}(t) &\leq Y_{p}(0)\exp\left(\int_0^t g(s)ds\right)+\int_0^tg(\tau)\exp\left(\int_\tau^t g(s)ds\right)d\tau \\&\leq Y_{p}(0)\bar{C}(M, p, K,\chi,\xi) k e^{\frac{\xi K T}{\gamma}}T+\bar{C}(M, p, K,\chi,\xi) k e^{\frac{\xi K T}{\gamma}} e^{\bar{C}(M, p, K,\chi,\xi) k e^{\frac{\xi K T}{\gamma}}} T: = \bar{C}(T). \end{align} | (3.40) |
It is sufficient to observe that for any k > 0
\begin{align} \int_{\mathbb{R}^{2}} u^{p}(x, t) d x & = \int_{\{u \leq 2 k\}} u^{p}(x, t) d x+\int_{\{u > 2 k\}} u^{p}(x, t) d x \\ & \leq(2 k)^{p-1} M+2^{p} \int_{\{u > 2 k\}}(u(x, t)-k)^{p} d x \\ & \leq(2 k)^{p-1} M+2^{p} \int_{\mathbb{R}^{2}}(u(x, t)-k)_{+}^{p} d x, \end{align} | (3.41) |
where the inequality x^{p} \leq 2^{p}(x-k)^{p} , for x \geq 2 k , has been used. Therefore, (3.25) follows for any p \geq 2 by (3.40) and (3.41) choosing k = k(p, T) sufficiently large such that (3.37) holds true.
Proof of Theorem 1.1. According to the local L^p- boundedness of Lemma 3.7 and Lemma 2.2 we must have the local H^2\times H^3\times H^3 -boundedness of (u, v, w) , which contracts the extensibility criteria in (2.35). Then we must obtain that T_{\max} = \infty , that is, the strong solution (u, v, w) of (1.3) exists globally in time and is locally bounded as in (2.2).
The authors convey sincere gratitude to the anonymous referees for their careful reading of this manuscript and valuable comments which greatly improved the exposition of the paper. The authors are supported in part by National Natural Science Foundation of China (No. 12271092, No. 11671079).
The authors declare there is no conflict of interest.
[1] | V. Calvez, L. Corrias, The parabolic-parabolic Keller-Segel model in \mathbb R^2, Commun. Math. Sci., 6 (2008), 417–447. http://projecteuclid.org/euclid.cms/1214949930 |
[2] |
H. Y. Jin, T. Xiang, Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model, Math. Models Methods Appl. Sci., 31 (1979), 827–868. https://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113
![]() |
[3] |
M. A. J. Chaplain, G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399–439. https://doi.org/10.3934/nhm.2006.1.399 doi: 10.3934/nhm.2006.1.399
![]() |
[4] |
P. Y. H. Pang, Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Models Methods Appl. Sci., 28 (2018), 2211–2235. https://doi.org/10.1142/S0218202518400134 doi: 10.1142/S0218202518400134
![]() |
[5] |
Y. Tao, M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity, 21 (2008), 2221–2238. https://doi.org/10.1088/0951-7715/21/10/002 doi: 10.1088/0951-7715/21/10/002
![]() |
[6] |
Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60–69. https://doi.org/10.1016/j.jmaa.2008.12.039 doi: 10.1016/j.jmaa.2008.12.039
![]() |
[7] | X. Cao, Boundedness in a three-dimensional chemotaxis–haptotaxis model, Zeitschrift für angewandte Mathematik und Physik, 67 (2006). |
[8] |
Y. Tao, M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differ. Equations, 257 (2014), 784–815. https://doi.org/10.1016/j.jde.2014.04.014 doi: 10.1016/j.jde.2014.04.014
![]() |
[9] |
Y. Tao, M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225–1239. https://doi.org/10.1088/0951-7715/27/6/1225 doi: 10.1088/0951-7715/27/6/1225
![]() |
[10] |
Y. Tao, M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1067–1084. https://doi.org/10.1017/S0308210512000571 doi: 10.1017/S0308210512000571
![]() |
[11] |
T. Xiang, Finite time blow-up in the higher dimensional parabolic-elliptic-ODE minimal chemotaxis-haptotaxis system, J. Differential Equations, 336 (2022), 44–72. https://doi.org/10.1016/j.jde.2022.07.015 doi: 10.1016/j.jde.2022.07.015
![]() |
[12] |
C. Morales-Rodrigo, Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours, Math. Comput. Model., 47 (2008), 604–613. https://doi.org/10.1016/j.mcm.2007.02.031 doi: 10.1016/j.mcm.2007.02.031
![]() |
[13] |
C. Walker, G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2006), 1694–1713. https://doi.org/10.1137/060655122 doi: 10.1137/060655122
![]() |
[14] |
A. Marciniak-Czochra, M. Ptashnyk, Boundedness of solutions of a haptotaxis model, Name J., 20 (2010), 449–476. https://doi.org/10.1142/S0218202510004301 doi: 10.1142/S0218202510004301
![]() |
[15] |
G. Liţcanu, C. Morales-Rodrigo, Asymptotic behavior of global solutions to a model of cell invasion, Math. Models Methods Appl. Sci., 20 (2010), 1721–1758. https://doi.org/10.1142/S0218202510004775 doi: 10.1142/S0218202510004775
![]() |
[16] |
E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Name J., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
![]() |
[17] | D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Ⅰ, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103–165. |
[18] |
T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3
![]() |
[19] |
N. Bellomo, N. Outada, J. Soler, Y. Tao, M. Winkler, Chemotaxis and cross-diffusion models in complex environments: models and analytic problems toward a multiscale vision, Math. Models Methods Appl. Sci., 32 (2022), 713–792. https://doi.org/10.1142/S0218202522500166 doi: 10.1142/S0218202522500166
![]() |
[20] |
G. Arumugam, J. Tyagi, Keller-Segel chemotaxis models: a review, Acta Appl. Math., 171 (2021), 6-82. https://doi.org/10.1007/s10440-020-00374-2 doi: 10.1007/s10440-020-00374-2
![]() |
[21] | Y. Ke, J. Li, Y. Wang, Analysis of reaction-diffusion models with the taxis mechanism, Financial Mathematics and Fintech, Springer, Singapore, 2022. https: //doi.org/10.1007/978-981-19-3763-7 |
[22] | A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differ. Equations, (2004), 32–44. |
[23] |
A. Blanchet, E. A. Carlen, J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Funct. Anal., 262 (2012), 2142–2230. https://doi.org/10.1016/j.jfa.2011.12.012 doi: 10.1016/j.jfa.2011.12.012
![]() |
[24] |
D. Wei, Global well-posedness and blow-up for the 2-D Patlak-Keller-Segel equation, J. Funct. Anal., 274 (2018), 388–401. https://doi.org/10.1016/j.jfa.2017.10.019 doi: 10.1016/j.jfa.2017.10.019
![]() |
[25] | T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581–601. |
[26] |
T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37–55. https://doi.org/10.1155/S1025583401000042 doi: 10.1155/S1025583401000042
![]() |
[27] |
Y. Naito, T. Suzuki, Self-similar solutions to a nonlinear parabolic-elliptic system, Taiwanese J. Math., 8 (2004), 43–55. https://doi.org/10.11650/twjm/1500558456 doi: 10.11650/twjm/1500558456
![]() |
[28] | T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411–433. http://www.math.kobe-u.ac.jp/fe/xml/mr1610709.xml |
[29] |
P. Biler, G. Karch, P. Laurençot, T. Nadzieja, The 8\pi-problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci., 29 (2006), 1563–1583. https://doi.org/10.1002/mma.743 doi: 10.1002/mma.743
![]() |
[30] |
A. Blanchet, J. A. Carrillo, N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in \mathbb R^2, Comm. Pure Appl. Math., 61 (2008), 1449–1481. https://doi.org/10.1002/cpa.20225 doi: 10.1002/cpa.20225
![]() |
[31] |
P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math., 114 (1995), 181–205. https://doi.org/10.4064/sm-114-2-181-205 doi: 10.4064/sm-114-2-181-205
![]() |
[32] |
G. Karch, Scaling in nonlinear parabolic equations, J. Math. Anal. Appl., 234 (1999), 534–558. https://doi.org/10.1006/jmaa.1999.6370 doi: 10.1006/jmaa.1999.6370
![]() |
[33] |
P. Biler, L. Brandolese, On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis, Studia Math., 193 (2009), 241–261. https://doi.org/10.48550/arXiv.0804.1000 doi: 10.48550/arXiv.0804.1000
![]() |
[34] | R. Lemarié, G. Pierre, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space, Adv. Differ. Equations, 18 (2013), 1189–1208. http://projecteuclid.org/euclid.ade/1378327383 |
[35] | T. Senba, A fast blowup solution to an elliptic-parabolic system related to chemotaxis, Adv. Differ. Equations, 11 (2006), 981–1030. |
[36] | N. Mizoguchi, T. Senba, Type-Ⅱ blowup of solutions to an elliptic-parabolic system, Adv. Math. Sci. Appl., 17 (2007), 505–545. |
[37] |
P. Biler, G. Karch, D. Pilarczyk, Global radial solutions in classical Keller-Segel model of chemotaxis, J. Differ. Equations, 267 (2019), 6352–6369. https://doi.org/10.1016/j.jde.2019.06.024 doi: 10.1016/j.jde.2019.06.024
![]() |
[38] |
Y.Naito, Blow-up criteria for the classical Keller-Segel model of chemotaxis in higher dimensions, J. Differ. Equations, 297 (2021), 144–174. https://doi.org/10.1016/j.jde.2021.06.024 doi: 10.1016/j.jde.2021.06.024
![]() |
[39] |
T. Nagai, T. Ogawa, Brezis-Merle inequalities and application to the global existence of the Cauchy problem of the Keller-Segel system, Commun. Contemp. Math., 13 (2011), 795–812. https://doi.org/10.1142/S0219199711004440 doi: 10.1142/S0219199711004440
![]() |
[40] |
N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane, Calc. Var. Partial Differ. Equations, 48 (2013), 491–505. https://doi.org/10.1007/s00526-012-0558-4 doi: 10.1007/s00526-012-0558-4
![]() |
[41] |
A. Blanchet, J. A. Carrillo, D. Kinderlehrer, M. Kowalczyk, P. Laurençot, S. Lisini, A hybrid variational principle for the Keller-Segel system in \mathbb R^2, ESAIM Math. Model. Numer. Anal., 49 (2015), 1553–1576. https://doi.org/10.1051/m2an/2015021 doi: 10.1051/m2an/2015021
![]() |
[42] | R. Schweyer, Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model, preprint, arXiv: math/1403.4975. |
[43] |
N. Mizoguchi, Finite-time blowup in Cauchy problem of parabolic-parabolic chemotaxis system, J. Math. Pures Appl., 136 (2020), 203–238. https://doi.org/10.1016/j.matpur.2019.10.004 doi: 10.1016/j.matpur.2019.10.004
![]() |
[44] | O. A. Ladyenskaja, V. A. Solonnikov, N. Uralceva, Linear and quasilinear equations of parabolic type, American Mathematical Society, Providence, 1968. |
[45] |
M. Chae, K. Kang, J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst., 33 (2013), 2271–2297. https://doi.org/10.3934/dcds.2013.33.2271 doi: 10.3934/dcds.2013.33.2271
![]() |
[46] |
Y. Peng, Z. Xiang, Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary, Math. Models Methods Appl. Sci., 28 (2018), 869–920. https://doi.org/10.1142/S0218202518500239 doi: 10.1142/S0218202518500239
![]() |
[47] |
T. Nagai, R. Syukuinn, M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in {\bf{R}}^n, Funkcial. Ekvac., 46 (2003), 383–407. https://doi.org/10.1619/fesi.46.383 doi: 10.1619/fesi.46.383
![]() |
[48] | P. Quittner, P. Souplet, Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007. |
1. | Yuanlin Chen, Tian Xiang, Negligibility of haptotaxis on global dynamics in a chemotaxis-haptotaxis system with indirect signal production, 2024, 409, 00220396, 1, 10.1016/j.jde.2024.06.034 | |
2. | Poonam Rani, Jagmohan Tyagi, A quasilinear chemotaxis-haptotaxis system: Existence and blow-up results, 2024, 402, 00220396, 180, 10.1016/j.jde.2024.04.034 | |
3. | Poonam Rani, Jagmohan Tyagi, Finite-time blow-up in the higher dimensional parabolic-parabolic-ODE minimal chemotaxis-haptotaxis system, 2025, 423, 00220396, 133, 10.1016/j.jde.2024.12.030 |