This article deals with common due-window assignment and single-machine scheduling with proportional-linear shortening processing times. Objective cost is a type of minmax, that is, the maximal cost among all processed jobs is minimized. Our goal is to determine an optimal schedule, the optimal starting time, and size of due-window that minimize the worst cost, which consist of four parts: earliness, tardiness, starting time and length of the due-window. Optimal properties of the problem are given, and then an optimal polynomial algorithm is proposed to solve the problem.
Citation: Xue Jia, Jing Xue, Shi-Yun Wang, Ji-Bo Wang. Polynomial time algorithm for minmax scheduling with common due-window and proportional-linear shortening processing times[J]. Mathematical Biosciences and Engineering, 2022, 19(9): 8923-8934. doi: 10.3934/mbe.2022414
This article deals with common due-window assignment and single-machine scheduling with proportional-linear shortening processing times. Objective cost is a type of minmax, that is, the maximal cost among all processed jobs is minimized. Our goal is to determine an optimal schedule, the optimal starting time, and size of due-window that minimize the worst cost, which consist of four parts: earliness, tardiness, starting time and length of the due-window. Optimal properties of the problem are given, and then an optimal polynomial algorithm is proposed to solve the problem.
[1] | Y. Y. Lu, Research on no-idle permutation flowshop scheduling with time-dependent learning effect and deteriorating jobs, Appl. Math. Modell., 40 (2016), 3447–3450. https://doi.org/10.1016/j.apm.2015.09.081 doi: 10.1016/j.apm.2015.09.081 |
[2] | F. Liu, J. Yang, Y. Y. Lu, Solution algorithms for single-machine group scheduling with ready times and deteriorating jobs, Eng. Optim., 51 (2019), 862–874. https://doi.org/10.1080/0305215X.2018.1500562 doi: 10.1080/0305215X.2018.1500562 |
[3] | S. Gawiejnowicz, Models and Algorithms of Time-Dependent Scheduling, Springer-Berlin, 2020. https://doi.org/10.1007/978-3-662-59362-2 |
[4] | X. Huang, Bicriterion scheduling with group technology and deterioration effect, J. Appl. Math. Comput., 60 (2019), 455–464. https://doi.org/10.1007/s12190-018-01222-1 doi: 10.1007/s12190-018-01222-1 |
[5] | D. W. Li, X. W. Lu, Parallel-batch scheduling with deterioration and rejection on a single machine, Appl. Math. J. Chin. Univ., 35 (2020), 141–156. https://doi.org/10.1007/s11766-020-3624-2 doi: 10.1007/s11766-020-3624-2 |
[6] | X. X. Liang, M. Liu, Y. B. Feng, J. B. Wang, L. S. Wen, Solution algorithms for single-machine resource allocation scheduling with deteriorating jobs and group technology, Eng. Optim., 52 (2020), 1184–1197. https://doi.org/10.1080/0305215X.2019.1638920 doi: 10.1080/0305215X.2019.1638920 |
[7] | X. Huang, N. Yin, W. W. Liu, J. B. Wang, Common due window assignment scheduling with proportional linear deterioration effects, Asia-Pacific J. Oper. Res., 37 (2020), 1950031. https://doi.org/10.1142/S0217595919500313 doi: 10.1142/S0217595919500313 |
[8] | G. Mosheiov, A common due-date assignment problem on parallel identical machines, Comput. Oper. Res., 28 (2001), 719–732. https://doi.org/10.1016/S0305-0548(99)00127-6 doi: 10.1016/S0305-0548(99)00127-6 |
[9] | G. Mosheiov, A. Sarig, Minmax scheduling problems with a common due-window, Comput. Oper. Res., 36 (2009), 1886–1892. https://doi.org/10.1016/j.cor.2008.06.001 doi: 10.1016/j.cor.2008.06.001 |
[10] | E. Gerstl, G. Mosheiov, Minmax due-date assignment with a time window for acceptable lead-times, Ann. Oper. Res., 211 (2013), 167–177. https://doi.org/10.1007/s10479-013-1458-5 doi: 10.1007/s10479-013-1458-5 |
[11] | G. Mosheiov, A due-window determination in minmax scheduling problems, INFOR: Inf. Syst. Oper. Res., 39 (2001), 107–123. https://doi.org/10.1080/03155986.2001.11732429 doi: 10.1080/03155986.2001.11732429 |
[12] | B. Mor, Minmax scheduling problems with common due-date and completion time penalty, J. Comb. Optim., 38 (2019), 50–71. https://doi.org/10.1007/s10878-018-0365-8 doi: 10.1007/s10878-018-0365-8 |
[13] | G. Mosheiov, A. Sarig, V. Strusevich, Minmax scheduling and due-window assignment with position-dependent processing times and job rejection, 4OR, 18 (2020), 439–456. https://doi.org/10.1007/s10288-019-00418-w doi: 10.1007/s10288-019-00418-w |
[14] | W. Liu, X. Hu, X. Y. Wang, Single machine scheduling with slack due dates assignment, Eng. Optim., 49 (2017), 709–717. https://doi.org/10.1080/0305215X.2016.1197611 doi: 10.1080/0305215X.2016.1197611 |
[15] | Y. Q. Yin, D. J. Wang, T. C. E. Cheng, Due Date-Related Scheduling with Two Agents, Springer-Berlin, 2020. https://doi.org/10.1007/978-981-15-2105-8 |
[16] | G. A. Rolin, M. S. Nagano, Structural properties and algorithms for earliness and tardiness scheduling against common due dates and windows: A review, Comput. Ind. Eng., 149 (2020), 106803. https://doi.org/10.1016/j.cie.2020.106803 doi: 10.1016/j.cie.2020.106803 |
[17] | X. Sun, X. N. Geng, T. Liu, Due-window assignment scheduling in the proportionate flow shop setting, Ann. Oper. Res., 292 (2020), 113–131. https://doi.org/10.1007/s10479-020-03653-1 doi: 10.1007/s10479-020-03653-1 |
[18] | S. Zhao, Resource allocation flowshop scheduling with learning effect and slack due window assignment, J. Ind. Manage. Optim., 17 (2021), 2817–2835. https://doi.org/10.3934/jimo.2020096 doi: 10.3934/jimo.2020096 |
[19] | W. Liu, X. Wang, X. Wang, P. Zhao, Due-window assignment scheduling with past-sequence-dependent setup times, Math. Biosci. Eng., 19 (2022), 3110–3126. https://doi.org/10.3934/mbe.2022144 doi: 10.3934/mbe.2022144 |
[20] | X. Wang, W. Liu, L. Li, P. Zhao, R. Zhang, Due date assignment scheduling with positional-dependent weights and proportional setup times, Math. Biosci. Eng., 19 (2022), 5104–5119. https://doi.org/10.3934/mbe.2022238 doi: 10.3934/mbe.2022238 |
[21] | K. I. J. Ho, J. Y. T. Leung, W. D. Wei, Complexity of scheduling tasks with time-dependent execution times, Inf. Process. Lett., 48 (1993), 315–320. https://doi.org/10.1016/0020-0190(93)90175-9 doi: 10.1016/0020-0190(93)90175-9 |
[22] | J. B. Wang, Z. Q. Xia, Scheduling jobs under decreasing linear deterioration, Inf. Process. Lett., 94 (2005), 63–69. https://doi.org/10.1016/j.ipl.2004.12.018 doi: 10.1016/j.ipl.2004.12.018 |
[23] | C. C. Wu, W. C. Lee, M. J. Liou, Single-machine scheduling with two competing agents and learning consideration, Inf. Sci., 251 (2013), 136–149. https://doi.org/10.1016/j.ins.2013.06.054 doi: 10.1016/j.ins.2013.06.054 |
[24] | C. C. Wu, Y. Yin, S. R. Cheng, Single-machine and two-machine flowshop scheduling problems with truncated position-based learning functions, J. Oper. Res. Soc., 64 (2013), 147–156. https://doi.org/10.1057/jors.2012.46 doi: 10.1057/jors.2012.46 |
[25] | W. C. Yeh, P. J. Lai, W. C. Lee, M. C. Chuang, Parallel-machine scheduling to minimize makespan with fuzzy processing times and learning effects, Inf. Sci., 269 (2014), 142–158. https://doi.org/10.1016/j.ins.2013.10.023 doi: 10.1016/j.ins.2013.10.023 |
[26] | J. B. Wang, D. Y. Lv, J. Xu, P. Ji, F. Li, Bicriterion scheduling with truncated learning effects and convex controllable processing times, Int. Trans. Oper. Res., 28 (2021), 1573–1593. https://doi.org/10.1111/itor.12888 doi: 10.1111/itor.12888 |
[27] | D. Y. Lv, J. B. Wang, Study on resource-dependent no-wait flow shop scheduling with different due-window assignment and learning effects, Asia-Pacific J. Oper. Res., 38 (2021), 2150008. https://doi.org/10.1142/S0217595921500081 doi: 10.1142/S0217595921500081 |