Research article Special Issues

Research on the control problem of actuator anti-saturation of supercavitating vehicle

  • Received: 24 September 2021 Accepted: 31 October 2021 Published: 15 November 2021
  • In the theoretical controller design of the high-speed supercavitating vehicle (HSSV), there will always be the problem that the physical saturation limit has to be exceeded by the motion range of the actuator to satisfy the requirements of stable motion of the supercavitating vehicle. This paper proposes a solution which could satisfy the requirements of stable motion of the vehicle without saturation of the actuator. First of all, the rotation range of the actuator and the motion performance of the vehicle with robust controller are analyzed under the condition where saturation is neglected. Then, according to the analysis conclusion, the controller is improved by using linear active disturbance rejection control (LADRC) method, which provides the additional control component to reduce the rotation angle and rotation speed of the actuator. Finally, the simulation proves that the solution could realize the stable motion of vehicle without saturation of actuator.

    Citation: Tao Bai, Junkai Song. Research on the control problem of actuator anti-saturation of supercavitating vehicle[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 394-419. doi: 10.3934/mbe.2022020

    Related Papers:

  • In the theoretical controller design of the high-speed supercavitating vehicle (HSSV), there will always be the problem that the physical saturation limit has to be exceeded by the motion range of the actuator to satisfy the requirements of stable motion of the supercavitating vehicle. This paper proposes a solution which could satisfy the requirements of stable motion of the vehicle without saturation of the actuator. First of all, the rotation range of the actuator and the motion performance of the vehicle with robust controller are analyzed under the condition where saturation is neglected. Then, according to the analysis conclusion, the controller is improved by using linear active disturbance rejection control (LADRC) method, which provides the additional control component to reduce the rotation angle and rotation speed of the actuator. Finally, the simulation proves that the solution could realize the stable motion of vehicle without saturation of actuator.



    加载中


    [1] J. Dzielski, A. Kurdila, A benchmark control problem for supercavitating vehicles and an initial investigation of solution, J. Vib. Control, 9 (2003), 791–804. doi: 10.1177/1077546303009007004. doi: 10.1177/1077546303009007004
    [2] I. N. Kirschner, D. C. Kring, A. W. Stokes, N. E. Fine, J. S. Uhlman, Control strategies for supercavitating vehicles, J. J. Vib. Control, 8 (2002), 219–242. doi: 10.1177/107754602023818. doi: 10.1177/107754602023818
    [3] V. N. Semenenko, Artificial supercavitation, physics and calculation, in RTO AVT lecture series on supercavitating flows, Von Karman Institute, Brussels Belgium, 2001. Available from: https://www.researchgate.net/publication/235099692.
    [4] R. E. A. Arndt, Cavitation in vortical flows, Annu. Rev. Fluid Mech., 34 (2003), 143–175. doi: 10.1146/annurev.fluid.34.082301.114957. doi: 10.1146/annurev.fluid.34.082301.114957
    [5] D. E. Sanabria., G. J. Balas, R. E. A. Arndt, Modeling, control, and experimental validation of a high-speed supercavitating vehicle, IEEE J. Oceanic Eng., 40 (2015), 362–373. doi: 10.1109/JOE.2014.2312591. doi: 10.1109/JOE.2014.2312591
    [6] D. E. Sanabria, R. E. A. Arndt, Robust control of a small-scale supercavitating vehicle: From modeling to testing, Ocean Eng., 160 (2018), 412–424. doi: 10.1016/j.oceaneng.2018.04.060. doi: 10.1016/j.oceaneng.2018.04.060
    [7] X. Yuan, T. Xing, Hydrodynamic characteristics of a supercavitating vehicle's aft body, Ocean Eng., 114 (2016), 37–46. doi: 10.1016/j.oceaneng.2016.01.012. doi: 10.1016/j.oceaneng.2016.01.012
    [8] L. Zhang, S. Lin, C. Wang, D. Xie, J. Sun, A new simulation model for hydrodynamic behavior of rigid body in narrow space. Ocean Eng., 182 (2019), 427–441. doi: 10.1016/j.oceaneng.2019.04.046. doi: 10.1016/j.oceaneng.2019.04.046
    [9] X. Zhang, Y. Wei, Y. Han, T. Bai, K. Ma, Design and comparison of LQR and a novel robust backstepping controller for supercavitating vehicles, Trans. Inst. Meas. Control, 39 (2017), 149–162. doi: 10.1177/0142331215607614. doi: 10.1177/0142331215607614
    [10] Y. Shao, M. Mesbahi, G. J. Balas, Planing, switching, and supercavitating flight control, in AIAA Guidance, Navigation, and Control Conference and Exhibit, (2003). doi: 10.2514/6.2003-5724.
    [11] B. Vanek, J. Bokor, G. J. Balas, R. E. A. Arndt, Longitudinal motion control of a high-speed supercavitation vehicle, J. Vib. Control, 13 (2007), 159–184. doi: 10.1177/1077546307070226. doi: 10.1177/1077546307070226
    [12] X. Mao, Q. Wang, Nonlinear control design for a supercavitating vehicle, IEEE Trans. Contrl. Syst. Technol., 17 (2009), 816–832. doi: 10.1109/TCST.2009.2013338. doi: 10.1109/TCST.2009.2013338
    [13] Y. Han, Z. Xu, H. Guo, Robust predictive control of a supercavitating vehicle based on time-delay characteristics and parameter uncertainty, Ocean Eng., 237 (2021), 1–10. doi: 10.1016/j.oceaneng.2021.109627. doi: 10.1016/j.oceaneng.2021.109627
    [14] S. D. Escobar, G. J. Balas, R. E. A. Arndt, Planing avoidance control for supercavitating vehicles, in 2014 American Control Conference, (2014), 4979–4984. doi: 10.1109/ACC.2014.6859485.
    [15] X. Zhang, Y. Han, T. Bai, Y. Wei, K. Ma, H-infinity controller design using LMIs for high-speed underwater vehicles in presence of uncertainties and disturbances, Ocean Eng., 104 (2015), 359–369. doi: 10.1016/j.oceaneng.2015.05.026. doi: 10.1016/j.oceaneng.2015.05.026
    [16] X. Zhao, X. Ye, Sliding mode controller design for supercavitating vehicles, Ocean Eng., 184 (2019), 173–183. doi: 10.1016/j.oceaneng.2019.04.066. doi: 10.1016/j.oceaneng.2019.04.066
    [17] Y. Bai, J. D. Biggs, Z. Zhang, Y. Ding, Adaptive fault-tolerant control for longitudinal motion of supercavitating vehicles. Eur. J. Control, 57 (2021), 263–272. doi: 10.1016/j.ejcon.2020.06.002. doi: 10.1016/j.ejcon.2020.06.002
    [18] B. D. H. Phuc, S. D. Lee, S. S. You, N. S. Rathore, Nonlinear robust control of high-speed supercavitating vehicle in the vertical plane. J. Eng. Marit. Environ., 234 (2019), 510−519. doi: 10.1177/1475090219875861. doi: 10.1177/1475090219875861
    [19] B. Qiang, L. Zhang, Output feedback control design to enlarge the domain of attraction of a supercavitating vehicle subject to actuator saturation, in 32nd Institute of China Electronics Technology Group Corporation, 40 (2018): 3189−3200. doi: 10.1177/0142331217718898.
    [20] T. Akash, S. Pushpendra, L. K. Mohan, H. Jalpa, Fuzzy logic controller and game theory based distributed energy resources allocation, AIMS Energy, 8 (2020), 474−492. doi: 10.3934/energy.2020.3.474. doi: 10.3934/energy.2020.3.474
    [21] I. Katherin, L. W. Bambang, M. Ali, Intelligent distribution network design of sensor and actuator fault tolerant control system on wind turbine benchmark for Region Ⅱ, AIMS Energy, 7 (2019), 111–126. doi: 10.3934/ENERGY.2019.2.111. doi: 10.3934/ENERGY.2019.2.111
    [22] T. S. S Senarathna, K. T. M Udayanga Hemapala, Review of adaptive protection methods for microgrids, AIMS Energy, 7 (2019): 557–578. doi: 10.3934/energy.2019.5.557. doi: 10.3934/energy.2019.5.557
    [23] X. Le, J. Wang, Robust pole assignment for synthesizing feedback control systems using recurrent neural networks, IEEE Trans. Neural. Netw. Learn. Syst, 25 (2014), 383–393. doi: 10.1109/TNNLS.2013.2275732. doi: 10.1109/TNNLS.2013.2275732
    [24] B. Ralph, G. Stephen, Approaches to robust pole assignment, Int. J. Control, 49 (1989), 97–117. doi: 10.1080/00207178908559623. doi: 10.1080/00207178908559623
    [25] J. B. Correction, X. Luo, R. E. A. Arndt, Y. Wu, Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction, Ocean Eng., 87 (2014), 64–77. doi: 10.1016/j.oceaneng.2014.05.005. doi: 10.1016/j.oceaneng.2014.05.005
    [26] X. Long, H. Cheng, B. Ji, R. E. A. Arndt, X. Peng, Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil, Int. J. Multiphase Flow, 100 (2018): 41–56. doi: 10.1016/j.ijmultiphaseflow.2017.12.002. doi: 10.1016/j.ijmultiphaseflow.2017.12.002
    [27] A. Karn, R. E. A. Arndt, J. Hong, Gas entrainment behaviors in the formation and collapse of a ventilated supercavity, Exp. Therm. Fluid Sci., 79 (2016), 294–300. doi: 10.1016/j.expthermflusci.2016.08.003. doi: 10.1016/j.expthermflusci.2016.08.003
    [28] W. Zou, H. Liu, L. Xue, Three-dimensional ventilated supercavity on a maneuvering trajectory, Ocean Eng., 122 (2016), 97–104. doi: 10.1016/j.oceaneng.2016.06.023. doi: 10.1016/j.oceaneng.2016.06.023
    [29] S. Shao, Y. Wu, J. Haynes, R. E. A. Arndt, J. Hong, Investigation into the behaviors of ventilated supercavities in unsteady flow, Phys. Fluids, 30 (2018), 236–241. doi: 10.1063/1.5027629. doi: 10.1063/1.5027629
    [30] M. Murayama, Y. Yoshida, Y. Tsujimoto, Unsteady tip leakage vortex cavitation originating from the tip clearance of an oscillating hydrofoil, J. Fluids Eng., 128 (2006), 421–429. doi: 10.1115/1.2173290. doi: 10.1115/1.2173290
    [31] A. Karn, R. E. Arndt, J. Hong, An experimental investigation into supercavity closure mechanisms, J. Fluid Mech., 789 (2016), 259–284. doi:10.1017/jfm.2015.680. doi: 10.1017/jfm.2015.680
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1980) PDF downloads(100) Cited by(2)

Article outline

Figures and Tables

Figures(18)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog