The aim of this work is to obtain new inequalities for the variable symmetric division deg index $ SDD_\alpha(G) = \sum_{uv \in E(G)} (d_u^\alpha/d_v^\alpha+d_v^\alpha/d_u^\alpha) $, and to characterize graphs extremal with respect to them. Here, by $ uv $ we mean the edge of a graph $ G $ joining the vertices $ u $ and $ v $, and $ d_u $ denotes the degree of $ u $, and $ \alpha \in \mathbb{R} $. Some of these inequalities generalize and improve previous results for the symmetric division deg index. In addition, we computationally apply the $ SDD_\alpha(G) $ index on random graphs and we demonstrate that the ratio $ \langle SDD_\alpha(G) \rangle/n $ ($ n $ is the order of the graph) depends only on the average degree $ \langle d \rangle $.
Citation: J. A. Méndez-Bermúdez, José M. Rodríguez, José L. Sánchez, José M. Sigarreta. Analytical and computational properties of the variable symmetric division deg index[J]. Mathematical Biosciences and Engineering, 2022, 19(9): 8908-8922. doi: 10.3934/mbe.2022413
The aim of this work is to obtain new inequalities for the variable symmetric division deg index $ SDD_\alpha(G) = \sum_{uv \in E(G)} (d_u^\alpha/d_v^\alpha+d_v^\alpha/d_u^\alpha) $, and to characterize graphs extremal with respect to them. Here, by $ uv $ we mean the edge of a graph $ G $ joining the vertices $ u $ and $ v $, and $ d_u $ denotes the degree of $ u $, and $ \alpha \in \mathbb{R} $. Some of these inequalities generalize and improve previous results for the symmetric division deg index. In addition, we computationally apply the $ SDD_\alpha(G) $ index on random graphs and we demonstrate that the ratio $ \langle SDD_\alpha(G) \rangle/n $ ($ n $ is the order of the graph) depends only on the average degree $ \langle d \rangle $.
[1] | I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1 |
[2] | I. Gutman, Degree–based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. https://doi.org/10.5562/cca2294 doi: 10.5562/cca2294 |
[3] | I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004), 83–92. |
[4] | I. Gutman, T. Réti, Zagreb group indices and beyond, Int. J. Chem. Model., 6 (2014), 191–200. |
[5] | K. C. Das, A. S. Cevik, I. N. Cangul, Y. Shang, On Sombor index, Symmetry, 13 (2021), 140. https://doi.org/10.3390/sym13010140 |
[6] | H. A. Ganie, Y. Shang, On the spectral radius and energy of signless Laplacian matrix of digraphs, Heliyon, 8 (2022), e09186. https://doi.org/10.1016/j.heliyon.2022.e09186 doi: 10.1016/j.heliyon.2022.e09186 |
[7] | M. Randić, Novel graph theoretical approach to heteroatoms in QSAR, Chemometrics Intel. Lab. Syst., 10 (1991), 213–227. https://doi.org/10.1016/S0167-9260(06)80016-7 doi: 10.1016/S0167-9260(06)80016-7 |
[8] | M. Randić, On computation of optimal parameters for multivariate analysis of structure-property relationship, J. Chem. Inf. Comput. Sci., 31 (1991), 970–980. https://doi.org/10.1021/ci00002a002 doi: 10.1021/ci00002a002 |
[9] | M. Randić, D. Plavšić, N. Lerš, Variable connectivity index for cycle-containing structures, J. Chem. Inf. Comput. Sci., 41 (2001), 657–662. https://doi.org/10.1021/ci000118z doi: 10.1021/ci000118z |
[10] | A. Miličević, S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta, 77 (2004), 97–101. |
[11] | X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem., 54 (2005), 195–208. https://doi.org/10.1093/english/54.210.195 doi: 10.1093/english/54.210.195 |
[12] | X. Li, H. Zhao, Trees with the first smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem., 50 (2004), 57–62. |
[13] | D. Vukičević, Bond additive modeling 5. Mathematical properties of the variable sum exdeg index, Croat. Chem. Acta, 84 (2011), 93–101. https://doi.org/10.5562/cca1667 doi: 10.5562/cca1667 |
[14] | D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260. |
[15] | D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta, 83 (2010), 261–273. https://doi.org/10.1093/biolreprod/83.s1.261 doi: 10.1093/biolreprod/83.s1.261 |
[16] | M. Ghorbani, M. Songhori, I. Gutman, Modified Narumi-Katayama index, Kragujevac J. Sci., 34 (2012), 57–64. |
[17] | H. Narumi, M. Katayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ., 16 (1984), 209–214. https://doi.org/10.1016/0020-1383(84)90191-8 doi: 10.1016/0020-1383(84)90191-8 |
[18] | Y. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881 |
[19] | C. T. Martínez-Martínez, J. A. Mendez-Bermudez, J. M. Rodríguez, J. M. Sigarreta, Computational and analytical studies of the Randic index in Erdös-Rényi models, Appl. Math. Comput., 377 (2020), 125137. https://doi.org/10.1016/j.amc.2020.125137 doi: 10.1016/j.amc.2020.125137 |
[20] | C. T. Martínez-Martínez, J. A. Mendez-Bermudez, J. M. Rodríguez, J. M. Sigarreta, Computational and analytical studies of the harmonic index in Erdös–Rényi models, MATCH Commun. Math. Comput. Chem., 85 (2021), 395–426. |
[21] | R. Aguilar-Sanchez, J. A. Mendez-Bermudez, J. M. Rodríguez, J. M. Sigarreta-Almira, Analytical and statistical studies of Rodriguez-Velazquez indices, J. Math. Chem., 59 (2021), 1246–1259. https://doi.org/10.1007/s10910-021-01239-1 doi: 10.1007/s10910-021-01239-1 |
[22] | R. Aguilar-Sanchez, I. F. Herrera-Gonzalez, J. A. Mendez-Bermudez, J. M. Sigarreta, Computational properties of general indices on random networks, Symmetry, 12 (2020), 1341. https://doi.org/10.3390/sym12081341 doi: 10.3390/sym12081341 |