Predicting slope stability is critical for identifying terrain that is prone to landslides and mitigating the damage caused by landslides. The relationships between factors that determine slope instability are complicated and multi-factorial, so it is sometimes difficult to mathematically characterize slope stability. In this paper, new Tree Augmented Naive-Bayes (TAN) model was developed to predict slope stability subjected to circular failures based on six input factors: cohesion, internal friction angle, pore pressure ratio, slope angle, unit weight, and slope angle. A total 87 slope stability case records obtained from published literature was used to train and test the proposed TAN model. According to the results of the performance indices—accuracy, precision, recall, F-score and Matthews correlation coefficient, the established TAN model was proven to be better at predicting slope stability with acceptable accuracy than other formerly developed empirical models in the literature. Furthermore, the slope height was revealed as the most sensitive factor in a sensitivity analysis.
Citation: Feezan Ahmad, Xiao-Wei Tang, Jiang-Nan Qiu, Piotr Wróblewski, Mahmood Ahmad, Irfan Jamil. Prediction of slope stability using Tree Augmented Naive-Bayes classifier: modeling and performance evaluation[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 4526-4546. doi: 10.3934/mbe.2022209
Predicting slope stability is critical for identifying terrain that is prone to landslides and mitigating the damage caused by landslides. The relationships between factors that determine slope instability are complicated and multi-factorial, so it is sometimes difficult to mathematically characterize slope stability. In this paper, new Tree Augmented Naive-Bayes (TAN) model was developed to predict slope stability subjected to circular failures based on six input factors: cohesion, internal friction angle, pore pressure ratio, slope angle, unit weight, and slope angle. A total 87 slope stability case records obtained from published literature was used to train and test the proposed TAN model. According to the results of the performance indices—accuracy, precision, recall, F-score and Matthews correlation coefficient, the established TAN model was proven to be better at predicting slope stability with acceptable accuracy than other formerly developed empirical models in the literature. Furthermore, the slope height was revealed as the most sensitive factor in a sensitivity analysis.
[1] | P. Lu, M. Rosenbaum, Artificial neural networks and grey systems for the prediction of slope stability, Nat. Hazards, 30 (2003), 383-398. https://doi.org/10.1023/B:NHAZ.0000007168.00673.27 doi: 10.1023/B:NHAZ.0000007168.00673.27 |
[2] | M. Y. Cheng, N. D. Hoang, Typhoon-induced slope collapse assessment using a novel bee colony optimized support vector classifier, Nat. Hazards, 78 (2015), 1961-1978. https://doi.org/10.1007/s11069-015-1813-8 doi: 10.1007/s11069-015-1813-8 |
[3] | F. Kang, J. Li, Artificial bee colony algorithm optimized support vector regression for system reliability analysis of slopes, J. Comput. Civ. Eng., 30 (2016). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000514 doi: 10.1061/(ASCE)CP.1943-5487.0000514 |
[4] | D. T. Bui, B. Pradhan, O. Lofman, I. Revhaug, Ø. B. Dick, Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam, Nat. Hazards, 66 (2013), 707-730. https://doi.org/10.1007/s11069-012-0510-0 doi: 10.1007/s11069-012-0510-0 |
[5] | M. G. Sakellariou, M. D. Ferentinou, A study of slope stability prediction using neural networks, Geotech. Geol. Eng., 23 (2005), 419-445. https://doi.org/10.1007/s10706-004-8680-5 doi: 10.1007/s10706-004-8680-5 |
[6] | A. W. Bishop, The use of the slip circle in the stability analysis of slopes, Geotechnique, 5 (1955), 7-17. https://doi.org/10.1680/geot.1955.5.1.7 doi: 10.1680/geot.1955.5.1.7 |
[7] | N. R. Morgenstern, V. E. Price, The analysis of the stability of general slip surfaces, Geotechnique, 15 (1965), 79-93. https://doi.org/10.1680/geot.1965.15.1.79 doi: 10.1680/geot.1965.15.1.79 |
[8] | S. K. Sarma, Stability analysis of embankments and slopes, J. Geotech. Eng. Div., 105 (1979), 1511-1524. https://doi.org/10.1061/AJGEB6.0000903 doi: 10.1061/AJGEB6.0000903 |
[9] | E. Spencer, A method of analysis of the stability of embankments assuming parallel inter-slice forces, Geotechnique, 17 (1967), 11-26. https://doi.org/10.1680/geot.1967.17.1.11 doi: 10.1680/geot.1967.17.1.11 |
[10] | O. C. Zienkiewicz, C. Humpheson, R. W. Lewis, Associated and non-associated visco-plasticity and plasticity in soil mechanics, Geotechnique, 25 (1975), 671-689. https://doi.org/10.1680/geot.1975.25.4.671 doi: 10.1680/geot.1975.25.4.671 |
[11] | D. V. Griffiths, P. A. Lane, Slope stability analysis by finite elements, Geotechnique, 49 (1999), 387-403. https://doi.org/10.1680/geot.1999.49.3.387 doi: 10.1680/geot.1999.49.3.387 |
[12] | M. Huang, C. Q. Jia, Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage, Comput. Geotech., 36 (2009), 93-101. https://doi.org/10.1016/j.compgeo.2008.03.006 doi: 10.1016/j.compgeo.2008.03.006 |
[13] | R. Baker, Variational Approach to Slope Stability, 1977. |
[14] | Y. M. Cheng, L. Li, S. C. Chi, W. B. Wei, Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis, Comput. Geotech., 34 (2007), 92-103. https://doi.org/10.1016/j.compgeo.2006.10.012 doi: 10.1016/j.compgeo.2006.10.012 |
[15] | M. Ercanoglu, C. Gokceoglu, Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach, Environ. Geol., 41 (2002), 720-730. https://doi.org/10.1007/s00254-001-0454-2 doi: 10.1007/s00254-001-0454-2 |
[16] | H. Fattahi, Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods, J. Min. Environ., 8 (2017), 163-177. https://doi.org/10.22044/jme.2016.637 doi: 10.22044/jme.2016.637 |
[17] | W. Gao, Stability analysis of rock slope based on an abstraction ant colony clustering algorithm, Environ. Earth Sci., 73 (2015), 7969-7982. https://doi.org/10.1007/s12665-014-3956-4 doi: 10.1007/s12665-014-3956-4 |
[18] | N. D. Hoang, A. D. Pham, Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis, Expert Syst. Appl., 46 (2016), 60-68. https://doi.org/10.1016/j.eswa.2015.10.020 doi: 10.1016/j.eswa.2015.10.020 |
[19] | M. Ahmad, X. W. Tang, J. N. Qiu, F. Ahmad, Evaluation of liquefaction-induced lateral displacement using Bayesian belief networks, Front. Struct. Civ. Eng., 15 (2021), 80-98. https://doi.org/10.1007/s11709-021-0682-3 doi: 10.1007/s11709-021-0682-3 |
[20] | M. Ahmad, J. L. Hu, F. Ahmad, X. W. Tang, M. Amjad, M. J. Iqbal, et al., Supervised learning methods for modeling concrete compressive strength prediction at high temperature, Materials, 14 (2021), 1983. https://doi.org/10.3390/ma14081983 doi: 10.3390/ma14081983 |
[21] | M. Ahmad, P. Kaminski, P. Olczak, M. Alam, M. J. Iqbal, F. Ahmad, et al., Development of prediction models for shear strength of rockfill material using machine learning techniques, Appl. Sci., 11 (2021), 6167. https://doi.org/10.3390/app11136167 doi: 10.3390/app11136167 |
[22] | M. Ahmad, X. W. Tang, F. Ahmad, Evaluation of liquefaction-induced settlement using random forest and REP tree models: taking pohang earthquake as a case of llustration, in Natural Hazards-Impacts, Adjustments and Resilience, Intech Open: London, UK, 2020. https://doi.org/10.5772/intechopen.94274 |
[23] | M. Ahmad, J. L. Hu, M. H. Nyarko, F. Ahmad, X. W. Tang, Z. U. Rahman, et al., Rockburst hazard prediction in underground projects using two intelligent classification techniques: A comparative study, Symmetry, 13 (2021), 632. https://doi.org/10.3390/sym13040632 doi: 10.3390/sym13040632 |
[24] | M. Ahmad, X. W. Tang, J. N. Qiu, W. J. Gu, F. Ahmad, A hybrid approach for evaluating CPT-based seismic soil liquefaction potential using Bayesian belief networks, J. Cent. South Univ., 27 (2020), 500-516. https://doi.org/10.1007/s11771-020-4312-3 doi: 10.1007/s11771-020-4312-3 |
[25] | M. Ahmad, X. W. Tang, J. N. Qiu, F. Ahmad, Evaluating seismic soil liquefaction potential using bayesian belief network and C4.5 decision tree approaches, Appl. Sci., 9 (2019), 4226. https://doi.org/10.3390/app9204226 doi: 10.3390/app9204226 |
[26] | M. Ahmad, N. A. Shayea, X. W. Tang, A. Jamal, H. M. A. Ahmadi, F. Ahmad, Predicting the pillar stability of underground mines with random trees and C4.5 decision trees, Appl. Sci., 10 (2020), 6486. https://doi.org/10.3390/app10186486 doi: 10.3390/app10186486 |
[27] | M. Ahmad, X. W. Tang, J. N. Qiu, F. Ahmad, W. J. Gu, A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability: Exploration from historical data, Front. Struct. Civ. Eng., 14 (2020), 1476-1491. https://doi.org/10.1007/s11709-020-0670-z doi: 10.1007/s11709-020-0670-z |
[28] | M. Ahmad, X. W. Tang, J. N. Qiu, F. Ahmad, W. J. Gu, Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential, Front. Struct. Civ. Eng., 15 (2021), 490-505. https://doi.org/10.1007/s11709-020-0669-5 doi: 10.1007/s11709-020-0669-5 |
[29] | M. Ahmad, F. Ahmad, P. Wroblewski, R. A. A. Mansob, P. Olczak, P. Kamiński, et al., Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: A gaussian process regression approach, Appl. Sci., 11 (2021), 10317. https://doi.org/10.3390/app112110317 doi: 10.3390/app112110317 |
[30] | C. X. Yang, L. G. Tham, X. T. Feng, Y. J. Wang, P. K. K. Lee, Two-stepped evolutionary algorithm and its application to stability analysis of slopes, J. Comput. Civ. Eng., 18 (2004), 145-153. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(145) doi: 10.1061/(ASCE)0887-3801(2004)18:2(145) |
[31] | H. B. Wang, W. Y. Xu, R. C. Xu, Slope stability evaluation using back propagation neural networks, Eng. Geol., 80 (2005), 302-315. https://doi.org/10.1016/j.enggeo.2005.06.005 doi: 10.1016/j.enggeo.2005.06.005 |
[32] | P. Samui, Slope stability analysis: a support vector machine approach, Environ. Geol., 56 (2008), 255. https://doi.org/10.1007/s00254-007-1161-4 doi: 10.1007/s00254-007-1161-4 |
[33] | H. B. Zhao, Slope reliability analysis using a support vector machine, Comput. Geotech., 35 (2008), 459-467. https://doi.org/10.1016/j.compgeo.2007.08.002 doi: 10.1016/j.compgeo.2007.08.002 |
[34] | A. Choobbasti, F. Farrokhzad, A. Barari, Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran), Arabian J. Geosci., 2 (2009), 311-319. https://doi.org/10.1007/s12517-009-0035-3 doi: 10.1007/s12517-009-0035-3 |
[35] | A. Ahangar‐Asr, A. Faramarzi, A. A. Javadi, A new approach for prediction of the stability of soil and rock slopes, Eng. Comput., 27 (2010). https://doi.org/10.1108/02644401011073700 doi: 10.1108/02644401011073700 |
[36] | S. K. Das, R. K. Biswal, N. Sivakugan, B. Das, Classification of slopes and prediction of factor of safety using differential evolution neural networks, Environ. Earth Sci., 64 (2011), 201-210. https://doi.org/10.1007/s12665-010-0839-1 doi: 10.1007/s12665-010-0839-1 |
[37] | S. Li, H. B. Zhao, Z. L. Ru, Slope reliability analysis by updated support vector machine and Monte Carlo simulation, Nat. Hazards, 65 (2013), 707-722. https://doi.org/10.1007/s11069-012-0396-x doi: 10.1007/s11069-012-0396-x |
[38] | L. Dong, X. Li, Comprehensive models for evaluating rockmass stability based on statistical comparisons of multiple classifiers, Math. Probl. Eng., 2013 (2013). https://doi.org/10.1155/2013/395096 doi: 10.1155/2013/395096 |
[39] | A. Manouchehrian, J. Gholamnejad, M. Sharifzadeh, Development of a model for analysis of slope stability for circular mode failure using genetic algorithm, Environ. Earth Sci., 71 (2014), 1267-1277. https://doi.org/10.1007/s12665-013-2531-8 doi: 10.1007/s12665-013-2531-8 |
[40] | Z. Zhang, Z. Liu, L. Zheng, Y. Zhang, Development of an adaptive relevance vector machine approach for slope stability inference, Neural Comput. Appl., 25 (2014), 2025-2035. https://doi.org/10.1007/s00521-014-1690-1 doi: 10.1007/s00521-014-1690-1 |
[41] | Z. Liu, J. Shao, W. Xu, H. Chen, Y. Zhang, An extreme learning machine approach for slope stability evaluation and prediction, Nat. Hazards, 73 (2014), 787-804. https://doi.org/10.1007/s11069-014-1106-7 doi: 10.1007/s11069-014-1106-7 |
[42] | X. Xue, X. Yang, X. Chen, Application of a support vector machine for prediction ofslope stability, Sci. China: Technol. Sci., 57 (2014), 2379-2386. https://doi.org/10.1007/s11431-014-5699-6 doi: 10.1007/s11431-014-5699-6 |
[43] | X. Feng, S. Li, C. Yuan, P. Zeng, Y. Sun, Prediction of slope stability using naive Bayes classifier, KSCE J. Civ. Eng., 22 (2018), 941-950. https://doi.org/10.1007/s12205-018-1337-3 doi: 10.1007/s12205-018-1337-3 |
[44] | C. Qi, X. Tang, Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study, Comput. Ind. Eng., 118 (2018), 112-122. https://doi.org/10.1016/j.cie.2018.02.028 doi: 10.1016/j.cie.2018.02.028 |
[45] | P. A. Sari, M. Suhatril, N. Osman, M. A. Muazu, H. Dehghani, Y. Sedghi, et al., An intelligent based-model role to simulate the factor of safe slope by support vector regression, Eng. Comput., 35 (2019), 1521-1531. https://doi.org/10.1007/s00366-018-0677-4 doi: 10.1007/s00366-018-0677-4 |
[46] | W. Gao, M. Raftari, A. S. A. Rashid, M. A. Muazu, W. A. W. Jusoh, A predictive model based on an optimized ANN combined with ICA for predicting the stability of slopes, Eng. Comput., 36 (2020), 325-344. https://doi.org/10.1007/s00366-019-00702-7 doi: 10.1007/s00366-019-00702-7 |
[47] | C. Yuan, H. Moayedi, The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition, Eng. Comput., 36 (2020), 1705-1714. https://doi.org/10.1007/s00366-019-00791-4 doi: 10.1007/s00366-019-00791-4 |
[48] | M. Sari, Stability analysis of slopes prone to circular failures using logistic regressionin, in Conference of the Arabian Journal of Geosciences, (2018), 355-357. https://doi.org/10.1007/978-3-030-01665-4_82 |
[49] | J. Zhou, E. Li, S. Yang, M. Wang, X. Shi, S. Yao, et al., Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories, Saf. Sci., 118 (2019), 505-518. https://doi.org/10.1016/j.ssci.2019.05.046 doi: 10.1016/j.ssci.2019.05.046 |
[50] | C. Chow, C. Liu, Approximating discrete probability distributions with dependence trees, IEEE Trans. Inf. Theory, 14 (1968), 462-467. https://doi.org/10.1109/TIT.1968.1054142 doi: 10.1109/TIT.1968.1054142 |
[51] | N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Mach. Learn., 29 (1997), 131-163. https://doi.org/10.1023/A:1007465528199 doi: 10.1023/A:1007465528199 |
[52] | X. Wu, V. Kumar, The top ten algorithms in data mining, CRC Press, 2009. |
[53] | N. Sah, P. Sheorey, L. Upadhyaya, Maximum likelihood estimation of slope stability, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31 (1994), 47-53. https://doi.org/10.1016/0148-9062(94)92314-0 doi: 10.1016/0148-9062(94)92314-0 |
[54] | S. Rukhaiyar, M. N. Alam, N. K. Samadhiya, A PSO-ANN hybrid model for predicting factor of safety of slope, Int. J. Geotech. Eng., 12 (2018), 556-566. https://doi.org/10.1080/19386362.2017.1305652 doi: 10.1080/19386362.2017.1305652 |
[55] | X. Xue, Prediction of slope stability based on hybrid PSO and LSSVM, J. Comput. Civ. Eng., 31 (2017), 04016041. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000607 doi: 10.1061/(ASCE)CP.1943-5487.0000607 |
[56] | T. V. Vuren, Modeling of transport demand - analyzing, calculating, and forecasting transport demand, Transp. Rev., 40 (2020), 115-117. https://doi.org/10.1080/01441647.2019.1635226 doi: 10.1080/01441647.2019.1635226 |
[57] | Y. Song, J. Gong, S. Gao, D. Wang, T. Cui, Y. Li, et al., Susceptibility assessment of earthquake-induced landslides using Bayesian network: A case study in Beichuan, China, Comput. Geosci., 42 (2012), 189-199. https://doi.org/10.1016/j.cageo.2011.09.011 doi: 10.1016/j.cageo.2011.09.011 |
[58] | J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features, Mach. Learn. Proc., (1995), 194-202. https://doi.org/10.1016/B978-1-55860-377-6.50032-3 |
[59] | A. Hartemink, Principled Computational Methods for the Validation and Discovery of Genetic Regulatory Networks, Ph.D. Dissertation, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8699 |
[60] | W. Maass, Efficient agnostic PAC-learning with simple hypothesis, in Proceedings of the Seventh Annual Conference on Computational Learning Theory, (1994), 67-75. https://doi.org/10.1145/180139.181016 |
[61] | U. Fayyad, K. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, 1993. http://hdl.handle.net/2014/35171 |
[62] | R. C. Holte, Very simple classification rules perform well on most commonly used datasets, Mach. Learn., 11 (1993), 63-90. https://doi.org/10.1023/A:1022631118932 doi: 10.1023/A:1022631118932 |
[63] | Y. Lin, K. Zhou, J. Li, Prediction of slope stability using four supervised learning methods, IEEE Access, 6 (2018), 31169-31179. https://doi.org/10.1109/ACCESS.2018.2843787 doi: 10.1109/ACCESS.2018.2843787 |
[64] | J. Cheng, R. Greiner, J. Kelly, D. Bell, W. Liu, Learning Bayesian networks from data: an information-theory based approach, Artif. Intell. 137 (2002), 43-90. https://doi.org/10.1016/S0004-3702(02)00191-1 doi: 10.1016/S0004-3702(02)00191-1 |