Research article Special Issues

A complex network model for a society with socioeconomic classes

  • Received: 21 March 2022 Revised: 18 April 2022 Accepted: 26 April 2022 Published: 04 May 2022
  • People's attitudes and behaviors are partially shaped by the socioeconomic class to which they belong. In this work, a model of scale-free graph is proposed to represent the daily personal contacts in a society with three social classes. In the model, the probability of having a connection between two individuals depends on their social classes and on their physical distance. Numerical simulations are performed by considering sociodemographic data from France, Peru, and Zimbabwe. For the complex networks built for these three countries, average values of node degree, shortest-path length, clustering coefficient, closeness centrality, betweenness centrality, and eigenvector centrality are computed. These numerical results are discussed by taking into account the propagation of information about COVID-19.

    Citation: A. N. Licciardi Jr., L. H. A. Monteiro. A complex network model for a society with socioeconomic classes[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6731-6742. doi: 10.3934/mbe.2022317

    Related Papers:

  • People's attitudes and behaviors are partially shaped by the socioeconomic class to which they belong. In this work, a model of scale-free graph is proposed to represent the daily personal contacts in a society with three social classes. In the model, the probability of having a connection between two individuals depends on their social classes and on their physical distance. Numerical simulations are performed by considering sociodemographic data from France, Peru, and Zimbabwe. For the complex networks built for these three countries, average values of node degree, shortest-path length, clustering coefficient, closeness centrality, betweenness centrality, and eigenvector centrality are computed. These numerical results are discussed by taking into account the propagation of information about COVID-19.



    加载中


    [1] G. E. Lenski, Power and privilege: A theory of social stratification, University of North Carolina Press, Chapel Hill, 1984.
    [2] R. F. Levine, Social class and stratification: Classic statements and theoretical debates, Rowman & Littlefield, Oxford, 2006.
    [3] D. B. Grusky, Social stratification: Class, race, and gender in sociological perspective, Routledge, New York, 2014.
    [4] D. B. Grusky, J. Hill, Inequality in the 21st century: A reader, Routledge, New York, 2017.
    [5] N. Raghunath, T. Tan, The impact of social stratification on morbidity during the COVID-19 pandemic, Int. J. Sociol. Soc. Policy, 40 (2020), 793–806. https://doi.org/10.1108/IJSSP-07-2020-0261 doi: 10.1108/IJSSP-07-2020-0261
    [6] H. Holst, A. Fessler, S. Niehoff, COVID-19, social class and work experience in Germany: Inequalities in work-related health and economic risks, Eur. Soc., 23 (2021), S495–S512. https://doi.org/10.1080/14616696.2020.1828979 doi: 10.1080/14616696.2020.1828979
    [7] M. R. Alves, R. A. G. de Souza, R. D. Calo, Poor sanitation and transmission of COVID-19 in Brazil, Sao Paulo Med. J., 139 (2021), 72–76. https://doi.org/10.1590/1516-3180.2020.0442.R1.18112020 doi: 10.1590/1516-3180.2020.0442.R1.18112020
    [8] G. Agoramoorthy, M.J. Hsu, How the coronavirus lockdown impacts the impoverished in India, J. Racial Ethn. Health Disparities, 8 (2021), 1–6. https://doi.org/10.1007/s40615-020-00905-5 doi: 10.1007/s40615-020-00905-5
    [9] S. U. Noble, B. M. Tynes, The intersectional internet: Race, sex, class, and culture online, Peter Lang, New York, 2016.
    [10] S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268–276. https://doi.org/10.1038/35065725
    [11] R. Albert, A. L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47–97. https://doi.org/10.1103/RevModPhys.74.47 doi: 10.1103/RevModPhys.74.47
    [12] M. E. J. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167–256. https://doi.org/10.1137/S003614450342480 doi: 10.1137/S003614450342480
    [13] M. Boguna, R. Pastor-Satorras, A. Diaz-Guilera, A. Arenas, Models of social networks based on social distance attachment, Phys. Rev. E, 70 (2004), 056122. https://doi.org/10.1103/PhysRevE.70.056122 doi: 10.1103/PhysRevE.70.056122
    [14] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, A. Tomkins, Geographic routing in social networks, Proc. Natl. Acad. Sci. USA, 102 (2005), 11623–11628. https://doi.org/10.1073/pnas.0503018102 doi: 10.1073/pnas.0503018102
    [15] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. U. Hwanga, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175–308. https://doi.org/10.1016/j.physrep.2005.10.009 doi: 10.1016/j.physrep.2005.10.009
    [16] H. Ebel, L. I. Mielsch, S. Bornholdt, Scale-free topology of e-mail networks, Phys. Rev. E, 66 (2002), 035103. https://doi.org/10.1103/PhysRevE.66.035103 doi: 10.1103/PhysRevE.66.035103
    [17] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, Y. Aberg, The web of human sexual contacts, Nature, 411 (2001), 907–908. https://doi.org/10.1038/35082140 doi: 10.1038/35082140
    [18] Z. L. Zhuang, Z. Y. Lu, Z. Z. Huang, C. L. Liu, W. Qin, A novel complex network based dynamic rule selection approach for open shop scheduling problem with release dates, Math. Biosci. Eng., 16 (2019), 4491–4505. https://doi.org/10.3934/mbe.2019224 doi: 10.3934/mbe.2019224
    [19] H. Wu, Z. J. Zhang, Y. B. Fang, S. T. Zhang, Z. Jiang, J. Huang, et al., Containment of rumor spread by selecting immune nodes in social networks, Math. Biosci. Eng., 18 (2021), 2614–2631. https://doi.org/10.3934/mbe.2021133 doi: 10.3934/mbe.2021133
    [20] M. McPherson, L. Smith-Lovin, J. M. Cook, Birds of a feather: Homophily in social networks, Annu. Rev. Sociol., 27 (2001), 415–444. https://doi.org/10.1146/annurev.soc.27.1.415 doi: 10.1146/annurev.soc.27.1.415
    [21] Y. Xu, A. Belyi, P. Santi, C. Ratti, Quantifying segregation in an integrated urban physical-social space, J. R. Soc. Interface, 16 (2019), 20190536. https://doi.org/10.1098/rsif.2019.0536 doi: 10.1098/rsif.2019.0536
    [22] P. S. Chodrow, Structure and information in spatial segregation, Proc. Natl. Acad. Sci. USA, 114 (2017), 11591–11596. https://doi.org/10.1073/pnas.1708201114 doi: 10.1073/pnas.1708201114
    [23] V. Boucher, Structural homophily, Int. Econ. Rev., 56 (2015), 235–264. https://doi.org/10.1111/iere.12101
    [24] S. Currarini, M. O. Jackson, P. Pin, An economic model of friendship: Homophily, minorities, and segregation, Econometrica, 77 (2009), 1003–1045. https://doi.org/10.3982/ECTA7528 doi: 10.3982/ECTA7528
    [25] W. van Gent, M. Das, S. Musterd, Sociocultural, economic and ethnic homogeneity in residential mobility and spatial sorting among couples, Environ. Plan. A, 51 (2019), 891–912. https://doi.org/10.1177/0308518X18823754 doi: 10.1177/0308518X18823754
    [26] W. Kets, S. Sandroni, A belief-based theory of homophily, Games Econ. Behav., 115 (2019), 410-435. https://doi.org/10.1016/j.geb.2019.04.002 doi: 10.1016/j.geb.2019.04.002
    [27] B. S. Graham, An econometric model of network formation with degree heterogeneity, Econometrica, 85 (2017), 1033–1063. https://doi.org/10.3982/ECTA12679 doi: 10.3982/ECTA12679
    [28] L. H. A. Monteiro, D. C. Paiva, J. R. C. Piqueira, Spreading depression in mainly locally connected cellular automaton, J. Biol. Syst., 14 (2006), 617–629. https://doi.org/10.1142/S0218339006001957 doi: 10.1142/S0218339006001957
    [29] P. H. T. Schimit, L. H. A. Monteiro, On the basic reproduction number and the topological properties of the contact network: an epidemiological study in mainly locally connected cellular automata, Ecol. Model., 220 (2009), 1034–1042. https://doi.org/10.1016/j.ecolmodel.2009.01.014 doi: 10.1016/j.ecolmodel.2009.01.014
    [30] H. A. L. R. Silva, L. H. A. Monteiro, Self-sustained oscillations in epidemic models with infective immigrants, Ecol. Complex., 17 (2014), 40–45. https://doi.org/10.1016/j.ecocom.2013.08.002 doi: 10.1016/j.ecocom.2013.08.002
    [31] L. H. A. Monteiro, D. M. Gandini, P. H. T. Schimit, The influence of immune individuals in disease spread evaluated by cellular automaton and genetic algorithm, Comput. Meth. Programs Biomed., 196 (2020), 105707. https://doi.org/10.1016/j.cmpb.2020.105707 doi: 10.1016/j.cmpb.2020.105707
    [32] S. Wolfram, Cellular automata and complexity: Collected papers, Westview Press, Boulder, 1994.
    [33] A. Landherr, B. Friedl, J. Heidemann, A critical review of centrality measures in social networks, Bus. Inf. Syst. Eng., 2 (2010), 371–385. https://doi.org/10.1007/s12599-010-0127-3 doi: 10.1007/s12599-010-0127-3
    [34] United Nations, Demographic yearbook, 2019, https://unstats.un.org/unsd/demographic/products/dyb/default.htm (accessed 04 March 2021).
    [35] Organisation for Economic Co-operation and Development, Under pressure: The squeezed middle class, 2019, https://www.oecd.org/els/soc/OECD-middle-class-2019-main-findings.pdf (accessed 04 March 2021).
    [36] Pew Research Center, World population by income, 2015, https://www.pewresearch.org/global/interactives/global-population-by-income (accessed 04 March 2022).
    [37] United Nations Development Programme, Human development report 2020, New York, United Nations, 2020.
    [38] G. Béraud, S. Kazmercziak, P. Beutels, D. Levy-Bruhl, X. Lenne, N. Mielcarek, Y. Yazdanpanah, P.Y. Boëlle, N. Hens, B. Dervaux, The French connection: The first large population-based contact survey in France relevant for the spread of infectious diseases, PloS ONE, 10 (2015), e0133203. https://doi.org/10.1371/journal.pone.0133203 doi: 10.1371/journal.pone.0133203
    [39] C. G. Grijalva, N. Goeyvaerts, H. Verastegui, K. M. Edwards, A. I. Gil, C. F. Lanata, et al., RESPIRA PERU project, A household-based study of contact networks relevant for the spread of infectious diseases in the highlands of Peru, PloS ONE, 10 (2015), e0118457. https://doi.org/10.1371/journal.pone.0118457 doi: 10.1371/journal.pone.0118457
    [40] A. Melegaro, E. Del Fava, P. Poletti, S. Merler, C. Nyamukapa, J. Williams, et al., Social contact structures and time use patterns in the Manicaland province of Zimbabwe, PloS One, 12 (2017), e0170459. https://doi.org/10.1371/journal.pone.0170459 doi: 10.1371/journal.pone.0170459
    [41] L. Ljung, System identification: Theory for the user, Prentice-Hall, Upper Saddle River, 1998.
    [42] M. E. J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 98 (2001), 404–409. https://doi.org/10.1073/pnas.1708201114 doi: 10.1073/pnas.1708201114
    [43] L. Larrouquere, M. Gabin, E. Poingt, A. Mouffak, A. Hlavaty, M. Lepelley, et al., Genesis of an emergency public drug information website by the French Society of Pharmacology and Therapeutics during the COVID-19 pandemic, Fundam. Clin. Pharmacol., 34 (2020), 389–396. https://doi.org/10.1111/fcp.12564 doi: 10.1111/fcp.12564
    [44] A. Alvarez-Risco, C. R. Mejia, J. Delgado-Zegarra, S. Del-Aguila-Arcentales, A. A. Arce-Esquivel, M. J. Valladares-Garrido, et al., The Peru approach against the COVID-19 infodemic: insights and strategies, Am. J. Trop. Med. Hyg., 103 (2020), 583–586. https://doi.org/10.4269/ajtmh.20-0536 doi: 10.4269/ajtmh.20-0536
    [45] J. Bowles, H. Larreguy, S. Liu, Countering misinformation via WhatsApp: Preliminary evidence from the COVID-19 pandemic in Zimbabwe, PLoS One, 15 (2020), e0240005. https://doi.org/10.1371/journal.pone.0240005 doi: 10.1371/journal.pone.0240005
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1963) PDF downloads(135) Cited by(4)

Article outline

Figures and Tables

Figures(1)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog