In this research study, we first define the strong degree of a vertex in an $ m $-polar fuzzy graph. Then we present various useful properties and prove some results concerning this new concept, in the case of complete $ m $-polar fuzzy graphs. Further, we introduce the concept of $ m $-polar fuzzy strength sequence of vertices, and we also investigate it in the particular instance of complete $ m $-polar fuzzy graphs. We discuss connectivity parameters in $ m $-polar fuzzy graphs with precise examples, and we investigate the $ m $-polar fuzzy analogue of Whitney's theorem. Furthermore, we present a clustering method for vertices in an $ m $-polar fuzzy graph based on the strength of connectedness between pairs of vertices. In order to formulate this method, we introduce terminologies such as $ \epsilon_A $-reachable vertices in $ m $-polar fuzzy graphs, $ \epsilon_A $-connected $ m $-polar fuzzy graphs, or $ \epsilon_A $-connected $ m $-polar fuzzy subgraphs (in case the $ m $-polar fuzzy graph itself is not $ \epsilon_A $-connected). Moreover, we discuss an application for clustering different companies in consideration of their multi-polar uncertain information. We then provide an algorithm to clearly understand the clustering methodology that we use in our application. Finally, we present a comparative analysis of our research work with existing techniques to prove its applicability and effectiveness.
Citation: Muhammad Akram, Saba Siddique, Majed G. Alharbi. Clustering algorithm with strength of connectedness for $ m $-polar fuzzy network models[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 420-455. doi: 10.3934/mbe.2022021
In this research study, we first define the strong degree of a vertex in an $ m $-polar fuzzy graph. Then we present various useful properties and prove some results concerning this new concept, in the case of complete $ m $-polar fuzzy graphs. Further, we introduce the concept of $ m $-polar fuzzy strength sequence of vertices, and we also investigate it in the particular instance of complete $ m $-polar fuzzy graphs. We discuss connectivity parameters in $ m $-polar fuzzy graphs with precise examples, and we investigate the $ m $-polar fuzzy analogue of Whitney's theorem. Furthermore, we present a clustering method for vertices in an $ m $-polar fuzzy graph based on the strength of connectedness between pairs of vertices. In order to formulate this method, we introduce terminologies such as $ \epsilon_A $-reachable vertices in $ m $-polar fuzzy graphs, $ \epsilon_A $-connected $ m $-polar fuzzy graphs, or $ \epsilon_A $-connected $ m $-polar fuzzy subgraphs (in case the $ m $-polar fuzzy graph itself is not $ \epsilon_A $-connected). Moreover, we discuss an application for clustering different companies in consideration of their multi-polar uncertain information. We then provide an algorithm to clearly understand the clustering methodology that we use in our application. Finally, we present a comparative analysis of our research work with existing techniques to prove its applicability and effectiveness.
[1] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X. doi: 10.1016/S0019-9958(65)90241-X
![]() |
[2] | J. Xu, The use of fuzzy graphs in chemical structure research, in Fuzzy Logic in Chemistry, Academic Press, (1997), 249–282. doi: 10.1016/B978-012598910-7/50009-3. |
[3] |
A. Sebastian, J. N. Mordeson, S. Mathew, Generalized fuzzy graph connectivity parameters with application to human trafficking, Mathematics, 8 (2020), 424. doi: 10.3390/math8030424. doi: 10.3390/math8030424
![]() |
[4] |
S. Mathew, M. S. Sunitha, Node connectivity and arc connectivity of a fuzzy graph, Inf. Sci., 180 (2010), 519–531. doi: 10.1016/j.ins.2009.10.006. doi: 10.1016/j.ins.2009.10.006
![]() |
[5] |
J. C. R. Alcantud, B. Biondo, A. Giarlotta, Fuzzy politics Ⅰ: The genesis of parties, Fuzzy Sets Syst., 349 (2018), 71–98. doi: 10.1016/j.fss.2018.01.015. doi: 10.1016/j.fss.2018.01.015
![]() |
[6] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1983), 87–96. doi: 10.1016/S0165-0114(86)80034-3. doi: 10.1016/S0165-0114(86)80034-3
![]() |
[7] |
X. Liu, H. S. Kim, F. Feng, J. C. R. Alcantud, Centroid transformations of intuitionistic fuzzy values based on aggregation operators, Mathematics, 6 (2018), 215. doi: 10.3390/math6110215. doi: 10.3390/math6110215
![]() |
[8] | R. R. Yager, Pythagorean fuzzy subsets, in Proceedings of 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, (2013), 57–61. doi: 10.1109/IFSA-NAFIPS.2013.6608375. |
[9] |
R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2014), 958–965. doi: 10.1109/TFUZZ.2013.2278989. doi: 10.1109/TFUZZ.2013.2278989
![]() |
[10] |
J. Chen, S. Li, S. Ma, X. Wang, m-polar fuzzy sets: an extension of bipolar fuzzy sets, Sci. World J., 2014 (2014), 1–8. doi: 10.1155/2014/416530. doi: 10.1155/2014/416530
![]() |
[11] |
N. Waseem, M. Akram, J. C. R. Alcantud, Multi-attribute decision-making based on m-polar fuzzy Hamacher aggregation operators, Symmetry, 11 (2019), 1498. doi: 10.3390/sym11121498. doi: 10.3390/sym11121498
![]() |
[12] |
M. Srinivasan, Y. B. Moon, A comprehensive clustering algorithm for strategic analysis of supply chain networks, Comput. Ind. Eng., 36 (1999), 615–633. doi: 10.1016/S0360-8352(99)00155-2. doi: 10.1016/S0360-8352(99)00155-2
![]() |
[13] |
P. Mangiameli, S. K. Chen, D. West, A comparison of SOM neural network and hierarchical clustering methods, Eur. J. Oper. Res., 93 (1999), 402–417. doi: 10.1016/0377-2217(96)00038-0. doi: 10.1016/0377-2217(96)00038-0
![]() |
[14] |
R. Mythily, A. Banu, S. Raghunathan, Clustering models for data stream mining, Proc. Comput. Sci., 46 (2015), 619–626. doi: 10.1016/j.procs.2015.02.107. doi: 10.1016/j.procs.2015.02.107
![]() |
[15] |
E. H. Ruspini, A new approach to clustering, Inf. Control, 15 (1969), 22–32. doi: 10.1016/S0019-9958(69)90591-9. doi: 10.1016/S0019-9958(69)90591-9
![]() |
[16] | A. Kaufmann, Introduction a la Thiorie des Sous-ensembles Flous, Masson et Cie, 1973. |
[17] | R. T. Yeh, S. Y. Bang, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, in Fuzzy Sets and Their Applications to Cognitive and Decision Process, Academic Press, (1975), 125–149. doi: 10.1016/B978-0-12-775260-0.50010-4. |
[18] | A. Rosenfeld, Fuzzy graphs, in Fuzzy Sets and Their Applications, Academic Press, (1975), 77–95. doi: 10.1016/B978-0-12-775260-0.50008-6. |
[19] | J. N. Mordeson, P. S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica, Heidelberg, 2000. doi: 10.1007/978-3-7908-1854-3. |
[20] |
P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recog. Lett., 6 (1987), 297–302. doi: 10.1016/0167-8655(87)90012-2. doi: 10.1016/0167-8655(87)90012-2
![]() |
[21] |
P. Bhattacharya, F. Suraweera, An algorithm to compute the supremum of max-min powers and a property of fuzzy graphs, Pattern Recog. Lett., 12 (1991), 413–420. doi: 10.1016/0167-8655(91)90307-8. doi: 10.1016/0167-8655(91)90307-8
![]() |
[22] |
S. Banerjee, An optimal algorithm to find the degrees of connectedness in an undirected edge - weighted graph, Pattern Recog. Lett., 12 (1991), 421–424. doi: 10.1016/0167-8655(91)90316-E. doi: 10.1016/0167-8655(91)90316-E
![]() |
[23] | Z. Tong, D. Zheng, An algorithm for finding the connectedness matrix of a fuzzy graph, Congr. Numer., 120 (1996), 189–192. |
[24] |
K. R. Bhutani, A. Rosenfeld, Strong arcs in fuzzy graphs, Inf. Sci, 152 (2003), 319–322. doi: 10.1016/S0020-0255(02)00411-5. doi: 10.1016/S0020-0255(02)00411-5
![]() |
[25] |
S. Mathew, M. S. Sunitha, Types of arcs in a fuzzy graph, Inf. Sci., 179 (2009), 1760–1768. doi: 10.1016/j.ins.2009.01.003. doi: 10.1016/j.ins.2009.01.003
![]() |
[26] |
M. Akram, N. Waseem, Certain metrices in m-polar fuzzy graphs, New Math. Nat. Comput., 12 (2016), 135–155. doi: 10.1142/S1793005716500101. doi: 10.1142/S1793005716500101
![]() |
[27] |
M. Akram, A. Adeel, m-polar fuzzy labeling graphs with application, Math. Comput. Sci., 10 (2016), 387–402. doi: 10.1007/s11786-016-0277-x. doi: 10.1007/s11786-016-0277-x
![]() |
[28] |
M. Akram, R. Akmal, N. Alshehri, On m-polar fuzzy graph structures, SpringerPlus, 5 (2016), 1448. doi: 10.1186/s40064-016-3066-8. doi: 10.1186/s40064-016-3066-8
![]() |
[29] |
M. Akram, N. Waseem, W. A. Dudek, Certain types of edge m-polar fuzzy graphs, Iran. J. Fuzzy Syst., 14 (2017), 27–50. doi: 10.22111/IJFS.2017.3324. doi: 10.22111/IJFS.2017.3324
![]() |
[30] |
G. Ghorai, M. Pal, Faces and dual of m-polar fuzzy planner graphs, J. Intell. Fuzzy Syst., 31 (2016), 2043–2049. doi: 10.3233/JIFS-16433. doi: 10.3233/JIFS-16433
![]() |
[31] |
T. Mahapatra, M. Pal, Fuzzy colouring of m-polar fuzzy graph and its application, J. Intell. Fuzzy Syst., 35 (2018), 6379–6391. doi: 10.3233/JIFS-181262. doi: 10.3233/JIFS-181262
![]() |
[32] |
T. Mahapatra, M. Pal, An investigation on m-polar fuzzy tolerance graph and its application, Neural Comput. Appl., 2021 (2021), 1–11. doi: 10.1007/s00521-021-06529-y. doi: 10.1007/s00521-021-06529-y
![]() |
[33] | M. Sarwar, M. Akram, Representation of graphs using m-polar fuzzy environment, Ital. J. Pure Appl. Math., 38 (2017), 291–312. |
[34] | G. Ghorai, M. Pal, H. Rashmanlou, R. A. Borzooei, New concepts of regularity in product m-polar fuzzy graphs, Int. J. Math. Comput., 28 (2017), 9–20. |
[35] |
M. Sarwar, M. Akram, A. Usman, Double dominating energy of m-polar fuzzy graphs, J. Intell. Fuzzy Syst., 38 (2020), 1997–2008. doi: 10.3233/JIFS-190621. doi: 10.3233/JIFS-190621
![]() |
[36] |
P. K. Singh, Concept lattice visualization of data with m-polar fuzzy attribute, Granular Comput., 3 (2018), 123–137. doi: 10.1007/s41066-017-0060-7. doi: 10.1007/s41066-017-0060-7
![]() |
[37] |
P. K. Singh, m-polar fuzzy graph representation of concept lattice, Eng. Appl. Artif. Intell., 67 (2018), 52–62. doi: 10.1016/j.engappai.2017.09.011. doi: 10.1016/j.engappai.2017.09.011
![]() |
[38] |
P. K. Singh, Object and attribute oriented $m$-polar fuzzy concept lattice using the projection operator, Granular Comput., 4 (2019), 545–558. doi: 10.1007/s41066-018-0117-2. doi: 10.1007/s41066-018-0117-2
![]() |
[39] |
P. K. Singh. Complex multi-fuzzy context analysis at different granulation, Granular Comput., 6 (2021), 191–206. doi: 10.1007/s41066-019-00180-8. doi: 10.1007/s41066-019-00180-8
![]() |
[40] |
P. K. Singh. Single-valued Plithogenic graph for handling multi-valued attribute data and its context, Int. J. Neutrosophic Sci., 15 (2021), 98–112. doi: 10.54216/IJNS.150204. doi: 10.54216/IJNS.150204
![]() |
[41] |
M. Akram, M. Shabir, A. Adeel, A. N. Al-Kenani, A multiattribute decision-making framework: VIKOR method with complex spherical fuzzy N-soft sets, Math. Prob. Eng., 2021 (2021), 25. doi: 10.1155/2021/1490807. doi: 10.1155/2021/1490807
![]() |
[42] |
M. Akram, S. Siddique, U. Ahmad, Menger's theorem for m-polar fuzzy graphs and application of m-polar fuzzy edges to road network, J. Intell. Fuzzy Syst., 41 (2021), 1553–1574. doi: 10.3233/JIFS-210411. doi: 10.3233/JIFS-210411
![]() |
[43] |
S. Mandal, S. Sahoo, G. Ghorai, M. Pal, Application of strong arcs in m-polar fuzzy graphs, Neural Process. Lett., 50 (2018), 771–784. doi: 10.1007/s11063-018-9934-1. doi: 10.1007/s11063-018-9934-1
![]() |
[44] |
M. Akram, m-polar fuzzy graphs: theory, methods and applications, Stud. Fuzziness Soft Comput., 371 (2019), 1–284. doi: 10.1007/978-3030-03751-2. doi: 10.1007/978-3030-03751-2
![]() |
[45] |
S. Mathew, M. S. Sunitha, Menger's theorem for fuzzy graphs, Inf. Sci., 222 (2013), 717–726. doi: 10.1016/j.ins.2012.07.026. doi: 10.1016/j.ins.2012.07.026
![]() |