In this paper, we develop a stochastic susceptible-infective-susceptible (SIS) model, in which the transmission coefficient is a function of air quality index (AQI). By using Markov semigroup theory, the existence of kernel operator is obtained. Then, the sufficient conditions that guarantee the stationary distribution and extinction are given by Foguel alternative, Khasminsk$\check{\rm l}$ function and Itô formula. Next, a positivity-preserving numerical method is used to approximate the stochastic SIS model, meanwhile for all $ p > 0 $, we show that the algorithm has the $ p $th-moment convergence rate. Finally, numerical simulations are carried out to illustrate the corresponding theoretical results.
Citation: Qi Zhou, Huaimin Yuan, Qimin Zhang. Dynamics and approximation of positive solution of the stochastic SIS model affected by air pollutants[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 4481-4505. doi: 10.3934/mbe.2022207
In this paper, we develop a stochastic susceptible-infective-susceptible (SIS) model, in which the transmission coefficient is a function of air quality index (AQI). By using Markov semigroup theory, the existence of kernel operator is obtained. Then, the sufficient conditions that guarantee the stationary distribution and extinction are given by Foguel alternative, Khasminsk$\check{\rm l}$ function and Itô formula. Next, a positivity-preserving numerical method is used to approximate the stochastic SIS model, meanwhile for all $ p > 0 $, we show that the algorithm has the $ p $th-moment convergence rate. Finally, numerical simulations are carried out to illustrate the corresponding theoretical results.
[1] | C. Sun, X. Yuan, X. Yao, Social acceptance towards the air pollution in China: evidence from public's willingness to pay for smog mitigation, Energy Policy, 92 (2016), 313–324. https://doi.org/10.1016/j.enpol.2016.02.025 doi: 10.1016/j.enpol.2016.02.025 |
[2] | P. M. Mannucci, Airborne pollution and cardiovascular disease: burden and causes of an epidemic, Eur. Heart J., 17 (2013), 1251–1253. https://doi.org/10.1093/eurheartj/eht045 doi: 10.1093/eurheartj/eht045 |
[3] | M. Laeremans, E. Dons, I. Avila-Palencia, G. Carrasco-Turigas, J. P. Orjuela, E. Anaya, et al., Short-term effects of physical activity, air pollution and their interaction on the cardiovascular and respiratory system, Environ. Int., 117 (2018), 82–90. https://doi.org/10.1016/j.envint.2018.04.040 doi: 10.1016/j.envint.2018.04.040 |
[4] | C. Pope, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, et al., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, Jama, 287 (2002), 1132–1141. https://doi.org/10.1001/jama.287.9.1132 doi: 10.1001/jama.287.9.1132 |
[5] | G. P. Bǎlǎ, R. M. Râjnoveanu, E. Tudorache, R. Motișan, C. Oancea, Air pollution exposure-the(in)visible risk factor for respiratory diseases, Environ. Sci. Pollut. Res., 28 (2021), 19615–19628. https://doi.org/10.1007/s11356-021-13208-x doi: 10.1007/s11356-021-13208-x |
[6] | G. Chen, W. Zhang, S. Li, Y. Zhang, G. Williams, R. Huxley, et al., The impact of ambient fine particles on influenza transmission and the modification effects of temperature in China: a multi-city study, Environ. Int., 98 (2017), 82–88. https://doi.org/10.1016/j.envint.2016.10.004 doi: 10.1016/j.envint.2016.10.004 |
[7] | X. X. Wu, Y. M. Lu, S. Zhou, L. Chen, B. Xu, Impact of climate change on human infectious diseases: Empirical evidence and human adaptation, Environ. Int., 86 (2016), 14–23. https://doi.org/10.1016/j.envint.2015.09.007 doi: 10.1016/j.envint.2015.09.007 |
[8] | F. Weng, Z. E. Ma, Persistence and periodic orbits for an SIS model in a polluted environment, Comput. Math. Appl., 47 (2004), 779–792. https://doi.org/10.1016/S0898-1221(04)90064-8 doi: 10.1016/S0898-1221(04)90064-8 |
[9] | B. Liu, Y. Duan, S. Luan, Dynamics of an SI epidemic model with external effects in a polluted environment, Nonlinear Anal. Real World Appl., 13 (2012), 27–38. https://doi.org/10.1016/j.nonrwa.2011.07.007 doi: 10.1016/j.nonrwa.2011.07.007 |
[10] | S. He, S. Tang, Y. Cai, W. Wang, L. Rong, A stochastic epidemic model coupled with seasonal air pollution: analysis and data fitting, Stochastic Environ. Res. Risk Assess., 34 (2020), 2245–2257. https://doi.org/10.1007/s00477-020-01856-3 doi: 10.1007/s00477-020-01856-3 |
[11] | Y. Zhao, J. P. Li, X. Ma, Stochastic periodic solution of a susceptible-infective epidemic model in a polluted environment under environmental fluctuation, Comput. Math. Methods Med., 4 (2018), 1–15. https://doi.org/10.1155/2018/7360685 doi: 10.1155/2018/7360685 |
[12] | S. He, S. Y. Tang, W. M. Wang, A stochastic SIS model driven by random diffusion of air pollutants, Phys. A, 532 (2019), 121759. https://doi.org/10.1016/j.physa.2019.121759 doi: 10.1016/j.physa.2019.121759 |
[13] | A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, Soc. Ind. Appl. Math. J. Math. Anal., 71 (2011), 876–902. https://doi.org/10.1137/10081856X doi: 10.1137/10081856X |
[14] | M. Hutzenthaler, A. Jentzen, Numerical Approximations of Stochastic Differential Equations with Non-globally Lipschitz Continuous Coefficients, American Mathematical Society, 2015. |
[15] | S. Derech, A. Neuenkirch, L. Szpruchl, An euler-type method for the strong approximation of the Cox-Ingersoll-Ross process, Proc. R. Soc. A, 468 (2012), 1105–1115. https://doi.org/10.1098/rspa.2011.0505 doi: 10.1098/rspa.2011.0505 |
[16] | A. Andersson, R. Kruse, Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition, BIT Numer. Math., 57 (2017), 21–53. https://doi.org/10.1007/s10543-016-0624-y doi: 10.1007/s10543-016-0624-y |
[17] | R. Rudnicki, Long-time behaviour of a stochastic prey-predator model, Stochastic Proc. Their Appl., 108 (2003), 93–107. https://doi.org/10.1016/S0304-4149(03)00090-5 doi: 10.1016/S0304-4149(03)00090-5 |
[18] | R. Rudnicki, K. Pichór, Influence of stochastic perturbation on prey-predator systems, Math. Biosci., 206 (2007), 108–119. https://doi.org/10.1016/j.mbs.2006.03.006 doi: 10.1016/j.mbs.2006.03.006 |
[19] | R. Rudnicki, K. Pichór, M. Tyran-Kaminska, Markov semigroups and their applications, in Dynamics of Dissipation, (2002), 215–238. https://doi.org/10.1007/3-540-46122-1_9 |
[20] | L. P. Kadanoff, Statistical Physics Statics, Dynamics and Renormalization, World Scientific, New Jersey, 2000. |
[21] | D. W. Stroock, S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, in Contributions to Probability Theory, Berkeley: University of California Press, (2020), 333–359. https://doi.org/10.1525/9780520375918-020 |
[22] | G. B. Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Prob. Theory Relat. Fields, 90 (1991), 377–402. https://doi.org/10.1007/BF01193751 doi: 10.1007/BF01193751 |
[23] | S. Aida, S. Kusuoka, D. Strook, On the support of Wiener functionals, in Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotic (eds. K. D. Elworthy and N. Ikeda), Longman Scientific Technology, (1993), 3–34. |
[24] | W. Guo, Y. Cai, Q. Zhang, W. Wang, Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage, Phys. A, 492 (2018), 2220–2236. https://doi.org/10.1016/j.physa.2017.11.137 doi: 10.1016/j.physa.2017.11.137 |
[25] | X. Mao, F. Wei, T. Wiriyakraikul, Positivity preserving truncated Euler-Maruyama method for stochastic Lotka-Volterra competition model, J. Comput. Appl. Math., 394 (2021), 113566. https://doi.org/10.1016/j.cam.2021.113566 doi: 10.1016/j.cam.2021.113566 |
[26] | D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302 |