Muscle coordination and motor function of stroke patients are weakened by stroke-related motor impairments. Our earlier studies have determined alterations in inter-muscular coordination patterns (muscle synergies). However, the functional connectivity of these synergistically paired or unpaired muscles is still unclear in stroke patients. The goal of this study is to quantify the alterations of inter-muscular coherence (IMC) among upper extremity muscles that have been shown to be synergistically or non-synergistically activated in stroke survivors. In a three-dimensional isometric force matching task, surface EMG signals are collected from 6 age-matched, neurologically intact healthy subjects and 10 stroke patients, while the target force space is divided into 8 subspaces. According to the results of muscle synergy identification with non-negative matrix factorization algorithm, muscle pairs are classified as synergistic and non-synergistic. In both control and stroke groups, IMC is then calculated for all available muscle pairs. The results show that synergistic muscle pairs have higher coherence in both groups. Furthermore, anterior and middle deltoids, identified as synergistic muscles in both groups, exhibited significantly weaker IMC at alpha band in stroke patients. The anterior and posterior deltoids, identified as synergistic muscles only in stroke patients, revealed significantly higher IMC in stroke group at low gamma band. On the contrary, anterior deltoid and pectoralis major, identified as synergistic muscles in control group only, revealed significantly higher IMC in control group in alpha band. The results of muscle synergy and IMC analyses provide congruent and complementary information for investigating the mechanism that underlies post-stroke motor recovery.
Citation: Hongming Liu, Yunyuan Gao, Wei Huang, Rihui Li, Michael Houston, Julia S. Benoit, Jinsook Roh, Yingchun Zhang. Inter-muscular coherence and functional coordination in the human upper extremity after stroke[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 4506-4525. doi: 10.3934/mbe.2022208
Muscle coordination and motor function of stroke patients are weakened by stroke-related motor impairments. Our earlier studies have determined alterations in inter-muscular coordination patterns (muscle synergies). However, the functional connectivity of these synergistically paired or unpaired muscles is still unclear in stroke patients. The goal of this study is to quantify the alterations of inter-muscular coherence (IMC) among upper extremity muscles that have been shown to be synergistically or non-synergistically activated in stroke survivors. In a three-dimensional isometric force matching task, surface EMG signals are collected from 6 age-matched, neurologically intact healthy subjects and 10 stroke patients, while the target force space is divided into 8 subspaces. According to the results of muscle synergy identification with non-negative matrix factorization algorithm, muscle pairs are classified as synergistic and non-synergistic. In both control and stroke groups, IMC is then calculated for all available muscle pairs. The results show that synergistic muscle pairs have higher coherence in both groups. Furthermore, anterior and middle deltoids, identified as synergistic muscles in both groups, exhibited significantly weaker IMC at alpha band in stroke patients. The anterior and posterior deltoids, identified as synergistic muscles only in stroke patients, revealed significantly higher IMC in stroke group at low gamma band. On the contrary, anterior deltoid and pectoralis major, identified as synergistic muscles in control group only, revealed significantly higher IMC in control group in alpha band. The results of muscle synergy and IMC analyses provide congruent and complementary information for investigating the mechanism that underlies post-stroke motor recovery.
[1] | V. L. Feigin, B. A. Stark, C. O. Johnson, G. A. Roth, C. Bisignano, G. Abady, et al., Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019, Lancet Neurol., 20 (2020), 795–820. https://doi.org/10.1016/S1474-4422(21)00252-0 doi: 10.1016/S1474-4422(21)00252-0 |
[2] | K. Kisiel-Sajewicz, Y. Fang, K. Hrovat, G. H. Yue, V. Siemionow, C. Sun, et al., Weakening of synergist muscle coupling during reaching movement in stroke patients, Neurorehabil. Neural Repair, 25 (2011), 359–368. https://doi.org/10.1177/1545968310388665 doi: 10.1177/1545968310388665 |
[3] | R. F. Beer, J. D. Given, J. P. Dewald, Task-dependent weakness at the elbow in patients with hemiparesis, Arch. Phys. Med. Rehabil., 80 (1999), 766–772. https://doi.org/10.1016/S0003-9993(99)90225-3 doi: 10.1016/S0003-9993(99)90225-3 |
[4] | Y. Lan, J. Yao, J. P. Dewald, The impact of shoulder abduction loading on volitional hand opening and grasping in chronic hemiparetic stroke, Neurorehabil. Neural Repair, 31 (2017), 521–529. https://doi.org/10.1177/1545968317697033 doi: 10.1177/1545968317697033 |
[5] | T. M. Sukal, M. D. Ellis, J. P. Dewald, Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications, Exp. Brain Res., 183 (2007), 215–223. https://doi.org/10.1007/s00221-007-1029-6 doi: 10.1007/s00221-007-1029-6 |
[6] | P. H. McCrea, J. J. Eng, A. J. Hodgson, Saturated muscle activation contributes to compensatory reaching strategies after stroke, J. Neurophysiol., 94 (2005), 2999–3008. https://doi.org/10.1152/jn.00732.2004 doi: 10.1152/jn.00732.2004 |
[7] | N. Bernstein, The co-ordination and regulation of movements, Pergamon Press, 1966. |
[8] | M. M. DaSilva, V. D. Chandran, P. C. Dixon, J. M. Loh, J. T. Dennerlein, J. M. Schiffman, et al., Muscle co-contractions are greater in older adults during walking at self-selected speeds over uneven compared to even surfaces, J. Biomech., 128 (2021). https://doi.org/10.1016/j.jbiomech.2021.110718 doi: 10.1016/j.jbiomech.2021.110718 |
[9] | J. Roh, W. Z. Rymer, E. J. Perreault, S. B. Yoo, R. F. Beer, Alterations in upper limb muscle synergy structure in chronic stroke survivors, J. Neurophysiol., 109 (2013), 768–781. https://doi.org/10.1152/jn.00670.2012 doi: 10.1152/jn.00670.2012 |
[10] | J. Roh, W. Z. Rymer, R. F. Beer, Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment, Front. Hum. Neurosci., 9 (2015), 6. https://doi.org/10.3389/fnhum.2015.00006 doi: 10.3389/fnhum.2015.00006 |
[11] | D. J. Clark, L. H. Ting, F. E. Zajac, R. R. Neptune, S. A. Kautz, Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke, J. Neurophysiol., 103 (2009), 844–857. https://doi.org/10.1152/jn.00670.2012 doi: 10.1152/jn.00670.2012 |
[12] | M. Goudriaan, E. Papageorgiou, B. R. Shuman, K. M. Steele, N. Dominici, A. Van Campenhout, et al., Muscle synergy structure and gait patterns in children with spastic cerebral palsy, Dev. Med. Child Neurol., (2021). https://doi.org/10.1111/dmcn.15068 doi: 10.1111/dmcn.15068 |
[13] | A. d'Avella, P. Saltiel, E. Bizzi, Combinations of muscle synergies in the construction of a natural motor behavior, Nat. Neurosci., 6 (2003), 300. https://doi.org/10.1038/nn1010 doi: 10.1038/nn1010 |
[14] | X. Li, Y. Du, C. Yang, W. Qi, P. Xie, Merging of synergistic muscles and intermuscular coherence predict muscle coordination complexity, in 2016 IEEE International Conference on Information and Automation (ICIA), (2016), 791–795. https://doi.org/10.1109/ICInfA.2016.7831927 |
[15] | Y. Gao, X. Wang, T. Potter, J. Zhang, Y. Zhang, Single-trial EEG emotion recognition using Granger Causality/Transfer Entropy analysis, J. Neurosci. Methods., 346 (2020), 108904. https://doi.org/10.1016/j.jneumeth.2020.108904 doi: 10.1016/j.jneumeth.2020.108904 |
[16] | Y. Gao, L. Ren, R. Li, Y. Zhang, Electroencephalogram–Electromyography Coupling Analysis in Stroke Based on Symbolic Transfer Entropy, Front. Neurol., 8 (2018). https://doi.org/10.3389/fneur.2017.00716 doi: 10.3389/fneur.2017.00716 |
[17] | Y. Liu, X. Xu, Y. Zhou, J. Xu, X. Dong, X. Li, et al., Coupling feature extraction method of resting state EEG Signals from amnestic mild cognitive impairment with type 2 diabetes mellitus based on weight permutation conditional mutual information, Cogn. Neurodyn., (2021), 1–11. https://doi.org/10.1007/s11571-021-09682-1 doi: 10.1007/s11571-021-09682-1 |
[18] | C. De Marchis, A. M. Castronovo, D. Bibbo, M. Schmid, S. Conforto, Muscle synergies are consistent when pedaling under different biomechanical demands, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (2012), 791–795. https://doi.org/10.1109/EMBC.2012.6346672 |
[19] | K. M. Fisher, B. Zaaimi, T. L. Williams, S. N. Baker, M. R. Baker, Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease, Brain, 135 (2012), 2849-2864. https://doi.org/10.1093/brain/aws150 doi: 10.1093/brain/aws150 |
[20] | G. Hu, W. Yang, X. Chen, W. Qi, X. Li, Y. Du, et al., Estimation of time-varying coherence amongst synergistic muscles during wrist movements, Front. Neurosci., 12 (2018). https://doi.org/10.3389/fnins.2018.00537 doi: 10.3389/fnins.2018.00537 |
[21] | S. Farmer, Rhythmicity, synchronization and binding in human and primate motor systems, J. Physiol., 509 (1998), 3–14. https://doi.org/10.1111/j.1469-7793.1998.003bo.x doi: 10.1111/j.1469-7793.1998.003bo.x |
[22] | C. De Marchis, G. Severini, A. M. Castronovo, M. Schmid, S. Conforto, Intermuscular coherence contributions in synergistic muscles during pedaling, Exp. Brain Res., 233 (2015), 1907–1919. https://doi.org/10.1007/s00221-015-4262-4 doi: 10.1007/s00221-015-4262-4 |
[23] | D. Mayhew, B. Bachrach, W. Z. Rymer, R. F. Beer, Development of the MACARM - a novel cable robot for upper limb neurorehabilitation, in 2016 International Conference on Rehabilitation Robotics, 2016. https://doi.org/10.1109/ICORR.2005.1501106 |
[24] | R. F. Beer, C. Naujokas, B. Bachrach, D. Mayhew, Development and evaluation of a gravity compensated training environment for robotic rehabilitation of post-stroke reaching, in 2008 IEEE Ras & Embs International Conference on Biomedical Robotics & Biomechatronics, 2008. https://doi.org/10.1109/BIOROB.2008.4762863 |
[25] | D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), 788. https://doi.org/10.1038/44565 doi: 10.1038/44565 |
[26] | L. H. Ting, J. M. Macpherson, A limited set of muscle synergies for force control during a postural task, J. Neurophysiol., 93 (2005), 609–613. https://doi.org/10.1152/jn.00681.2004 doi: 10.1152/jn.00681.2004 |
[27] | M. C. Tresch, V. C. K. Cheung, A. d'Avella, Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets, J. Neurophysiol., 95 (2006), 2199–2212. https://doi.org/10.1152/jn.00222.2005 doi: 10.1152/jn.00222.2005 |
[28] | L. J. Myers, M. Lowery, M. O'Malley, C. L. Vaughan, C. Heneghan, A. Gibson, et al., Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis, J. Neurosci. Methods., 124 (2003), 157–165. https://doi.org/10.1016/S0165-0270(03)00004-9 doi: 10.1016/S0165-0270(03)00004-9 |
[29] | S. F. Farmer, J. Gibbs, D. M. Halliday, L. M. Harrison, L. M. James, M. J. Mayston, et al., Changes in EMG coherence between long and short thumb abductor muscles during human development, J. Physiol., 579 (2007), 389–402. https://doi.org/10.1113/jphysiol.2006.123174 doi: 10.1113/jphysiol.2006.123174 |
[30] | R. Fisher, M. Galea, P. Brown, R. Lemon, Digital nerve anaesthesia decreases EMG-EMG coherence in a human precision grip task, Exp. Brain Res., 145 (2002), 207–214. https://doi.org/10.1007/s00221-002-1113-x doi: 10.1007/s00221-002-1113-x |
[31] | C. M. Laine, F. J. Valero-Cuevas, Intermuscular coherence reflects functional coordination, J. Neurophysiol., 118 (2017), 1775–1783. https://doi.org/10.1152/jn.00204.2017 doi: 10.1152/jn.00204.2017 |
[32] | J. Roh, S. Lee, K. D. Wilger, Modular organization of exploratory force development under isometric conditions in the human arm, J. Mot. Behav., 51 (2019), 83–99. https://doi.org/10.1080/00222895.2017.1423020 doi: 10.1080/00222895.2017.1423020 |
[33] | D. J. Gladstone, C. J. Danells, S. E. Black, The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties, Neurorehabil. Neural. Repair, 16 (2002), 232–240. https://doi.org/doi: 10.1177/154596802401105171 doi: 10.1177/154596802401105171 |
[34] | A. Danna-Dos-Santos, T. W. Boonstra, A. M. Degani, V. S. Cardoso, A. T. Magalhaes, L. Mochizuki, et al., Multi-muscle control during bipedal stance: an EMG–EMG analysis approach, Exp. Brain Res., 232 (2014), 75–87. https://doi.org/10.1007/s00221-013-3721-z doi: 10.1007/s00221-013-3721-z |
[35] | A. Danna-Dos-Santos, A. M. Degani, T. W. Boonstra, L. Mochizuki, A. M. Harney, M. M. Schmeckpeper, et al., The influence of visual information on multi-muscle control during quiet stance: a spectral analysis approach, Exp. Brain Res., 233 (2015), 657–669. https://doi.org/10.1007/s00221-014-4145-0 doi: 10.1007/s00221-014-4145-0 |
[36] | A. Vallbo, J. Wessberg, Organization of motor output in slow finger movements in man, J. Physiol., 469 (1993), 673–691. https://doi.org/10.1113/jphysiol.1993.sp019837 doi: 10.1113/jphysiol.1993.sp019837 |
[37] | J. F. Marsden, P. Brown, S. Salenius, Involvement of the sensorimotor cortex in physiological force and action tremor, Neuroreport, 12 (2001), 1937–1941. https://doi.org/10.1097/00001756-200107030-00033 doi: 10.1097/00001756-200107030-00033 |
[38] | Y. Chen, S. Li, E. Magat, P. Zhou, S. Li, Motor Overflow and Spasticity in Chronic Stroke Share a Common Pathophysiological Process: Analysis of Within-Limb and Between-Limb EMG-EMG Coherence, Front. Neurol., (2018). https://doi.org/10.3389/fneur.2018.00795 doi: 10.3389/fneur.2018.00795 |
[39] | H. Obata, M. O. Abe, K. Masani, K. Nakazawa, Modulation between bilateral legs and within unilateral muscle synergists of postural muscle activity changes with development and aging, Exp. Brain Res., 232 (2013), 1–11. https://doi.org/10.1007/s00221-013-3702-2 doi: 10.1007/s00221-013-3702-2 |
[40] | S. Farmer, M. Swash, D. Ingram, J. Stephens, Changes in motor unit synchronization following central nervous lesions in man, J. Physiol., 463 (1993), 83–105. https://doi.org/10.1113/jphysiol.1993.sp019585 doi: 10.1113/jphysiol.1993.sp019585 |
[41] | J. A. Norton, D. E. Wood, J. F. Marsden, B. L. Day, Spinally generated electromyographic oscillations and spasms in a low‐thoracic complete paraplegic, Mov. Disord., 18 (2003), 101–106. https://doi.org/10.1002/mds.10298 doi: 10.1002/mds.10298 |
[42] | E. Lattari, B. Velasques, F. Paes, M. Cunha, H. Budde, L. Basile, Corticomuscular coherence behavior in fine motor control of force: a critical review, Rev. Neurol., 51 (2010), 610. https://doi.org/10.33588/rn.5110.2010311 doi: 10.33588/rn.5110.2010311 |
[43] | R. S. Person, L. P. Kudina, Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscles, Electroencephalogr. Clin. Neurophysiol., 32 (1972), 471–483. https://doi.org/10.1016/0013-4694(72)90058-2 doi: 10.1016/0013-4694(72)90058-2 |