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Abstract: In this research study, we first define the strong degree of a vertex in an m-polar fuzzy
graph. Then we present various useful properties and prove some results concerning this new concept,
in the case of complete m-polar fuzzy graphs. Further, we introduce the concept of m-polar fuzzy
strength sequence of vertices, and we also investigate it in the particular instance of complete m-polar
fuzzy graphs. We discuss connectivity parameters in m-polar fuzzy graphs with precise examples, and
we investigate the m-polar fuzzy analogue of Whitney’s theorem. Furthermore, we present a clustering
method for vertices in an m-polar fuzzy graph based on the strength of connectedness between pairs of
vertices. In order to formulate this method, we introduce terminologies such as ϵA-reachable vertices
in m-polar fuzzy graphs, ϵA-connected m-polar fuzzy graphs, or ϵA-connected m-polar fuzzy subgraphs
(in case the m-polar fuzzy graph itself is not ϵA-connected). Moreover, we discuss an application for
clustering different companies in consideration of their multi-polar uncertain information. We then
provide an algorithm to clearly understand the clustering methodology that we use in our application.
Finally, we present a comparative analysis of our research work with existing techniques to prove its
applicability and effectiveness.
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1. Introduction

Zadeh’s [1] fuzzy sets (FS) have captured the attention of many researchers in a wide range of
scientific fields, including management sciences [2], decision making [3], medicine [4] or political
sciences [5]. Atanassov [6] introduced the concept of intuitionistic fuzzy set (IFS), an extension of
FS [1] that together with a membership grade µ, make use of a non-membership grade ν, and they are
jointly subject to the condition µ + ν < 1. Although the mathematical performance of IFSs is quite
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good [7], still they fail to capture many situations where the sum of membership and non-membership
degrees exceeds 1 (at some option). Yager [8, 9] presented the less stringent concept of Pythagorean
fuzzy sets (PFSs) for which the condition µ + ν ≤ 1 imposed by IFSs is relaxed to µ2 + ν2 ≤ 1.
Nevertheless real world models often contain multi-attribute, multi-index, multi-object and
multi-information data. For example, multi-polar technology, which can be used for the management
of large scale applications of information technology. With this practical motivation Chen et al. [10]
gave the concept of m-polar fuzzy set (m-PF set) model which further extended the scope of FSs. In
an m-PF set, the membership value (MV) of an object belongs to [0, 1]m. It aims to represent all the
different characteristics of the object, each being a component of the MV [11]. This structure is better
suited for a number of real-world problems, where data come from several agents hence multi-polar
information arises naturally (but it cannot be properly represented by FSs).

The applied part of our paper concerns clustering. Here this is thought of as a process of
classification of vertices into a collection of groups (clusters) depending on the characteristics of the
graph. The goal is that the members within a cluster must be similar to each other, but members in
different clusters should be different. The role of clustering processes is remarkable for example in
supply chain networks [12], biology [13], data mining [14], etc. Traditional cluster analysis is a kind
of binary division, which strictly assigns objects to specific groups. But in fact, many objects have no
strict restrictions, so we cannot directly identify which group they belong to. Therefore, such
collections of objects need a more flexible division.

Fuzzy logic provides an excellent analytical tool for defining and producing flexible divisions.
Ruspini [15] firstly put forward the concept of fuzzy divisions, which marks the beginning of fuzzy
cluster analysis. Based on fuzzy relations [1], Kaufmann [16] provided another basic idea, namely,
fuzzy graphs (FGs). FG theory has numerous applications in several areas like cluster analysis [17],
but also network analysis [3], information theory [4], and database theory [2]. Rosenfeld [18] studied
fuzzy relations on FSs too. He investigated fuzzy analogues of certain elementary graph-theoretical
concepts such as paths, cycles, trees, connectedness, or bridges, and he proved several related results.
With these results, the theory of FGs is effectively established by Rosenfeld [18], although FGs had
been independently introduced by Yeh and Bang [17]. These authors presented various connectivity
parameters of a FG and investigated their applications by constructing ϵ-clusters with the aid of the
connectivity reachability matrix of a FG. Fuzzy node connectivity and fuzzy arc connectivity should
be credited to Mathew and Sunitha [4]. They are the generalizations of Yeh and Bang’s [17]
connectivity parameters. In reference [4], Mathew and Sunitha also discussed a fuzzy analogue of
Whitney’s theorem and introduced clustering techniques based on fuzzy arc connectivity. Sebastian et
al. [3] proposed generalized FG connectivity parameters with application to human trafficking.
Mordeson and Peng [19] introduced different operations on FGs. Later on, some concepts of
connectivity regarding fuzzy cut-vertex and fuzzy bridges appeared in Bhattacharya [20].
Bhattacharya and Suraweera [21] presented an algorithm to find the connectivity between pairs of
vertices in FGs. Further, Banerjee [22] provided an optimal algorithm to find the strength of
connectedness in FGs. Also, Tong and Zheng [23] obtained an algorithm to find the connectivity
matrix of a FG, whereas Xu [2] applied the connectivity parameters of FGs to problems of chemical
structures. Bhutani and Rosenfeld [24] introduced the concepts of strong arcs and strong paths in FGs.
Mathew and Sunitha [25] classified different types of arcs in FGs and obtained the arc identification
procedure. In addition, they established a sufficient condition for a node to become a fuzzy cut-node.

Mathematical Biosciences and Engineering Volume 19, Issue 1, 420–455.



422

In relation with multi-polarity, Akram and Waseem [26] introduced the notion of m-PF graph to deal
with network models possessing multi-attribute and multi-polar information. Later on, different authors
presented various new concepts, including m-PF labeling graphs [27], m-PF graph structures [28],
certain types of edge m-PF graphs [29], faces and dual of m-PF graphs [30], fuzzy coloring of m-PF
graphs [31], m-PF tolerance graphs [32], products in m-PF graphs [33], regularity in product m-PF
graphs [34], and double dominating energy of m-PF graphs [35]. Singh [36] introduced a method
based on the properties of m-PF sets and its concept lattice diagram. Further, this author generalized
the mathematical background of concept lattice with m-PF sets and its graphical properties [37]. In
reference [38], Singh focused on drawing the object and attribute based m-PF concept lattice using
the projection operator. The calculus of complex multi-fuzzy set and its granulation is introduced
in [39] for handling complex multi-fuzzy context and its graphical traversal. Moreover, Singh [40]
presented single-valued plithogenic graphs which enable us to handle multi-valued attribute data and
its context. Furthermore, a framework for solving a multi-attribute group decision making problem,
namely, the selection of a firm for participation in a Saudi oil refinery project in Pakistan is discussed
in [41]. Recently, the strength of connectedness between two vertices in an m-PF graph has been
studied in [42,43]. Mandal et al. [43] discussed certain basic concepts like strongest m-PF path, strong
m-PF path, m-PF bridge, m-PF forests etc. Further, types of edges in m-PF graphs are known since [42].
References [10, 26, 33, 42–44] provide further fundamental terminologies to understand our research
work, which are highlighted in Section 2.

1.1. Motivation and contribution

The m-PF graph theory is a natural generalization of FG theory. Even though, there are many fuzzy
graph-theoretic results that have not yet been studied in the case of m-PF graph theory, e.g., vertex
and edge connectivity parameters, clustering methods for vertices in m-PF graphs, etc. Particularly,
the literature about m-PF graph theory has provided no clustering method for grouping the vertices in
m-PF graphs, as far as we are aware of. However, there are some situations when we have to make
groups of members as a function of uncertain information, and this information is multi-polar. For
example, consider a social network organized as an m-PF graph, whose vertices represent students,
and whose edges represent relationships between pairs of students. The MVs of the vertices may
depend on several parameters. Suppose a case where the MVs of the vertices (students) are measured
according to their level of confidence, sources of knowledge, and communication skills. The MVs of
the edges are measured according to the similarity between two students with respect to their level of
confidence, sources of knowledge, and communication skills. Then if we need to classify the students
in different groups with respect to their similarity measure, a clustering method to classify vertices in
m-PF graphs must be applied.

This research gap motivates us to study clustering method for vertices in m-PF graphs. More
precisely, our proposal will be based on the strength of connectedness between pairs of vertices.

The main contributions of this research study are as follows:

1) This research helps to determine the strong degree of a vertex in an m-PF graph. Also, we shall
emphasize the distinction between degree and strong degree of vertices in m-PF graphs.

2) In m-PF graphs, our research allows us to associate a sequence of real numbers with respect to
each j-th component of membership values of vertices.
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3) Connectivity is the most natural parameter associated with a network. For example, when we
have numerous routers for Internet access, the higher the strength of connectivity between two
routers, the more stable and dynamic the network will be. The proposed research helps in the
determination of a connectivity parameter in m-PF graphs.

4) The proposed research provides a clustering method for vertices in m-PF graphs that is based on
the strength of connectedness between pairs of vertices in m-PF graphs.

5) As to the applied part, the proposed clustering method is used to categorize different companies
with full utilization of their their multi-polar uncertain information. A comparative analysis of this
work with existing techniques is included in order to demonstrate its feasibility and effectiveness.

Table 1. Abbreviations.

In short Term
FS Fuzzy set
IFS Intuitionistic fuzzy set
PFS Pythagorean fuzzy set
m-PF set m-Polar fuzzy set
MV Membership value
FG Fuzzy graph
SRSVs Strength reducing set of vertices
SRSEs Strength reducing set of edges
SD Strong degree
SDmin Minimum strong degree
SDmax Maximum strong degree

1.2. Framework of the paper

The structure of the paper is as follows:
1) In Section 2, some basic definitions and results which are helpful to state properties in our research

work are provided.
2) In Section 3, we first define the strong degree of a vertex in m-PF graphs. We then discuss

various useful properties and results for the strong degrees of vertices in complete m-PF graphs.
Further, we introduce the concept of m-PF strength sequence of vertices and study this concept
in complete m-PF graphs. We also discuss connectivity parameters in m-PF graphs, namely, the
m-PF vertex connectivity parameter and m-PF edge connectivity parameter with fully developed
examples. Then we investigate the m-PF analogue of Whitney’s theorem. Furthermore, we define
r-connected m-PF graphs and r-edge connected m-PF graphs, and we discuss some theorems
related to them.

3) In Section 4, depending on the strength of connectedness between pairs of vertices, we provide a
clustering method for vertices in m-PF graphs. In order to understand this methodolgy, we first
introduce some basic necessary terms and concepts. These include ϵA-reachable vertices in m-PF
graphs, ϵA-connected m-PF graphs, and ϵA-connected m-PF subgraphs (which are useful in the
investigation of m-PF graphs that are not ϵA-connected). Moreover, we discuss an application for
clustering different companies that makes full utilization of their multi-polar uncertain
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information. We also provide an algorithm to clearly understand the clustering method applied
in our application.

4) In Section 5, a comparison between our research work and existing techniques is given.
5) Section 6 highlights the merits and limitations of the proposed work.
6) Section 7 contains the concluding remarks of our research study and future directions for research.

Throughout this research study, we will use the following list of abbreviations (Table 1).

2. Preliminaries

An m-PF set [10] on a non-empty set X is a mapping µ : X → [0, 1]m. The set of all m-PF sets
on X is denoted by m(X). Note that for a natural number m, [0, 1]m is considered as a poset with the
point-wise order ≤, where “≤” is defined by x ≤ y↔ P j(x) ≤ P j(y), where x, y ∈ [0, 1]m and for each
1 ≤ j ≤ m, P j : [0, 1]m → [0, 1] is defined as the j-th projection mapping.

Definition 2.1. Let µ be an m-PF set on X. An m-PF relation σ on µ is a mapping σ = (P1 ◦ σ, P2 ◦

σ, . . . , Pm ◦ σ) : µ −→ µ such that for all x, y ∈ X [26],

P j ◦ σ(xy) ≤ inf{P j ◦ µ(x), P j ◦ µ(y)}, (2.1)

1 ≤ j ≤ m, where P j ◦µ(x) and P j ◦σ(xy) represent the j-th MV of vertex x and edge xy, respectively.
An m-PF relationσ on X is said to be a symmetric relation if for each 1 ≤ j ≤ m, P j◦σ(xy) = P j◦σ(yx),
where x, y ∈ X.

Definition 2.2. An m-PF graph on X is an ordered pair of functions G = (µ, σ), where µ : X −→ [0, 1]m

is an m-PFS on X and σ : X × X −→ [0, 1]m is an m-PF relation on X such that for all xy ∈ E [26],

P j ◦ σ(xy) ≤ inf{P j ◦ µ(x), P j ◦ µ(y)}, (2.2)

1 ≤ j ≤ m. Note that for each xy ∈ X × X \ E, σ(xy) = 0, where 0 = (0, 0, . . . , 0) is the smallest
element in [0, 1]m and 1 = (1, 1, . . . , 1) is the largest element in [0, 1]m.

Definition 2.3. An m-PF path P in an m-PF graph G = (µ, σ) is a sequence of distinct vertices x =
x1, x2, x3, . . . , xn = y such that there exists at least one 1 ≤ j ≤ m for each 1 ≤ i ≤ n − 1 satisfying
P j◦(xixi+1) > 0. An m-PF path P between two vertices xi and xk is denoted by [xi, xk]-m-PF path, where
1 ≤ i, k ≤ n. An [xi, xk]-m-PF path is said to be an m-PF cycle C if xi = xk and n ≥ 3. The strength of
an m-PF path P is defined as S (P) = ( inf

1≤i<k≤n
P1 ◦ σ(xixk), inf

1≤i<k≤n
P2 ◦ σ(xixk), . . . , inf

1≤i<k≤n
Pm ◦ σ(xixk)).

The strength of connectedness between two vertices xi and xk (CONNG(xi, xk)) is the maximum of
the strengths of all m-PF paths between xi and xk. Mathematically, it is defined as CONNG(xi, xk) =
((P1◦σ(xixk))∞, (P2◦σ(xixk))∞, . . . , (Pm◦σ(xixk))∞), where (P j◦σ(xixk))∞ = max{ inf

1≤i<k≤n
P j◦σ(xixk)}.

An m-PF path is said to be a strongest m-PF path if S (P) = CONNG(xi, xk). An m-PF graph G = (µ, σ)
is defined to be connected if there is an edge between each pair of vertices, i.e., (P j ◦σ(xixk))∞ > 0 for
at least one j [33].

Throughout this study, we assume that G is a connected m-PF graph.
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Definition 2.4. Let G = (µ, σ) be an m-PF graph and P1, P2 be two [x, y]-m-PF paths of G, where
x, y ∈ X (x , y). Then P1 and P2 are called edge-disjoint [x, y]-m-PF paths if E(P1) ∩ E(P2) = ∅, i.e.,
P1 and P2 have no common edges. Two edge-disjoint [x, y]-m-PF paths are called internally disjoint
[x, y]-m-PF paths if V(P1) ∩ V(P2) = {x, y}, i.e., P1 and P2 have no common vertices except x and
y [42].

Definition 2.5. Let G = (µ, σ) be an m-PF graph. The sum of MVs of all m-PF edges incident at vertex
x ∈ X is called degree of x. It is denoted by D(x) = (P1 ◦ d(x), P2 ◦ d(x), . . . , Pm ◦ d(x)) such that for
each 1 ≤ j ≤ m, P j ◦ d(x) =

∑
y∈X P j ◦ σ(xy) [44].

Definition 2.6. An m-PF graph G = (µ, σ) is said to be strong m-PF graph if for each xy ∈ E, P j ◦

σ(xy) = inf{P j ◦ µ(x), P j ◦ µ(y)}, 1 ≤ j ≤ m. An m-PF graph G = (µ, σ) is said to be complete m-polar
fuzzy graph if for each x, y ∈ X, P j ◦ σ(xy) = inf{P j ◦ µ(x), P j ◦ µ(y)}, 1 ≤ j ≤ m [33].

Definition 2.7. An m-PF graph G̃ = (̃µ, σ̃) is said to be a partial m-PF subgraph of m-PF graph G =
(µ, σ) if for every 1 ≤ j ≤ m, P j ◦ µ̃(x) ≤ P j ◦ µ(x) for each x ∈ X̃ and P j ◦ σ̃(xy) ≤ P j ◦σ(xy) for each
xy ∈ Ẽ. In particular, a partial m-PF subgraph G̃ = (̃µ, σ̃) is said to be an m-PF subgraph of G = (µ, σ)
if for every 1 ≤ j ≤ m, P j ◦ µ̃(x) = P j ◦ µ(x) for each x ∈ X̃ and P j ◦ σ̃(xy) = P j ◦ σ(xy) for each
xy ∈ Ẽ [43].

Definition 2.8. Let G = (µ, σ) be an m-PF graph. An edge xy ∈ E is defined to be a strong m-PF edge
of G if for each 1 ≤ j ≤ m, P j ◦ σ(xy) ≥ P j ◦ CONNG\{xy}(x, y), i.e., if the MV of edge xy ∈ E is at
least as great as the connectedness of its incident vertices x and y when edge xy is deleted then edge xy
is said to be a strong m-PF edge of G. The vertices x and y incident to a strong m-PF edge are called
strong m-PF neighbors if for each 1 ≤ j ≤ m, P j ◦ σ(xy) > 0. An [x, y]-m-PF path P is defined to be
a strong path if each edge contributing to that path is strong m-PF edge. An edge xy ∈ E is defined to
be a weak m-PF edge of G if it is not strong m-PF edge of G, i.e., if it does not satisfy the condition
P j ◦ σ(xy) ≥ P j ◦CONNG\{xy}(x, y) for some 1 ≤ j ≤ m. Otherwise, it is said to be a mixed m-PF edge
of G [43].

Throughout this study, we assume that G has no mixed m-PF edges.

Definition 2.9. Let G = (µ, σ) be an m-PF graph. An edge ab ∈ E is defined to be a weakest m-PF edge
of G if for each 1 ≤ j ≤ m, P j ◦σ(ab) < P j ◦σ(xy) for any edge xy ∈ E different from edge ab ∈ E. An
edge cd ∈ E is defined to be a strongest m-PF edge of G if for each 1 ≤ j ≤ m, P j ◦σ(cd) > P j ◦σ(xy)
for any edge xy ∈ E different from edge cd [42].

Definition 2.10. Let G = (µ, σ) be an m-PF graph and ES be the set of all strong m-PF edges of G.
Then strong size of m-PF graph G is denoted by S S (G) = (P1 ◦ S S (G), P2 ◦ S S (G), . . . , Pm ◦ S S (G)),
where P j ◦ S S (G) =

∑
xy∈ES

P j ◦ σ(xy) for each 1 ≤ j ≤ m [42].

Definition 2.11. Let G = (µ, σ) be an m-PF graph and xy be an edge of G such that it is not a strong
m-PF edge. A set X′ of vertices is defined to be an x − y strength reducing set of vertices (SRSVs) if
for each 1 ≤ j ≤ m, P j ◦ σG\X′(xy) < P j ◦ σG(xy) for some pair of vertices x and y of G \ X′. An
x− y SRSVs with n members is defined to be a minimum x− y SRSVs if there does not exist any x− y
SRSVs having less than n members [42].
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Definition 2.12. Let G = (µ, σ) be an m-PF graph. A set E′ of edges is defined to be an x − y strength
reducing set of edges (SRSEs) if for each 1 ≤ j ≤ m, P j ◦ σG\E′(xy) < P j ◦ σG(xy) for some pair of
vertices x and y of G \ E′. An x − y SRSEs with n members is defined to be a minimum x − y SRSEs
if there does not exist any x − y SRSEs having less than n members [42].

3. Strong degree of a vertex in an m-PF graph

In this section, we introduce new concepts related to m-PF graphs and discuss some of their basic
properties.

Definition 3.1. Let G = (µ, σ) be an m-PF graph. The sum of MVs of all strong m-PF edges incident
at vertex x ∈ X is called strong degree (SD) of x. It is denoted by
DS (x) = (P1 ◦ dS (x), P2 ◦ dS (x), . . . , Pm ◦ dS (x)). Mathematically, it is defined as
DS (x) = (

∑
y∈NS (x) P1 ◦ σ(xy),

∑
y∈NS (x) P2 ◦ σ(xy), . . . ,

∑
y∈NS (x) Pm ◦ σ(xy)). Here, NS (x) =

{y(P1 ◦ σ(xy), P2 ◦ σ(xy), . . . , Pm ◦ σ(xy)) : P j ◦ CONNG(x, y) ≥ P j ◦ CONNG\{xy}(x, y), 1 ≤ j ≤ m} is
the collection of all strong m-PF neighbors of x.

Definition 3.2. Let G = (µ, σ) be an m-PF graph. The minimum strong degree (SDmin) is δS (G) =
(P1 ◦ δS (G), P2 ◦ δS (G), . . . , Pm ◦ δS (G)), where P j ◦ δS (G) = min{P j ◦ dS (x) : x ∈ X} for each
1 ≤ j ≤ m. The maximum strong degree (SDmax) is ∆S (G) = (P1 ◦∆S (G), P2 ◦∆S (G), . . . , Pm ◦∆S (G)),
where P j ◦ ∆S (G) = max{P j ◦ dS (x) : x ∈ X} for each 1 ≤ j ≤ m.

Remark 3.1. Let G = (µ, σ) be an m-PF graph. Then for each 1 ≤ j ≤ m, P j ◦ δS (G) ≤ P j ◦ dS (G) ≤
P j ◦ ∆S (G) for all vertices x ∈ X.

Definition 3.3. Let G = (µ, σ) be an m-PF graph and x ∈ X be any vertex of G. Then x is called a
strong m-PF vertex of G if all edges incident at vertex x are strong m-PF edges. The collection of all
strong m-PF vertices of G is denoted by VS (G).

Example 3.1. Let X = {x1, x2, x3, x4} be the set of vertices and E = {x1x2, x2x3, x2x4, x3x4} be the set
of edges. Let µ be a 3-PF set on X (Table 2) and σ be a 3-PF relation on X (Table 3). The related 3-PF
graph G = (µ, σ) is given in Figure 1. The degrees of vertices are D(x1) = (0.2, 0.1, 0.2),
D(x2) = (1.1, 1.1, 1.3), D(x3) = (1.0, 1.1, 1.2), and D(x4) = (1.3, 1.7, 1.5). Here,
NS (x1) = {x2(0.2, 0.1, 0.2)}, NS (x2) = {x1(0.2, 0.1, 0.2), x3(0.6, 0.8, 0.7)},
NS (x3) = {x2(0.6, 0.8, 0.7), x4(0.7, 0.9, 0.7)}, and NS (x4) = {x2(0.3, 0.2, 0.4), x3(0.7, 0.9, 0.8)}. The SDs
of vertices are DS (x1) = (0.2, 0.1, 0.2), DS (x2) = (0.8, 0.9, 0.9), DS (x3) = (1.3, 1.7, 1.5), and
DS (x4) = (0.7, 0.9, 0.8). Here, x1 and x3 both are strong m-PF vertices of G. Thus, VS (G) = {x1, x3}.
The SDmin and SDmax of G are δS (G) = (0.2, 0.1, 0.2) and ∆S (G) = (1.3, 1.7, 1.5), respectively.

Table 2. 3-PF vertex set.

µ x1 x2 x3 x4

P1 ◦ µ 0.2 0.3 0.8 0.8
P2 ◦ µ 0.4 0.2 0.9 0.9
P3 ◦ µ 0.3 0.4 0.8 0.9
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Table 3. 3-PF edge set.

σ x1x2 x2x3 x2x4 x3x4

P1 ◦ σ 0.2 0.6 0.3 0.6
P2 ◦ σ 0.1 0.8 0.2 0.8
P3 ◦ σ 0.2 0.7 0.4 0.7

Figure 1. 3-PF graph.

It is always possible to find a strong m-PF path between any two vertices of a connected m-PF graph
G according to Theorem 4.8 [43]. This means that we are always able to find at least one strong m-PF
neighbor of any vertex of a connected m-PF graph G. Thus, we have the following proposition.

Proposition 3.1. Let G = (µ, σ) be a connected m-PF graph. Then for each 1 ≤ j ≤ m, 0 < P j◦dS (x) ≤
P j ◦ d(x) for all vertices x ∈ X.

We now have Handshaking lemma for m-PF graphs.

Lemma 3.2. The sum of SDs of each vertex in an m-PF graph G is equal to twice the sum of MVs of
each strong m-PF edges in G, that is, for each 1 ≤ j ≤ m, 2P j ◦ S S (G) =

∑
x∈X P j ◦ dS (x).

It is interesting to note that all edges in an complete m-PF graph G are strong m-PF edges. This
means that for each 1 ≤ j ≤ m, P j ◦ dS (x) = P j ◦ d(x) for each x ∈ X and hence P j ◦ S S (G) =∑

xy∈E P j ◦ σ(xy) for each 1 ≤ j ≤ m and for every edge xy ∈ E in complete m-PF graph G. Also, all
vertices in an complete m-PF graph G = (µ, σ) are strong m-PF vertices and hence their SDs can be
calculated for each 1 ≤ j ≤ m as P j ◦ dS (x) =

∑
x,y inf{P j ◦ µ(x), P j ◦ µ(y)} for each vertex x ∈ X.

Example 3.2. Let X = {x1, x2, x3, x4} be the set of vertices and E = {x1x2, x1x3, x1x4, x2x3, x2x4, x3x4}

be the set of edges. Let µ be a 3-PF set on X (Table 4) and σ be a 3-PF relation on X (Table 5).
The related 3-PF graph G = (µ, σ) is given in Figure 2. It is easy to see that G is an complete m-PF
graph. Thus, all of its edges are strong m-PF edges. Also, all of its vertices are strong m-PF vertices.
The SDs of vertices are DS (x1) = (0.4, 0.5, 0.7), DS (x2) = (1.1, 1.0, 1.3), DS (x3) = (1.0, 1.2, 1.2),
DS (x4) = (0.3, 0.7, 0.6) and S S (G) = (1.4, 1.7, 1.9).
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Table 4. 3-PF vertex set.

µ x1 x2 x3 x4

P1 ◦ µ 0.2 0.7 0.7 0.1
P2 ◦ µ 0.1 0.8 0.8 0.3
P3 ◦ µ 0.3 0.8 0.7 0.2

Table 5. 3-PF edge set.

σ x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

P1 ◦ σ 0.2 0.2 0.1 0.7 0.1 0.1
P2 ◦ σ 0.1 0.1 0.1 0.8 0.3 0.3
P3 ◦ σ 0.3 0.3 0.2 0.7 0.2 0.2

Figure 2. 3-PF graph.

Proposition 3.3. Let G = (µ, σ) be an complete m-PF graph with |X| = n such that for each 1 ≤ j ≤ m,
P j ◦ µ(xi) ≤ P j ◦ µ(xi + 1) (i = 1, 2, . . . , n − 1). Then for each 1 ≤ j ≤ m, P j ◦ dS (xi) = P j ◦ dS (xk) for
at least one pair of vertices xi and xk (1 ≤ i, k ≤ n and i , k) of G.

Theorem 3.4. Let x1, x2, . . . , xn be the vertices of an complete m-PF graph G = (µ, σ) such that for
each 1 ≤ j ≤ m,

P j ◦ µ(xi) ≤ P j ◦ µ(xi + 1)︸                            ︷︷                            ︸
i=1,2,3,...,n−1

. (3.1)

Then for each 1 ≤ j ≤ m,

1) There exists at least one weakest m-PF edge x1xk (k = 2, 3, . . . , n) in G.
2) There exists at least one strongest m-PF edge xkxn (k = 1, 2, . . . , n − 1) in G.
3) The SDmin δS (G) is equal to SD of first vertex x1, i.e., P j ◦ d(x1) = P j ◦ δS (G) = (n − 1)P j ◦ µ(x1).
4) The SDmax ∆S (G) is equal to SD of last vertex xn, i.e., P j ◦ d(xn) = P j ◦ ∆S (G) =

∑n−1
i=1 P j ◦ µ(xi).

Proof. Let G = (µ, σ) be an complete m-PF graph with |X| = n. Suppose that x1 be a vertex having
unique minimum MV, i.e., for each 1 ≤ j ≤ m, P j◦µ(x1) < P j◦µ(xk) (k = 2, 3, . . . , n) and xn be a vertex
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having unique maximum MV, i.e., for each 1 ≤ j ≤ m, P j ◦ µ(xk) < P j ◦ µ(xn) (k = 1, 2, . . . , n − 1).
Throughout this proof, we assume that for each 1 ≤ j ≤ m,

P j ◦ µ(x1) < P j ◦ µ(xa) ≤ P j ◦ µ(xb)︸                       ︷︷                       ︸
2≤a<b≤n−1,a,b

< P j ◦ µ(xn). (3.2)

1) We have to show that edge x1xk (k = 2, 3, . . . , n) is a weakest m-PF edge in G. Suppose on
contrary that x1xb (b = 2, 3, . . . , n) is not weakest m-PF edge. Also, let xaxb (2 ≤ a < b ≤ n, a , b) be
a weakest m-PF edge in G. Thus, we have for each 1 ≤ j ≤ m,

P j ◦ σ(xaxb) < P j ◦ σ(x1xb),
⇒ inf{P j ◦ µ(xa), P j ◦ µ(xb)} < inf{P j ◦ µ(x1), P j ◦ µ(xb)},

⇒ P j ◦ µ(xa) < P j ◦ µ(x1) (a = 2, 3, . . . , n). (3.3)

Since, a , 1, this contradicts to the assumption that x1 is the unique vertex with minimum MV.
Hence, we have shown that edge x1xk (k = 2, 3, . . . , n) is a weakest m-PF edge in G.

2) We have to show that edge xkxn (k = 1, 2, . . . , n − 1) is a strongest m-PF edge in G. Suppose on
contrary that xaxn (a = 1, 2, . . . , n−1) is not strongest m-PF edge. Also, let xaxb (1 ≤ a < b ≤ n−1, a ,
b) be a strongest m-PF edge in G. Thus, we have for each 1 ≤ j ≤ m,

P j ◦ σ(xaxb) > P j ◦ σ(xaxn),
⇒ inf{P j ◦ µ(xa), P j ◦ µ(xb)} > inf{P j ◦ µ(xa), P j ◦ µ(xn)},

⇒ P j ◦ µ(xa) > P j ◦ µ(xa) (a = 1, 2, . . . , n − 1). (3.4)

which is a contradiction. Hence, we have shown that edge xkxn (k = 1, 2, . . . , n−1) is a strongest m-PF
edge in G.

3) We have to show that for each 1 ≤ j ≤ m, P j ◦ d(x1) = P j ◦ δS (G) = (n − 1)P j ◦ µ(x1). For this,
consider

P j ◦ dS (x1) =
n∑

k=2

P j ◦ σ(x1xk),

=

n∑
k=2

inf{P j ◦ µ(x1), P j ◦ µ(xk)},

=

n∑
k=2

P j ◦ µ(x1),

= (n − 1)P j ◦ µ(x1).

Now, to show that SDmin is exactly equal to SD of first vertex. Suppose on contrary that it is not
equal, i.e., P j ◦ δS (G) , P j ◦ dS (x1) for at least one 1 ≤ j ≤ m. Also, let xk (k = 2, 3, . . . , n, k , 1) be a
vertex of G with SDmin, i.e., for each 1 ≤ j ≤ m, P j ◦ dS (xk) = P j ◦ δS (G). Then

P j ◦ dS (x1) > P j ◦ dS (xk),
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⇒

n∑
i=2

P j ◦ σ(x1xi) >
n∑

k=2,l=1,k,l

P j ◦ σ(xkxl),

⇒

n∑
i=2

inf{P j ◦ µ(x1), P j ◦ µ(xi)} >
n∑

k=2,l=1,k,l

inf{P j ◦ µ(xk), P j ◦ µ(xl)}. (3.5)

As inf{P j ◦ µ(x1), P j ◦ µ(xi)} = P j ◦ µ(x1), inf{P j ◦ µ(xk), P j ◦ µ(x1)} = P j ◦ µ(x1) for l = 1, and
inf{P j ◦ µ(xk), P j ◦ µ(xl)} > P j ◦ µ(x1) for all other l = 2, 3, . . . , n. Thus,

⇒ (n − 1)P j ◦ µ(x1) >
n∑

k,l=2,k,l

inf{P j ◦ µ(xk), P j ◦ µ(xl)} > (n − 1)P j ◦ µ(x1),

⇒ P j ◦ dS (x1) >
n∑

k,l=2,k,l

inf{P j ◦ µ(xk), P j ◦ µ(xl)} > P j ◦ dS (x1). (3.6)

This is a contradiction. Hence, for each 1 ≤ j ≤ m, P j ◦ dS (x1) = P j ◦ δS (G) = (n − 1)P j ◦ µ(x1).
4) Finally, we have to show that for each 1 ≤ j ≤ m, P j ◦ µ(xn) =

∑n−1
k=1 P j ◦ µ(xk) = P j ◦ ∆S (G). We

know that xn is the vertex of G with maximum MV, i.e., for each 1 ≤ j ≤ m, P j ◦ µ(xn) > P j ◦ µ(xk)
(k = 1, 2, . . . , n − 1). Also, G is an complete m-PF graph. Therefore,

P j ◦ σ(xnxk) = inf{P j ◦ µ(xn), P j ◦ µ(xk)},
= P j ◦ µ(xk).

Thus,

P j ◦ dS (xn) =
n−1∑
k=1

P j ◦ σ(xnxk),

=

n−1∑
k=1

P j ◦ µ(xk).

Now, to show that SDmax is exactly equal to SD of last vertex. Suppose on contrary that it is not
equal, i.e., P j ◦ ∆S (G) , P j ◦ dS (xn) for at least one 1 ≤ j ≤ m. Also, let xl (l = 1, 2, . . . , n − 1, l , n)
be a vertex of G with SDmax, i.e., for each 1 ≤ j ≤ m, P j ◦ dS (xl) = P j ◦ ∆S (G). Then

P j ◦ dS (xn) < P j ◦ dS (xl). (3.7)

Since, G is an complete m-PF graph. So, SD of vertex xl can be written as

P j ◦ dS (xl) =
l−1∑
k=1

P j ◦ σ(xkxl) +
n−1∑

k=l+1

P j ◦ σ(xkxl) + P j ◦ σ(xnxl),

≤

l−1∑
k=1

P j ◦ µ(xk) + (n − l)P j ◦ µ(xl) + P j ◦ µ(x1),
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≤

n−1∑
k=1

P j ◦ µ(xk),

= P j ◦ dS (xn).

This shows that P j ◦ dS (xl) ≤ P j ◦ dS (xn) which is a contradiction. Hence, for each 1 ≤ j ≤ m,
P j ◦ dS (xn) = P j ◦ ∆S (G) =

∑n−1
k=1 P j ◦ µ(xk). This completes the proof. □

Note 3.1. We have assumed that there is only one vertex with minimum MV and only one vertex with
maximum MV throughout the proof of Theorem 3.4. However, if there are more than one vertices
having minimum MVs and more than one vertices having maximum MVs, the proof of the Theorem
3.4 will remain same.

3.1. m-PF strength sequence of vertices in an m-PF graph

In m-PF graphs, the MVs of vertices as well as edges are m-tuples of real numbers in [0, 1].
Therefore, we can associate a sequence of real numbers with respect to each j-th component of MVs
of vertices.

Definition 3.4. Let G = (µ, σ) be an m-PF graph and |X| = n. Then m-PF strength sequence of vertices
x1, x2, x3, . . . , xn with respect to each j-th component (1 ≤ j ≤ m) of MVs of vertices (m-PF( j) strength
sequence) is defined to be {a( j)

i = P j ◦ µ(xi)}ni=1, where a( j)
i ∈ [0, 1] represents the MV of vertex xi with

respect to j-th component (1 ≤ j ≤ m) when vertices are arranged such that their MVs with respect to
each j-th component (1 ≤ j ≤ m) are non-decreasing, that is, a( j)

1 ≤ a( j)
2 ≤ . . . ≤ a( j)

n . In particular, a( j)
1

represent the smallest MVs of vertices with respect to j-th component (1 ≤ j ≤ m) and a( j)
n represent

the largest MVs of vertices with respect to j-th component (1 ≤ j ≤ m).

Definition 3.5. Let G = (µ, σ) be an m-PF graph and |X| = n. Then m-PF strength sequence of
vertices x1, x2, x3, . . . , xn is defined to be {[a(1)

i , a
(2)
i , . . . , a

(m)
i ]}ni=1 such that {a( j)

i }
n
i=1 is the m-PF( j) strength

sequence (1 ≤ j ≤ m).

Example 3.3. Let X = {x1, x2, x3, x4} be the set of vertices and E = {x1x3, x1x4, x2x3, x3x4} be the set
of edges. Let µ be a 4-PF set on X (Table 6) (Here, we consider MVs of vertices only. Since we are
talking about m-PF strength sequence of vertices, therefore, we can eliminate the discussion of MVs
of edges). The related 4-PF graph G = (µ, σ) is given in Figure 3. The m-PF(1) strength sequence is
{0.1, 0.3, 0.3, 0.7} or {0.1, 0.32, 0.7} (0.32 means that term 0.3 is repeated two times in this sequence).
The m-PF(2) strength sequence is {0.2, 0.5, 0.5, 0.7} or {0.2, 0.52, 0.7}, m-PF(3) strength sequence is
{0.3, 0.4, 0.5, 0.7} and the m-PF(4) strength sequence is {0.1, 0.2, 0.5, 0.8}. Now, the m-PF strength
sequence of vertices is {[0.1, 0.1, 0.2, 0.3], [0.2, 0.3, 0.4, 0.5], [0.3, 0.5, 0.5, 0.5], [0.7, 0.7, 0.7, 0.8]} =
{[0.12, 0.2, 0.3], [0.2, 0.3, 0.4, 0.5], [0.3, 0.53], [0.73, 0.8]}.

Table 6. 4-PF vertex set.

µ x1 x2 x3 x4

P1 ◦ µ 0.1 0.3 0.3 0.7
P2 ◦ µ 0.7 0.5 0.2 0.5
P3 ◦ µ 0.4 0.7 0.5 0.3
P4 ◦ µ 0.5 0.2 0.1 0.8
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Figure 3. 4-PF graph.

Considering m-PF( j) strength sequence (1 ≤ j ≤ m) of vertices in an complete m-PF graph G, we
can obtain the number of vertices having SDmin δS (G) and the number of vertices having SDmax ∆S (G)
with the help of the following theorem.

Theorem 3.5. Let G = (µ, σ) be an complete m-PF graph and |X| = n. Then for each 1 ≤ j ≤ m,

1) If m-PF( j) strength sequence of vertices is of the form {(a( j)
1 )n−1, a( j)

2 }, then P j◦δS (G) = (n−1)a( j)
1 =

P j ◦ ∆S (G) = P j ◦ dS (xk) (k = 1, 2, . . . , n).
2) If m-PF( j) strength sequence of vertices is of the form {(a( j)

1 )l1 , (a( j)
2 )n−l1} with 0 < l1 ≤ n − 2, then

there exists exactly l1 vertices having P j ◦ δS (G) and exactly n − l1 vertices having P j ◦ ∆S (G).
3) If m-PF( j) strength sequence of vertices is of the form {(a( j)

1 )l1 , (a( j)
2 )l2 , . . . , (a( j)

k )lk} with lk ≥ 2
and k ≥ 3, then there exists exactly l1 vertices having P j ◦ δS (G) and exactly lk vertices having
P j ◦ ∆S (G).

4) If m-PF( j) strength sequence of vertices is of the form {(a( j)
1 )l1 , (a( j)

2 )l2 , . . . , (a( j)
k−1)lk−1 , ak} with k ≥ 3,

then there exists exactly 1 + lk vertices having P j ◦ ∆S (G).

Proof. Let G = (µ, σ) be an complete m-PF graph and |X| = n. The proof of (1) and (2) are obvious.
We now prove (3) and (4).

3) Let (xi)q be the set of vertices in G with P j ◦ dS ((xi)q) = a( j)
i (q = 1, 2, . . . , li and i = 1, 2, . . . , k)

for each 1 ≤ j ≤ m. According to Theorem 3.4, we have P j ◦ dS ((x1)q) = P j ◦ δS (G) = (n − 1)a( j)
1

(q = 1, 2, . . . , l1). Any vertex having j-th component MV greater than a( j)
1 can not have P j◦δS (G) since,

P j ◦ σ((xi)q(xi+1)r) = P j ◦ µ((xi)q) > a( j)
1 (q = 1, 2, . . . , li, r = 1, 2, . . . , li+1, q = 2, 3, . . . , k). Thus, there

exists exactly l1 vertices having P j◦δS (G). We now prove that P j◦µ((xk)t) = P j◦∆S (G) (t = 1, 2, . . . , lk).
Since, P j◦µ((xk)t) is maximum vertex MV, we have P j◦σ((xk)t(xk)q) = a( j)

k (t, q = 1, 2, . . . , lk, t , q) and
P j ◦σ((xk)t(xi)q) = inf{P j ◦ µ((xk)t), P j ◦ µ((xi)q)} = P j ◦ µ((xi)q) (i = 1, 2, . . . , k− 1, q = 1, 2, . . . , li, t =
1, 2, . . . , lk). Thus, for t = 1, 2, . . . , lk,

P j ◦ dS ((xk)t) =
k−1∑
i=1

li∑
q=1

P j ◦ µ((xi)q) + (lk − 1)a( j)
k ,

=

n−1∑
i=1

P j ◦ µ(yi),
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= P j ◦ ∆S (G).

Using Theorem 3.4. Further, if y is a vertex such that P j ◦ µ(y) = a( j)
k−1, we have

P j ◦ dS (y) =
k−2∑
i=1

li∑
q=1

P j ◦ σ(y, (xi)q) + (lk−1 − 1 + lk)a
( j)
k−1,

=

k−2∑
i=1

li∑
j=1

P j ◦ µ((xi)q) +
lk−1∑
q=1

P j ◦ µ((xq
k−1)) + (lk − 1)a( j)

k−1,

<

k−2∑
i=1

li∑
q=1

P j ◦ µ((xi)q) +
lk−1∑
q=1

P j ◦ µ(xq
k−1) + (lk − 1)a( j)

k ,

= P j ◦ ∆S (G).

Thus, there exists exactly lk vertices having P j ◦ ∆S (G).
4) Let (xk)1 = xk be the vertex in G such that P j ◦ dS (xk) = a( j)

k . Then, by using Theorem 3.4,
P j ◦ dS (xk) = P j ◦∆S (G) =

∑n−1
i=1 P j ◦ µ(yi). Now, let yk−1t, t = 1, 2, . . . , lk−1. Then, for t = 1, 2, . . . , lk−1,

P j ◦ ((xk−1)t) =
k−2∑
i=1

li∑
q=1

P j ◦ σ((xi)q(xk−1)t) +
∑
r,m

P j ◦ σ((xk−1)r(xm
k−1)) + P j ◦ σ((xk−1)txk). (3.8)

But, P j ◦σ((xi)qxt
k−1) = P j ◦µ((xi)q) (i = 1, 2, . . . , k−2 and q = 1, 2, . . . , li). Also, P j ◦σ(xq

k−1xm
k−1) =

a( j)
k−1 and P j ◦ σ(xr

k−1xk) = a( j)
k−1. Thus,

P j ◦ dS ((xk−1)t) =
k−2∑
i=1

li∑
q=1

P j ◦ µ((xi)q) + (lk−1 − 1)a( j)
k−1 + a( j)

k−1,

=

k−2∑
i=1

li∑
q=1

P j ◦ µ((xi)q) + lk−1a( j)
k−1,

=

n−1∑
i=1

P j ◦ µ(yi),

= P j ◦ ∆S (G).

Thus, there exists lk−1 + 1 vertices having P j ◦ ∆S (G). Now, if y is a vertex with P j ◦ µ(y) < a( j)
k−1 as

in proof of (3), we can show that P j ◦ dS (y) < P j ◦ ∆S (G). Thus, there exists exactly lk−1 + 1 vertices
having P j ◦ ∆S (G). Hence, the theorem is proved. □

3.2. Connectivity parameters in m-PF graphs

In this section, we introduce vertex cut and edge cut in an m-PF graph G by using the concept of
strong m-PF edges [4, 42].

Definition 3.6. Let G be a non-trivial connected m-PF graph. A subset X̃ = {x1, x2, . . . , xk} ⊆ X is
defined to be an m-PF vertex cut if either the removal of X̃ results a trivial m-PF graph or its removal
reduces the strength of connectedness between some pairs of vertices in G, i.e., P j ◦CONNG\X̃(x, y) <
P j ◦CONNG(x, y) (1 ≤ j ≤ m) for x, y ∈ X such that x, y , xi (i = 1, 2, . . . , k).
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There exists a strong m-PF path between any two vertices of a connected m-PF graph G according
to Theorem 4.8 of [43]. This means that we are able to find at least one strong m-PF edge incident on
any vertex x of a connected m-PF graph G. Thus, we have the following definition.

Definition 3.7. Let G = (µ, σ) be a non-trivial connected m-PF graph and X̃ be an m-PF vertex cut
of G. Then the strong weight of X̃ is denoted by S W(X̃) = (P1 ◦ S W(X̃), P2 ◦ S W(X̃), . . . , Pm ◦ S W(X̃))
and it is defined as S W(X̃) = (

∑
x∈X̃ P1 ◦ σ(xy),

∑
x∈X̃ P2 ◦ σ(xy), . . . ,

∑
x∈X̃ Pm ◦ σ(xy)) where for each

1 ≤ j ≤ m,
∑

x∈X̃ P j ◦ σ(xy) represents the sum of minimum MVs of strong m-PF edges incident on
x ∈ X̃.

Definition 3.8. Let G = (µ, σ) be a non-trivial connected m-PF graph. The m-polar fuzzy vertex
connectivity of G is denoted by κ(G) = (P1 ◦ κ(G), P2 ◦ κ(G), . . . , Pm ◦ κ(G)) in which each j-th
component (1 ≤ j ≤ m) is defined as P j ◦ κ(G) = min{P j ◦ S W(X̃i); i ∈ ω}, i.e., it is the minimum of
strong weights of m-PF vertex cuts of G.

Figure 4. 3-PF graph.

Example 3.4. Let G = (µ, σ) be a connected 3-PF graph as shown in Figure 4. It is easy to see that
strength of connectedness between x2 and x4 is (0.2, 0.5, 0.6). Then m-PF vertex cut containing one
vertex is X̃ = {x3} as CONNG\{x3}(x2, x4) = (0.2, 0.3, 0.5) < (0.2, 0.5, 0.6) = CONNG(x2, x4). Here,
m-PF vertex cut containing two vertices is X̃ = {x1, x3} as CONNG\{x1,x3}(x2x4) = (0.1, 0.3, 0.4) <
(0.2, 0.5, 0.6) = CONNG(x2x4). Also, the removal of vertices x2 and x4 results a trivial m-PF graph so
m-PF vertex cut = {x2, x4}. The strength of connectedness between vertices of G are: CONNG(x1, x2) =
(0.2, 0.3, 0.5), CONNG(x1, x4) = (0.2, 0.4, 0.5), CONNG(x3, x4) = (0.2, 0.3, 0.5), CONNG(x2, x3) =
(0.1, 0.3, 0.4) and CONNG(x2, x4) = (0.2, 0.5, 0.6). It is easy to verify that x1x2, x3x4, x2x3 are strong
m-PF edges. The m-PF vertex cuts containing one or two vertices with their strong weights are X̃1 =

{x3} S W(X̃1) = (0.2, 0.5, 0.6), X̃2 = {x1, x3} S W(X̃2) = (0.5, 0.9, 1.1) and X̃3 = {x2, x4} S W(X̃3) =
(0.8, 1.4, 1.8). Also, any set with three vertices of G will be considered as m-PF vertex cut with strong
weight greater than S W(X̃i) (i = 1, 2, 3). Therefore, κ(G) = (0.2, 0.5, 0.6).

Definition 3.9. Let G be a non-trivial connected m-PF graph. A subset m-PF edges Ẽ = {e1, e2, . . . , ek}

⊆ E is defined to be an m-PF edge cut if either the removal of Ẽ results a trivial m-PF graph or its
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removal reduces the strength of connectedness between some pairs of vertices in G, i.e.,
P j ◦ CONNG\Ẽ(x, y) < P j ◦ CONNG(x, y) (1 ≤ j ≤ m) for x, y ∈ X such that at least one of x or y is
different from end nodes of edges ei (i = 1, 2, . . . , k). Here, we consider only strong m-PF edges in Ẽ
as weak m-PF edges do not effect the strength of connectedness between any two vertices.

Definition 3.10. Let G = (µ, σ) be a non-trivial connected m-PF graph and Ẽ be an m-PF edge cut of
G. Then the strong weight of Ẽ is denoted by S ′W(Ẽ) = (P1 ◦ S ′W(Ẽ), P2 ◦ S ′W(Ẽ), . . . , Pm ◦ S ′W(Ẽ))
and it is defined as S ′W(Ẽ) = (

∑
ei∈Ẽ P1 ◦ σ(ei),

∑
ei∈Ẽ P2 ◦ σ(ei), . . . ,

∑
ei∈Ẽ Pm ◦ σ(ei)) where for each

1 ≤ j ≤ m,
∑

ei∈Ẽ P j ◦ σ(ei) represents the sum of the MVs of strong m-PF edges in Ẽ.

Definition 3.11. Let G = (µ, σ) be a non-trivial connected m-PF graph. The m-polar fuzzy edge
connectivity of G is denoted by κ′(G) = (P1 ◦ κ

′(G), P2 ◦ κ
′(G), . . . , Pm ◦ κ

′(G)) in which each j-th
component (1 ≤ j ≤ m) is defined as P j ◦ κ

′(G) = min{P j ◦ S ′W(Ẽi); i ∈ ω}, i.e., it is the minimum of
strong weights of m-PF edge cuts of G.

Example 3.5. Consider 3-PF graph G as given in Figure 4. It is already observed that x1x2, x2x3 and
x3x4 are strong m-PF edges. Consider two vertices x2 and x4. Here, CONNG(x2, x4) = (0.2, 0.5, 0.6).
Then m-PF edge cuts containing one edge with their strong weights are Ẽ1 = {x2x3}

S ′W(Ẽ1) = (0.2, 0.5, 0.6) and Ẽ2 = {x3x4} S ′W(Ẽ2) = (0.3, 0.5, 0.7). Also, any two or three strong m-PF
edges of G can be considered as m-PF edge cut with strong weight greater than Ẽi (i = 1, 2).
Therefore, κ′(G) = (0.2, 0.5, 0.6).

We now present the m-PF analogue of Whitney’s renowned result on vertex connectivity, edge
connectivity and minimum degree of a graph.

Theorem 3.6. Let G = (µ, σ) be a non-trivial connected m-PF graph. Then for each 1 ≤ j ≤ m,
P j ◦ κ(G) ≤ P j ◦ κ

′(G) ≤ P j ◦ δS (G).

Proof. Let G = (µ, σ) be a non-trivial connected m-PF graph. To show that P j ◦ κ
′(G) ≤ P j ◦ δS (G)

for each 1 ≤ j ≤ m. Suppose that x be a vertex of G with P j ◦ dS (x) = P j ◦ δS (G) for each 1 ≤ j ≤ m.
Also, let F be the collection of strong m-PF edges which are incident at vertex x. Then

Case i. If the strong m-PF edges in F are the only edges incident at x, then the removal of F from
G results a disconnected m-PF graph.

Case ii. If not, let xy be an m-PF edge incident at vertex x such that it is weak. Then y is a vertex
different from end vertices of strong m-PF edges in F. Since, xy is not strong. This implies that for
each 1 ≤ j ≤ m, P j ◦ σ(xy) < P j ◦ CONNG(x, y). This implies that there exists at least one strongest
m-PF path (say P) between x and y in G such that it passes through one of the strong m-PF edge at
x. Therefore, the removal of F from G must reduces the strength of connectedness between x and y.
Hence, in both cases, F is an m-PF edge cut with strong weight δS (G), i.e., P j ◦ S ′W(F) = P j ◦ δS (G)
for each 1 ≤ j ≤ m. This shows that P j ◦ κ

′(G) ≤ P j ◦ δS (G) for each 1 ≤ j ≤ m.
Now, to show first inequality P j ◦ κ(G) ≤ P j ◦ κ

′(G) for each 1 ≤ j ≤ m. Assume that F be an m-PF
edge cut with strong weight S ′W(F) = κ′. Then following are the two cases:

Case i. One end vertex of all strong m-PF edges in F is same (say x). Then F = {xxk; k =
1, 2, . . . , n}. Let X̃ = {x1, x2, . . . , xn}. Obviously, X̃ is an m-PF vertex cut. Now, inf

y∈X
{P j ◦ σ(xky)} ≤

P j ◦ σ(xxk) for each 1 ≤ j ≤ m. Therefore,
n∑

k=1
[inf

y∈X
{P j ◦ σ(xky)}] ≤

n∑
k=1

P j ◦ σ(xxk) for each 1 ≤ j ≤ m.

Thus, P j ◦ κ(G) ≤ P j ◦ κ
′(G) for each 1 ≤ j ≤ m.
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Case ii. There is no common end vertex of strong m-PF edges in F. Let F = {xkyk; k = 1, 2, . . . , n}.
Let X̃1 = {x1, x2, . . . , xn} and X̃2 = {y1, y2, . . . , yk}. By assumption, we have for each 1 ≤ j ≤ m,
P j ◦ CONNG\F(u, v) < P j ◦ CONNG(u, v) for some pair of vertices u, v ∈ X such that at least one of
them is different from both xk and yk (k = 1, 2, . . . , n). Then either u and v does not belong to X̃1

⋃
X̃2

or one of them belongs to X̃1
⋃

X̃2.
(a) When u, v < X̃1

⋃
X̃2. Let X̃ = X̃1 or X̃ = X̃2. Then obviously X̃ is an m-PF vertex cut as its

removal from G reduce the strength of connectedness between u and v. Thus, for each 1 ≤ j ≤ m,
P j ◦ κ(G) ≤ P j ◦ S W(X̃) ≤ P j ◦ S ′W(F) = P j ◦ κ

′(G).
(b) When u or v ∈ X̃1

⋃
X̃2. Suppose that u ∈ X̃1

⋃
X̃2 with out the loss of generality. Also, let

u ∈ X̃1 and let X̃ = X̃2. Obviously, X̃ is an m-PF vertex cut as its removal from G reduce the strength
of connectedness between u and v. Thus, for each 1 ≤ j ≤ m, P j ◦ κ(G) ≤ P j ◦ S W(X̃) ≤ P j ◦ S ′W(F) =
P j ◦ κ

′(G).
Hence, for each 1 ≤ j ≤ m, P j ◦ κ(G) ≤ P j ◦ κ

′(G) ≤ P j ◦ δS (G) in all cases. This completes the
proof. □

Figure 5. 3-PF graph.

Table 7. 3-PF vertex set.

µ x1 x2 x3 x4

P1 ◦ µ 0.5 1.0 0.9 0.8
P2 ◦ µ 0.3 0.8 1.0 0.8
P3 ◦ µ 0.7 1.0 1.0 0.9

Table 8. 3-PF edge set.

σ x1x2 x1x3 x1x4 x2x3 x3x4

P1 ◦ σ 0.2 0.4 0.4 0.9 0.8
P2 ◦ σ 0.1 0.3 0.3 0.8 0.7
P3 ◦ σ 0.3 0.5 0.5 1.0 0.9

Example 3.6. Let X = {x1, x2, x3, x4} be the set of vertices and E = {x1x2, x1x3, x1x4, x2x3, x3x4} be
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the set of edges. Let µ be a 3-PF set on X (Table 7) and σ be a 3-PF relation on X (Table 8). The
related 3-PF graph G = (µ, σ) is given in Figure 5. The SDs of vertices are DS (x1) = (1.0, 0.7, 1.1),
DS (x2) = (1.5, 0.9, 1.3), DS (x3) = (2.1, 1.8, 2.4), DS (x4) = (1.2, 1.0, 1.4). The SDmin of G is δS (G) =
(1.0, 0.7, 1.1). Here, κ(G) = (0.4, 0.3, 0.5) and κ′(G) = (1.2, 1.0, 1.4). It is easy to verify for each
1 ≤ j ≤ m that P j ◦ κ(G) ≤ P j ◦ κ

′(G) ≤ P j ◦ δS (G).

Theorem 3.7. Let G = (µ, σ) be an complete m-PF graph. Then for each 1 ≤ j ≤ m, P j ◦ κ(G) =
P j ◦ δS (G) = P j ◦ κ

′(G).

Proof. Let G = (µ, σ) be an complete m-PF graph with |X| = n. Then the removal of any set (say
F) containing n − 2 edges from G will reduce the strength of connectedness between the pairs of end
vertices of edges in F only. (Note: Since G is an complete m-PF graph, all of its edges are strong m-PF
edges. Therefore, the removal of any edge will not reduce the strength of connectedness of vertices
other than its end vertices.) Now, any set containing n − 1 edges incident at a vertex x in G is an m-PF
edge cut with P j ◦ S ′W(G) = P j ◦ dS (x) for each 1 ≤ j ≤ m. Let y be a vertex in G such that for each
1 ≤ j ≤ m, P j ◦ dS (y) = P j ◦ δS (G). Obviously the set of edges incident at vertex y is an m-PF edge cut
with minimum strong weight. Therefore, for each 1 ≤ j ≤ m, P j ◦ κ

′(G) = P j ◦ dS (y) = P j ◦ δS (G).
Next, we will show that for each 1 ≤ j ≤ m, P j◦κ(G) = P j◦δS (G). Suppose on contrary that equality

does not hold, i.e., P j ◦ κ(G) , P j ◦ δS (G) for some j. According to Theorem 3.6, for each 1 ≤ j ≤ m,
P j ◦ κ(G) ≤ P j ◦ δS (G) ≤ P j ◦ κ

′(G). This implies that P j ◦ κ(G) ≤ P j ◦ δS (G) for each 1 ≤ j ≤ m.
However, the removal of i vertices 1 ≤ i ≤ n − 2 again results in a non-trivial complete m-PF graph,
any m-PF vertex cut should contain at least n − 1 vertices. Let A1 be an m-PF vertex cut among such
m-PF vertex cuts such that A1 does not contain a vertex y having P j ◦ dS (y) = P j ◦ δS (G). As the edges
incident at vertices of A1 with one of its end at y are the set of edges with minimum weights at vertices
of A1, i.e., A1 will have the minimum strong weight. Therefore, P j ◦ κ(G) = P j ◦S (A1) < P j ◦δS (G) for
each 1 ≤ j ≤ m. Suppose that F1 contains all edges incident at vertex y, then F1 is an m-PF edge cut
such that for each 1 ≤ j ≤ m, P j ◦ S ′(F1) = P j ◦ S (A1) < P j ◦ δS (G). This contradicts the fact that for
each 1 ≤ j ≤ m, P j ◦ κ

′(G) = P j ◦δS (G). Thus, for each 1 ≤ j ≤ m, P j ◦ κ(G) = P j ◦δS (G) = P j ◦ κ
′(G).

Hence, the theorem is completed. □

The converse of Theorem 3.7 does not hold in general, that is, if for each 1 ≤ j ≤ m,
P j ◦ κ(G) = P j ◦ κ

′(G) = P j ◦ δS (G) then it is not necessary that the considered G is an complete m-PF
graph. For illustration, consider the following 3-PF graph G (Figure 6). The SDs of vertices are
DS (x1) = (0.2, 0.1, 0.3), DS (x2) = (0.4, 0.2, 0.6), DS (x3) = (0.2, 0.1, 0.3). The SDmin of G is
δS (G) = (0.2, 0.1, 0.3). Here, κ(G) = (0.2, 0.1, 0.3) = κ′(G) = δS (G). However, it is clear that G is not
complete m-PF graph.
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Figure 6. 3-PF graph.

Note 3.2. Note that Theorem 3.6 does not hold in general. It is valid in case of particular m-PF graphs
having same relationship between all components of MVs of edges or the MVs of edges are comparable
with each other.

Definition 3.12. Let G = (µ, σ) be a connected m-PF graph. Also, let r = (r1, r2, . . . , rm) such that
r j ∈ (0,∞) ( j = 1, 2, . . . ,m). Then G is said to be r-connected if P j ◦ κ(G) ≥ r j for each 1 ≤ j ≤ m. It
is said to be r-edge connected if P j ◦ κ

′(G) ≥ r j for each 1 ≤ j ≤ m.

Table 9. 3-PF edge set.

σ x1x2 x1x4 x1x5 x2x3 x2x5 x3x4 x3x5 x4x5

P1 ◦ σ 0.8 0.1 0.1 0.1 0.1 0.8 0.5 0.1
P2 ◦ σ 0.9 0.2 0.2 0.2 0.2 0.9 0.6 0.2
P3 ◦ σ 1.0 0.3 0.3 0.3 0.3 1.0 0.7 0.3

Figure 7. 3-PF graph.

Example 3.7. Let X = {x1, x2, x3, x4, x5} be the set of vertices and
E = {x1x2, x1x4, x1x5, x2x3, x3x5, x3x4, x3x5, x4x5} be the set of edges. Let µ(xi) = (1, 1, 1) for
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i = 1, 2, . . . , 5. Let σ be a 3-PF relation on X (Table 9). The related 3-PF graph G = (µ, σ) is given in
Figure 7. The m-PF vertex cuts with their strong weights are: X̃1 = {x3} S W(X̃1) = (0.1, 0.2, 0.3),
X̃2 = {x3, x4} S W(X̃2) = (0.2, 0.4, 0.6), X̃3 = {x2, x3} S W(X̃3) = (0.2, 0.4, 0.6), X̃4 = {x1, x2, x3}

S W(X̃4) = (0.3, 0.6, 0.9) and X̃5 = {x1, x2, x3, x5} S W(X̃5) = (0.4, 0.8, 1.2). Here, κ(G) = (0.1, 0.2, 0.3).
Thus, G is r-connected such that r1 ∈ (0, 0.1], r2 ∈ (0, 0.2] and r3 ∈ (0, 0.3]. The m-PF edge cuts with
their strong weights are: Ẽ1 = {x3x4} S ′W(Ẽ1) = (0.8, 0.9, 1.0), Ẽ2 = {x4x5} S ′W(Ẽ2) = (0.5, 0.6, 0.7),
Ẽ3 = {x1x2} S ′W(Ẽ3) = (0.8, 0.9, 1.0). The m-PF edge cuts other than Ẽ1, Ẽ2 and Ẽ3 will have strong
weights greater than (0.8, 0.9, 1.0). Therefore, the minimum strong weight among all m-PF edge cuts
is κ′(G) = (0.5, 0.6, 0.7). Hence, G is r-edge connected such that r1 ∈ (0, 0.5], r2 ∈ (0, 0.6] and
r3 ∈ (0, 0.7].

We now discuss some results related to r-connected m-PF graphs and r-edge connected m-PF graphs
as follows:

Theorem 3.8. Let G = (µ, σ) be a connected m-PF graph and x, y ∈ X. Also, let t be the number of
internally disjoint strongest m-PF paths between x and y in G. Then G is r-connected m-PF graph if
and only if for each 1 ≤ j ≤ m, t[P j ◦CONNG(x, y)] ≥ r j.

Proof. Let G = (µ, σ) be a connected m-PF graph and x, y ∈ X. Also, let t be the number of internally
disjoint strongest m-PF paths between x and y in G. Suppose that G is r-connected m-PF graph.
By definition, P j ◦ κ(G) ≥ r j for each 1 ≤ j ≤ m. We have to show that for each 1 ≤ j ≤ m,
t[P j ◦ CONNG(x, y)] ≥ r j. Suppose on contrary that this relation does not exist for some pair of
vertices x and y then for each 1 ≤ j ≤ m, t[P j ◦CONNG(x, y)] < r j. Let X̃ be a minimal x− y SRSVs in
G with minimum strong weight S W(X̃). Since there are t internally disjoint [x, y]-m-PF paths in G. By
Theorem 4.5 [42], |X̃| = t. Let P1, P2, . . ., Pt be the internally disjoint [x, y]-m-PF paths in G. Then by
Theorem 4.3 [42], Pi (i = 1, 2, . . . , t) must contain at least one vertex from X̃. Also, Pi (i = 1, 2, . . . , t)
are internally disjoint so there is no common vertex in them except x and y. This implies that each Pi

(i = 1, 2, . . . , t) contains exactly one vertex (say yi) from X̃. Also, if P is a strongest is a strongest m-PF
path different from Pi (i = 1, 2, . . . , t) then P must have common vertex with some Pi (i = 1, 2, . . . , t)
from X̃. This implies that X̃ is m-PF vertex cut in G. Since X̃ is of minimum strong weight. Therefore,
at least one of the edges incident at yi in Pi (i = 1, 2, . . . , t) P j ◦ σ(xiyi) = P j ◦ CONNG(x, y) for each
1 ≤ j ≤ m. This implies that S W(X̃) = |X̃|[P j ◦CONNG(x, y)] = t[P j ◦CONNG(x, y)] < r j. This means
that P j ◦ κ(G) < r j for each 1 ≤ j ≤ m. This is contradiction to our supposition that for each 1 ≤ j ≤ m,
P j ◦ κ(G) ≥ r j. Hence, for each 1 ≤ j ≤ m, t[P j ◦CONNG(x, y)] ≥ r j.

Next, for converse of the theorem, suppose that t[P j ◦ CONNG(x, y)] ≥ r j for each 1 ≤ j ≤ m. We
have to show that G is r-connected m-PF graph. For this we have to show that for each 1 ≤ j ≤ m,
P j ◦ κ(G) ≥ r j. Suppose on contrary that for each 1 ≤ j ≤ m, P j ◦ κ(G) < r j. Then there exists
an m-PF vertex cut X̃ such that P j ◦ S W(X̃) < r j for each 1 ≤ j ≤ m. Also, P j ◦ CONNG\X̃(x, y) <
P j ◦ CONNG(x, y) for each 1 ≤ j ≤ m and for some x, y ∈ X. This implies that X̃ is x − y SRSVs
in G. Then by Theorem 4.5 [42], t = number of vertices in minimal x − y SRSVs ≤ |X̃|. Therefore,
t[P j ◦ CONNG(x, y)] ≤ |X̃|[P j ◦ CONNG(x, y)] ≤ P j ◦ S W(X̃) < r j for each 1 ≤ j ≤ m. This completes
the prove. □
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For illustration of Theorem 3.8, consider the following 3-PF graph G as shown in Figure 8. Here,
the m-PF vertex cuts with their strong weights are: X̃1 = {x1, x2} S W(X̃1) = (0.2, 0.6, 1.0), X̃2 = {x1, x3}

S W(X̃2) = (0.2, 0.6, 1.0) and X̃3 = {x2, x3} S W(X̃3) = (0.2, 0.6, 1.0). Hence, κ(G) = (0.2, 0.6, 1.0).
Therefore, G is r-connected m-PF graph such that r1 ∈ (0, 0.2], r2 ∈ (0, 0.6] and r3 ∈ (0, 1.0]. Now,
consider two vertices x1 and x3 in G. There are two internally disjoint m-PF paths between them (thus
t = 2), namely P1 : x1 − x3 and P2 : x1 − x2 − x3. Both these paths are strongest m-PF paths with equal
strengths (0.1, 0.3, 0.5) = CONNG(x1, x3) . It is easy to verify for each j-th component (1 ≤ j ≤ m)
that t[P j ◦ CONNG(x1, x3)] = P j ◦ κ(G) ≥ r j where r1 ∈ (0, 0.2], r1 ∈ (0, 0.6] and r1 ∈ (0, 1.0]. It can
also be verified for remaining pairs of vertices in G. Hence, the result holds.

Figure 8. 3-PF graph.

Theorem 3.9. Let G = (µ, σ) be a connected m-PF graph and x, y ∈ X. Also, let t be the number of
edge-disjoint strongest m-PF paths between x and y in G. Then G is r-edge connected m-PF graph if
and only if for each 1 ≤ j ≤ m, t[P j ◦CONNG(x, y)] ≥ r j.

Proof. Let G = (µ, σ) be a connected m-PF graph and x, y ∈ X. Also, let t be the number of edge-
disjoint strongest m-PF paths between x and y in G. Suppose that G is r-connected m-PF graph.
By definition, P j ◦ κ

′(G) ≥ r j for each 1 ≤ j ≤ m. We have to show that for each 1 ≤ j ≤ m,
t[P j◦CONNG(x, y)] ≥ r j. Suppose on contrary that this relation does not exist for some pair of vertices
x and y then for each 1 ≤ j ≤ m, t[P j ◦CONNG(x, y)] < r j. Let Ẽ be a minimal x − y SRSEs in G with
minimum strong weight S ′W(Ẽ). Since there are t edge-disjoint [x, y]-m-PF paths in G. By Theorem 4.5
[42], |Ẽ| = t. Let P1, P2, . . ., Pt be the edge-disjoint [x, y]-m-PF paths in G. Then by Theorem 4.4 [42],
Pi (i = 1, 2, . . . , t) must contain at least one vertex from Ẽ. Also, Pi (i = 1, 2, . . . , t) are edge-disjoint so
there is no common edge in them. This implies that each Pi (i = 1, 2, . . . , t) contains exactly one edge
from Ẽ. Also, if P is a strongest m-PF path different from Pi (i = 1, 2, . . . , t) then P must have common
edge with some Pi (i = 1, 2, . . . , t) from Ẽ. This implies that Ẽ is m-PF edge cut in G. Since Ẽ is of
minimum strong weight. This implies that S W(Ẽ) = |Ẽ|[P j◦CONNG(x, y)] = t[P j◦CONNG(x, y)] < r j.
This means that P j ◦ κ

′(G) < r j for each 1 ≤ j ≤ m. This is contradiction to our supposition that for
each 1 ≤ j ≤ m, P j ◦ κ

′(G) ≥ r j. Hence, for each 1 ≤ j ≤ m, t[P j ◦CONNG(x, y)] ≥ r j.
Next, for converse of the theorem, suppose that t[P j ◦ CONNG(x, y)] ≥ r j for each 1 ≤ j ≤ m. We
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have to show that G is r-edge connected m-PF graph. For this we have to show that for each 1 ≤ j ≤ m,
P j ◦ κ

′(G) ≥ r j. Suppose on contrary that for each 1 ≤ j ≤ m, P j ◦ κ
′(G) < r j. Then there exists

an m-PF edge cut Ẽ such that P j ◦ S ′W(Ẽ) < r j for each 1 ≤ j ≤ m. Also, P j ◦ CONNG\Ẽ(x, y) <
P j ◦ CONNG(x, y) for each 1 ≤ j ≤ m and for some x, y ∈ X. This implies that Ẽ is x − y SRSEs
in G. Then by Theorem 4.5 [42], t = number of edges in minimal x − y SRSEs ≤ |Ẽ|. Therefore,
t[P j ◦ CONNG(x, y)] ≤ |Ẽ|P j ◦ CONNG(x, y) ≤ P j ◦ S ′W(Ẽ) < r j for each 1 ≤ j ≤ m. This completes
the prove. □

4. Application of m-PF graph clustering

In this section we will analyze m-PF graphs from connectedness point of view. The related results
will be applied to clustering analysis.

Definition 4.1. Let G = (µ, σ) be a connected m-PF graph. A vertex x ∈ X is said to be ϵA-reachable
from another vertex y if

∑m
j=1 P j◦CONNG(x,y)

m ≥ ϵA for some ϵA ∈ (0, 1].

Table 10. 3-PF edge set.

σ x1x2 x1x4 x1x5 x2x3 x2x4 x3x4 x4x5

P1 ◦ σ 0.3 0.4 0.4 0.0 0.5 0.1 0.5
P2 ◦ σ 0.4 0.5 0.5 0.1 0.6 0.2 0.6
P3 ◦ σ 0.5 0.6 0.6 0.2 0.7 0.3 0.7

Figure 9. 3-PF graph.

Example 4.1. Let X = {x1, x2, x3, x4} be the set of vertices and E = {x1x2, x1x3, x1x4, x2x3, x2x4, x3x4}

be the set of edges. Let µ(x1) = (1, 1, 1) = µ(x2) = µ(x3) = µ(x4) = µ(x5) be a 3-PF set on X
and σ be a 3-PF relation on X (Table 10). The related 3-PF graph G = (µ, σ) is given in Figure 9.
Consider two vertices x1 and x3. The m-PF paths from x1 to x3 with their strengths are P1 : x1 − x2 − x3

S (P1) = (0.0, 0.1, 0.2), P2 : x1 − x4 − x3 S (P2) = (0.1, 0.2, 0.3), P3 : x1 − x4 − x2 − x3 S (P3) =
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(0.0, 0.1, 0.2), P4 : x1 − x5 − x4 − x3 S (P4) = (0.1, 0.2, 0.3) and P5 : x1 − x5 − x4 − x2 − x3 S (P5) =
(0.0, 0.1, 0.2). The strength of connectedness between x1 and x3 is CONNG(x1, x3) = (0.1, 0.2, 0.3).

Here,
∑3

j=1 P j◦CONNG(x1,x3)

3 = 0.1+0.2+0.3
3 = 0.6

3 = 0.2. Thus, x1 is ϵA-reachable from x3 for ϵA = 0.2.
This means that similarity between x1 and x3 is at most 20%. Similarly, we can check ϵA-reachability
between other pairs of vertices of G.

Definition 4.2. Let G = (µ, σ) be a connected m-PF graph. It is said to be ϵA-connected m-PF graph if
and only if all pairs of vertices are mutually ϵA-reachable from each other in G.

Remark 4.1. If any two vertices in G are mutually ϵA-reachable then it is not necessary that G is itself
ϵA-connected m-PF graph.

Remark 4.2. If G is ϵA-connected m-PF graph then any two vertices in G are necessarily mutually
ϵA-reachable.

Remark 4.3. If G is not ϵA-connected m-PF graph but some pairs of vertices in G are mutually ϵA-
reachable then an m-PF subgraph G̃ containing all mutually ϵA-reachable pairs of vertices is said to be
ϵA-connected m-PF subgraph of G.

Definition 4.3. Let G = (µ, σ) be a connected m-PF graph such that it is not ϵA-connected m-PF graph.
Then a maximal ϵA-connected m-PF subgraph G̃ of G is defined to be ϵA-connected m-PF component
such that it is not properly contained in any other maximal ϵA-connected m-PF subgraph of G.

We now use Definition 4.3 of ϵA-connected m-PF components to define ϵA-clusters of vertices of G
in Definition 4.4.

Definition 4.4. Let G = (µ, σ) be a connected m-PF graph. A collection CϵA of subsets of X is said to
be ϵA-cluster if m-PF subgraphs of G induced by members of CϵA are ϵA-connected m-PF components
of G.

4.1. Algorithm for m-PF graph clustering

To construct ϵA-clusters of vertices of G, we will use the following algorithm:

Step 1. Consider a connected m-PF graph G = (µ, σ) with |X| = n and E be the set of edges of G.

Step 2. Compute matrix R(G) = [rik]n×n such that its main diagonal entries xixk for which i = k are
(1, 1, . . . , 1), its ik-th entries for which i , k and xixk ∈ E are MVs of edges xixk, its ik-th entries
for which i , k and xixk < E are (0, 0, . . . , 0). Mathematically, entries of R(G) are given as
below:

rik =


(1, 1, . . . , 1) if i = k

(P1 ◦ σ(xixk), P2 ◦ σ(xixk), . . . , Pm ◦ σ(xixk)) if i , k, xixk ∈ E

(0, 0, . . . , 0) if i , k, xixk < E.

We call R(G) as a direct reachable matrix of G.
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Step 3. Compute matrix C(G) = [cik]n×n such that its main diagonal entries xixk for which i = k are
(1, 1, . . . , 1), its ik-th entries for which i , k represent the strength of connectedness between
each pair of distinct vertices in G. Mathematically, entries of C(G) are given as below:

cik =

(1, 1, . . . , 1) if i = k

(P1 ◦CONNG(xi, xk), P2 ◦CONNG(xi, xk), . . . , Pm ◦CONNG(xi, xk)) if i , k.

We call C(G) as matrix of strength of connectedness between pairs of vertices of G.

Step 4. Compute matrix CA(G) = [cAik]n×n such that its main diagonal entries xixk for which i = k are
1, its ik-th entries for which i , k represent the average of all j components of strength of
connectedness between each pair of distinct vertices in G. Mathematically, entries of CA(G) are
given as below:

cAik =

1 if i = k∑m
j=1 P j◦CONNG(xi,xk)

m if i , k.

We call CA(G) as matrix of average strength of connectedness between pairs of vertices of G.

Step 5. Construct the collection CϵA containing the subsets Ci ⊆ X such that all vertices in Ci are
mutually ϵA-reachable from each other, i.e.,

CϵA =
{

Ci ⊆ X :

∑m
j=1 P j ◦CONNG(xi, xk)

m
≥ ϵA, ϵA ∈ (0, 1], xi, xk ∈ Ci

}
.

Then each subset Ci of X in CϵA is ϵA-cluster of vertices of G.

Let us consider the following example to obtain ϵA-clusters of vertices of G by applying the previous
algorithm.

Example 4.2. Consider an 3-PF graph G = (µ, σ) as shown in Figure 10.

Figure 10. 3-PF graph.
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The direct reachable matrix R(G) of G is given below:
(1.0, 1.0, 1.0) (0.3, 0.4, 0.6) (0.0, 0.0, 0.0) (0.4, 0.5, 0.7) (0.4, 0.5, 0.7)
(0.3, 0.4, 0.6) (1.0, 1.0, 1.0) (0.0, 0.1, 0.3) (0.5, 0.6, 0.8) (0.0, 0.0, 0.0)
(0.0, 0.0, 0.0) (0.0, 0.1, 0.3) (1.0, 1.0, 1.0) (0.1, 0.2, 0.4) (0.0, 0.0, 0.0)
(0.4, 0.5, 0.7) (0.5, 0.6, 0.8) (0.1, 0.2, 0.4) (1.0, 1.0, 1.0) (0.5, 0.6, 0.8)
(0.4, 0.5, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.5, 0.6, 0.8) (1.0, 1.0, 1.0)


.

The matrix C(G) of strength of connectedness between pairs of vertices of G is calculated as below:
(1.0, 1.0, 1.0) (0.4, 0.5, 0.7) (0.1, 0.2, 0.4) (0.4, 0.5, 0.7) (0.4, 0.5, 0.7)
(0.4, 0.5, 0.7) (1.0, 1.0, 1.0) (0.1, 0.2, 0.4) (0.5, 0.6, 0.8) (0.5, 0.6, 0.8)
(0.1, 0.2, 0.4) (0.1, 0.2, 0.4) (1.0, 1.0, 1.0) (0.1, 0.2, 0.4) (0.1, 0.2, 0.4)
(0.4, 0.5, 0.7) (0.5, 0.6, 0.8) (0.1, 0.2, 0.4) (1.0, 1.0, 1.0) (0.5, 0.6, 0.8)
(0.4, 0.5, 0.7) (0.5, 0.6, 0.8) (0.1, 0.2, 0.4) (0.5, 0.6, 0.8) (1.0, 1.0, 1.0)


.

The matrix CA(G) of average strength of connectedness between pairs of vertices of G is calculated
as below: 

1.00 0.53 0.23 0.53 0.53
0.53 1.00 0.23 0.63 0.63
0.23 0.23 1.00 0.23 0.23
0.53 0.63 0.23 1.00 0.63
0.53 0.63 0.23 0.63 1.00


.

The different ϵA-clusters of vertices of G are as follows:

C1.00 = {x1}, {x2}, {x3}, {x4}, {x5},

C0.63 = {x1}, {x2, x4, x5}, {x3},

C0.53 = {x1, x2, x4, x5}, {x3},

C0.23 = {x1, x2, x3, x4, x5}.

4.2. Application

In daily life, we are using different products of different companies. We conducted a survey on
consumer decision making process and how consumers are interested in evaluation of alternatives
before buying a product. The survey data collection contains the information of 6 companies. Each
company aim to facilitate their consumers with best quality of products and services. They have to
make sure that prices and policies should be change at right time. This task is possible by planning
efficient advertisements for the sale of products. The consumers will take the decision to purchase
product from a particular company after considering following parameters, including price of the
product, quality of the product and services of the company. All these parameters related to each
company according to the consumers are uncertain in nature with respect to time period. Therefore,
fuzziness can be added for representing each parameter related to each company. Let
X = {c1, c2, c3, c4, c5, c6} be the set of six companies (vertices) who offered different prices, qualities
and services to the consumers. For each company from set X, the consumers can assign a MV in (0, 1]
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corresponding to their parameters, including price of product, quality of the product and services of
the company. The MVs corresponding to the parameters of each company are given in Table 11. The
directed edges between two companies represent their common policies related to price, quality and
services offering to the consumers. The MVs of directed edges are given in Table 12. The
corresponding directed 3-PF graph G = (µ,−→σ) is shown in Figure 11, where µ is 3-PF set of
companies with respect to their price, quality and services and −→σ is a 3-PF relation of common
policies of companies.

Table 11. 3-PF vertex set.

µ c1 c2 c3 c4 c5 c6

P1 ◦ µ 0.7 0.6 0.7 0.5 0.8 0.7
P2 ◦ µ 0.9 0.8 1.0 0.9 1.0 0.9
P3 ◦ µ 0.8 0.7 0.9 0.7 0.9 0.7

Table 12. 3-PF edge set.
−→σ −−→c1c3

−−→c1c5
−−→c2c1

−−→c2c4
−−→c3c2

−−→c3c6
−−→c4c3

−−→c4c6
−−→c5c3

−−→c5c6

P1 ◦
−→σ 0.5 0.5 0.5 0.3 0.6 0.4 0.4 0.5 0.7 0.3

P2 ◦
−→σ 0.7 0.7 0.7 0.5 0.8 0.6 0.6 0.7 0.9 0.5

P3 ◦
−→σ 0.6 0.6 0.6 0.4 0.7 0.5 0.5 0.6 0.8 0.4

Figure 11. 3-PF graph.

The direct reachable matrix R(
−→
G) of

−→
G is given below:
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(1.0, 1.0, 1.0) (0.0, 0.0, 0.0) (0.5, 0.7, 0.6) (0.0, 0.0, 0.0) (0.5, 0.7, 0.6) (0.0, 0.0, 0.0)
(0.5, 0.7, 0.6) (1.0, 1.0, 1.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.4) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
(0.0, 0.0, 0.0) (0.6, 0.8, 0.7) (1.0, 1.0, 1.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.4, 0.6, 0.5)
(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.4, 0.6, 0.5) (1.0, 1.0, 1.0) (0.0, 0.0, 0.0) (0.5, 0.7, 0.6)
(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.7, 0.9, 0.8) (0.0, 0.0, 0.0) (1.0, 1.0, 1.0) (0.3, 0.5, 0.4)
(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (1.0, 1.0, 1.0)


.

The matrix C(G) of strength of connectedness between pairs of vertices of G is calculated as below:

(1.0, 1.0, 1.0) (0.5, 0.7, 0.6) (0.5, 0.7, 0.6) (0.3, 0.5, 0.4) (0.5, 0.7, 0.6) (0.4, 0.6, 0.5)
(0.5, 0.7, 0.6) (1.0, 1.0, 1.0) (0.5, 0.7, 0.6) (0.3, 0.5, 0.4) (0.5, 0.7, 0.6) (0.4, 0.6, 0.5)
(0.5, 0.7, 0.6) (0.6, 0.8, 0.7) (1.0, 1.0, 1.0) (0.3, 0.5, 0.4) (0.5, 0.7, 0.6) (0.3, 0.5, 0.4)
(0.4, 0.6, 0.5) (0.4, 0.6, 0.5) (0.4, 0.6, 0.5) (1.0, 1.0, 1.0) (0.4, 0.6, 0.5) (0.5, 0.7, 0.6)
(0.5, 0.7, 0.6) (0.6, 0.8, 0.7) (0.7, 0.9, 0.8) (0.3, 0.5, 0.4) (1.0, 1.0, 1.0) (0.4, 0.6, 0.5)
(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (1.0, 1.0, 1.0)


.

The matrix CA(G) of average strength of connectedness between pairs of vertices of G is calculated
as below: 

1.00 0.60 0.60 0.40 0.60 0.50
0.60 1.00 0.60 0.40 0.60 0.50
0.60 0.70 1.00 0.40 0.60 0.40
0.50 0.50 0.50 1.00 0.50 0.60
0.60 0.70 0.80 0.40 1.00 0.50
0.00 0.00 0.00 0.00 0.00 1.00


.

The different ϵA-clusters of vertices of
−→
G are as follows:

C1.00 = {c1}, {c2}, {c3}, {c4}, {c5}, {c6},

C0.80 = {c1}, {c2}, {c3}, {c4}, {c5}, {c6},

C0.70 = {c1}, {c2}, {c3}, {c4}, {c5}, {c6},

C0.60 = {c1, c2, c3, c5}, {c4}, {c6},

C0.50 = {c1, c2, c3, c5}, {c4}, {c6},

C0.40 = {c1, c2, c3, c4, c5}, {c6}.

From the above clusters, it is observed that the policies of companies c1, c2, c3, c5 are almost same
while policies of company c4 and c6 are totally different.

We now present the general procedure of our method which is used in our application from the
algorithm given below.

Algorithm 1. Finding ϵA-clusters for directed m-PF graph

Step 1. Input the set X of all n vertices xi(companies).
Step 2. Consider all j parameters according to which each company should assign a MV
consisting of j components in which each j-th component (1 ≤ j ≤ m) of MV should be a real
number in (0, 1].
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Step 3. Input m-PF set µ on X.
Step 4. Input the set

−→
E of directed edges from one vertex to another vertex.

Step 5. Calculate the MVs of all directed edges using the following formula

P j ◦
−→σ(−−→xixk) ≤ inf{µ(xi), µ(xk)},

for all −−→xixk ∈
−→
E and 1 ≤ j ≤ m. These directed edges represent common policies of one vertex

towards another vertex with respect to all considered parameters.
Step 6. Input m-PF relation −→σ on X.
Step 7. Compute the connected m-PF graph

−→
G = (µ,−→σ).

Step 8. Compute the direct reachable matrix R(
−→
G) = [rik]n×n of

−→
G such that its main diagonal

entries
rik for i = k are (1, 1, . . . , 1)(m times) and its non-diagonal entries rik for i , k are either (P1 ◦
−→σ(−−→xixk),
P2 ◦
−→σ(−−→xixk), . . . , Pm ◦

−→σ(−−→xixk)) if −−→xixk ∈
−→
E or (0, 0, . . . , 0)(m times) if −−→xixk <

−→
E.

Step 9. Compute the matrix C(
−→
G) = [cik]n×n of strength of connectedness between pairs of vertices

of
−→
G such that its main diagonal entries cik for i = k are (1, 1, . . . , 1)(m times) and its non-diagonal
entries
cik for i , k represent the strength of connectedness between pair of vertices of

−→
G, that is, (P1◦CON

NG(xi, xk), P2 ◦CONNG(xi, xk), . . . , Pm ◦CONNG(xi, xk)), where xi, xk ∈ X.
Step 10. Compute the matrix CA(

−→
G) = [cAik]n×n of average strength of connectedness between

pairs of
vertices of

−→
G such that its main diagonal entries cAik for i = k are 1 and its non-diagonal entries

cAik for
i , k represent the average strength of connectedness between pairs of vertices of

−→
G, that is,∑m

j=1 P j◦CONNG(xi,xk)

m , where xi, xk ∈ X.

Step 11. Compute ϵA-clusters of vertices of
−→
G by constructing the collection CϵA containing the

subsets
Ci ⊆ X such that all vertices in Ci are mutually ϵA-reachable from each other, that is,

CϵA = {Ci ⊆ X :

∑m
j=1 P j ◦CONNG(xi, xk)

m
≥ ϵA&

∑m
j=1 P j ◦CONNG(xk, xi)

m
≥ ϵA, ϵA ∈ (0, 1], xi, xk ∈ Ci}.

5. Comparative analysis and discussion

In this section, we discuss the already existing models to check the validity and superiority of our
proposed model. The aim of clustering is to divide the observations into groups with a high degree of
“association” among members of the same group and a low degree of “association” among members of
the different groups. Clustering is nothing more than partitioning a graph based on qualitative aspects
of the data in graph-theoretical aspects. The first two articles on FG theory by Rosenfeld [18] and
Yeh and Bang [17] were intended to present FG clustering techniques. Rosenfeld [18] proposed FG
clustering based on distance, while Yeh and Bang [17] introduced connectivity parameters in FGs and
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proposed FG clustering based on connectivity. To extract FG clusters, Yeh and Bang [17] introduced
a series of processes such as single linkage, k-linkage, k-edge connectivity, k-vertex connectivity, and
complete linkage.

a. Arc connectivity based clustering

In reference [4], Mathew and Sunitha proposed fuzzy arc connectivity based clustering techniques.
This approach is demonstrated with a cancer detection problem, in which cell clusters in a tissue are
classified into different stages of cancer based on their distribution, density, and fuzzy connectivity
within the tissue. This method aids in qualitatively analyzing the cancer’s complex progression. This
approach is based on three steps:

1) Obtain the cohesive matrix [17] M of the FG G = (µ, σ).

2) Obtain the t-threshold graph Gt of M.

3) The maximal complete subgraphs of Gt are the t-fuzzy edge components or fuzzy clusters of level
t.

But, the computation of the cohesive matrix M of FG G, t-threshold graph Gt and maximal complete
subgraphs of Gt is difficult and it increases the time as well as calculation complexity in case of the
large data.

b. Connectivity reachability matrix based clustering

The idea of cohesion is simply connectedness between pairs of vertices. Yeh and Bang [17] built
ϵ-clusters using the connectivity reachability matrix of a FG. This approach is based on two simple
steps:

1) Compute the direct reachable matrix R(G) and matrix of strength of connectedness between pairs
of vertices of the FG G = (µ, σ).

2) Compute ϵ-clusters of vertices of G by constructing the collection Cϵ ,
Cϵ = {Ci ⊆ X : CONNG(x, y) ≥ ϵ, ϵ ∈ (0,∞), x, y ∈ Ci}.

This approach is quite simple and easy to compute. However, it is only applicable for single
uncertain information, it cannot be utilized for multi-polar uncertain information. Multi-polar
uncertain information can not be properly handled by FGs. This is our main motivation to introduced
ϵA-clusters using the connectivity reachability matrix of an m-PF graph which is a generalization of a
FG.

Let us take an example of 5 students, namely Alexander, Elsa, Robert, Anthony, and Korey for
numerical comparison of all these approaches. All the students are different according to their level
of confidence, sources of knowledge, and communication skills. Also, the similarity of relationships
among the students may be different according to their level of confidence, sources of knowledge, and
communication skills. All the mentioned terms are uncertain in nature. Suppose, we want to classify
the students with respect to the similarity of each relationship, including their level of confidence,
sources of knowledge, and communication skills at a time.

c. Comparison with arc connectivity based clustering
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To classify the students with respect to each relationship, we have to make a separate FG
representing that particular relationship. In Figure 12, a FG representing relationship among students
with respect to their level of confidence is given. For the sake of simplicity, let us take µ1(xi) = 1 for
all i = 1, 2, . . . , 5.

Figure 12. FG G1 = (µ1, σ1) representing relationship among students w.r.t. their level of
confidence.

The cohesive matrix M of FG G1 = (µ1, σ1) and the matrix representing threshold graph G0.8
1 for

t = 0.8 of M are given below:

M =


0.0 1.1 1.1 1.0 1.0
1.1 0.0 1.1 1.1 1.0
1.1 1.1 0.0 1.0 1.0
1.0 1.0 1.0 0.0 1.0
1.0 1.0 1.0 1.0 0.0


G0.8

1 =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


The clusters of students under the relation of level of confidence obtained from G0.8

1 are {Alexander,
Elsa, Robert, Anthony, Korey}. Similarly, the clusters of students under the relations of sources of
knowledge and communications skills can be analyzed. But, it is difficult and time consuming to find
out clusters with respect to each relationship separately.

d. Comparison with connectivity reachability matrix based clustering

We now classify the students using connectivity reachability matrix base clustering technique. For
this, consider the FG G1 = (µ1, σ1) as shown in Figure 12. The direct reachable matrix R(G1) and
matrix of strength of connectedness between pairs of vertices C(G1) of G1 are given below:
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R(G1) =


1.0 0.8 0.3 0.4 0.2
0.8 1.0 0.8 0.0 0.0
0.3 0.8 1.0 0.4 0.0
0.4 0.0 0.4 1.0 0.8
0.2 0.0 0.0 0.8 1.0


C(G1) =


1.0 0.8 0.8 0.4 0.4
0.8 1.0 0.8 0.4 0.4
0.8 0.8 1.0 0.4 0.4
0.4 0.4 0.4 1.0 0.8
0.4 0.4 0.4 0.8 1.0


The clusters of students under the relation of level of confidence are {Alexander, Elsa, Robert} and

{Anthony, Korey}. Similarly, the clusters of students under the relations of sources of knowledge and
communications skills can be analyzed. Although, we are able to find out more clusters of students
based on this method as compared to the previous one. But, it is still difficult and time consuming to
find out clusters with respect to each relationship separately.

e. Proposed method clustering approach

An m-PF graph is an extended approach of a FG. In an m-PF graph, all vertices and edges are multi-
polar uncertain in nature and their MVs have multi-components according to the multi-polar uncertain
statements. In which each component of MV can be any real number in [0, 1]. All these components are
independent from each other. An m-PF graph is an efficient approach to discuss several relationships
among students at a time. For example, consider a 3-PF graph G = (µ, σ) as shown in Figure 12. For
the sake of simplicity, let us take P j ◦ µ(xi) = 1 for all i = 1, 2, . . . , 5 and 1 ≤ j ≤ 3.

Figure 13. 3-PF graph G = (µ, σ).

Here, the MVs of vertices (students) are measured according to their level of confidence, sources of
knowledge, and communication skills. The relationship among the students are represented by 3-PF
edges. Thus, the MV of each edge is measured according to the similarity between two students with
respect to their level of confidence, sources of knowledge, and communication skills. Suppose, we
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want to classify the students with respect to their similarity corresponding to their level of confidence,
sources of knowledge, and communication skills. The direct reachable matrix R(G) and matrix of
strength of connectedness between pairs of vertices C(G) of G are given below:

R(G) =


(1.0, 1.0, 1.0) (0.5, 0.8, 0.8) (0.0, 0.3, 0.3) (0.1, 0.4, 0.4) (0.0, 0.2, 0.2)
(0.5, 0.8, 0.8) (1.0, 1.0, 1.0) (0.5, 0.8, 0.8) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
(0.0, 0.3, 0.3) (0.5, 0.8, 0.8) (1.0, 1.0, 1.0) (0.1, 0.4, 0.4) (0.0, 0.0, 0.0)
(0.1, 0.4, 0.4) (0.0, 0.0, 0.0) (0.1, 0.4, 0.4) (1.0, 1.0, 1.0) (0.5, 0.8, 0.8)
(0.0, 0.2, 0.2) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.5, 0.8, 0.8) (1.0, 1.0, 1.0)



C(G) =


(1.0, 1.0, 1.0) (0.5, 0.8, 0.8) (0.5, 0.8, 0.8) (0.1, 0.4, 0.4) (0.1, 0.4, 0.4)
(0.5, 0.8, 0.8) (1.0, 1.0, 1.0) (0.5, 0.8, 0.8) (0.1, 0.4, 0.4) (0.1, 0.4, 0.4)
(0.5, 0.8, 0.8) (0.5, 0.8, 0.8) (1.0, 1.0, 1.0) (0.1, 0.4, 0.4) (0.1, 0.4, 0.4)
(0.1, 0.4, 0.4) (0.1, 0.4, 0.4) (0.1, 0.4, 0.4) (1.0, 1.0, 1.0) (0.5, 0.8, 0.8)
(0.1, 0.4, 0.4) (0.1, 0.4, 0.4) (0.1, 0.4, 0.4) (0.5, 0.8, 0.8) (1.0, 1.0, 1.0)


The matrix of average strength of connectedness between pairs of vertices CA(G) of G is given

below:

CA(G) =


1.0 0.7 0.7 0.3 0.3
0.7 1.0 0.7 0.3 0.3
0.7 0.7 1.0 0.3 0.3
0.3 0.3 0.3 1.0 0.7
0.3 0.3 0.3 0.7 1.0


The clusters of students under the relations of level of confidence, sources of knowledge, and

communication skills are {Alexander}, {Elsa}, {Robert}, {Anthony}, {Korey}. Here, we have obtained
more clusters as compared to the previous two techniques. Therefore, an m-PF graph model provide
an accurate information about clusters of students with respect to each relationship at a time. Thus, an
m-PF graph is shown to be useful model in adapting problems if it is necessary to make decisions with
a group of agreements.

6. Merits and limitations of the proposed method

The following are some of the advantages of the proposed research work:

1) The proposed research work discuss multi-polarity of the uncertain information and provides
more flexible results.

2) The provided method computes the ϵA-clusters using the strength of connectedness between the
pairs of vertices of an m-PF graph which increases the efficiency and feasibility of the proposed
method.

Besides these advantages, the proposed method has certain drawbacks, which are given below:

1) The proposed method of computing ϵA-clusters of vertices of an m-PF graph G = (µ, σ) based
on the matrix of average strength of connectedness between the pairs of vertices which is very
convenient to apply, but on the other hand, it cannot provide accurate results if there are a few
extreme MV corresponding to some component in the data.
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2) The proposed model is appropriate to deal with multi-polarity of the uncertain information which
provides flexible results, but on the other hand it is difficult to handle multi-components of the
MVs in case of large data and it increases the time as well as computation complexity.

7. Conclusions

As a natural extension of fuzzy graphs, m-PF graphs have numerous applications in various fields,
including decision-making, networking, or management sciences. In this study we have put forward
novel tools for the investigation of these structures. These include the notions of strong degree and
m-PF strength sequence of vertices, whose properties in complete m-PF graphs have been thoroughly
examined. We have discussed connectivity parameters for m-PF graphs and presented the m-PF
analogue of Whitney’s theorem. We have characterized r-connected m-PF graphs and r-edge
connected m-PF graphs, and we have discussed some of theorems related to them. Depending on the
strength of connectedness between pairs of vertices, we have provided a clustering method for
vertices in m-PF graphs. Moreover, we have discussed an application for clustering different
companies in consideration of their multi-polar uncertain information. Finally, we have provided an
algorithm to clearly express the various steps of the clustering method that we have used in our
application.

The investigation of m-PF graphs can still produce many additional concepts and novel results. In
particular, our research work can be further extended to incorporate (1) Connectivity indices of m-PF
graphs; (2) cyclic connectivity index of m-PF graphs; and (3) average cyclic connectivity index of
m-PF graphs.
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