Citation: Paula Mercurio, Di Liu. Identifying transition states of chemical kinetic systems using network embedding techniques[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 868-887. doi: 10.3934/mbe.2021046
[1] | P. Goyal, E. Ferrara, Graph embedding techniques, applications, and performance: a survey, Knowledge-Based Syst., 151 (2018), 78-94. doi: 10.1016/j.knosys.2018.03.022 |
[2] | H. Cai, V. W. Zheng, K. C. Chang, A comprehensive survey of graph embedding: problems, techniques, and applications, IEEE Trans. Knowl. Data Eng., 30 (2018), 1616-1637. doi: 10.1109/TKDE.2018.2807452 |
[3] | F. Chung, Laplacians and the cheeger inequality for directed graphs, Ann. Combinatorics, 9 (2005), 1-19. doi: 10.1007/s00026-005-0237-z |
[4] | M. Chen, Q. Yang, X. Tang, Directed graph embedding, in IJCAI International Joint Conference on Artificial Intelligence, (2007), 2707-2712. |
[5] | D. Zhou, J. Huang, B. Schoelkopf, Learning from labeled and unlabeled data on a directed graph, in Proceedings of the 22nd International Conference on Machine Learning, Association for Computing Machinery, (2005), 1036-1043. |
[6] | M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in Advances in Neural Information Processing Systems, MIT Press, (2002), 585-591. |
[7] | S. Roweis, L. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, 290 (2001), 2323-2326. |
[8] | A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, A. Smola, Distributed large-scale natural graph factorization, in WWW 2013-Proceedings of the 22nd International Conference on World Wide Web, (2013), 37-48. |
[9] | B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014. |
[10] | A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in KDD: Proceedings International Conference on Knowledge Discovery and Data Mining, 2016 (2016), 855-864. |
[11] | E. Wigner, The transition state method, Trans. Faraday Soc., 34 (1938), 29-41. doi: 10.1039/tf9383400029 |
[12] | P. Bolhuis, D. Chandler, C. Dellago, P. Geissler, Transition path sampling: throwing ropes over rough mountain passes in the dark, Ann. Rev. Phys. Chem., 53 (2002), 291-318. doi: 10.1146/annurev.physchem.53.082301.113146 |
[13] | E. Weinan, E. Vanden-Eijnden, Towards a theory of transition paths, J. Stat. Phys., 123 (2006), 503-523. doi: 10.1007/s10955-005-9003-9 |
[14] | R. Allen, P. Warren, P. Wolde, Sampling rare switching events in biochemical networks, Phys. Rev. Lett., 94 (2005), 018104. doi: 10.1103/PhysRevLett.94.018104 |
[15] | S. Cao, W. Lu, Q. Xu, Grarep: Learning graph representations with global structural information, in CIKM'15: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, (2015), 891-900. |
[16] | T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in Advances in Neural Information Processing Systems, 26 (2013). |
[17] | F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model, IEEE Trans. Neural Networks, 20 (2009), 61-80. doi: 10.1109/TNN.2008.2005605 |
[18] | P. Metzner, C. Schutte, E. Vanden-Eijnden, Transition path theory for markov jump processes, Mult. Mod. Sim., 7 (2008), 1192-1219. |
[19] | C. Gardiner, U. Bhat, D. Stoyan, D. Daley, Y. Kutoyants, B. Rao, Handbook of stochastic methods for physics, chemistry and the natural sciences., Biometrics, 42 (1986), 226. |
[20] | P. Metzner, C. Schutte, E. Vanden-Eijnden, Illustration of transition path theory on a collection of simple examples, J. Chem. Phys., 125 (2006), 084110. doi: 10.1063/1.2335447 |
[21] | J. Du, D. Liu, Transition states of stochastic chemical reaction networks, Comm. Comp. Phys., in press. |
[22] | R. Srivastava, L. You, J. Summers, J. Yin, Stochastic vs. deterministic modeling of intracellular viral kinetics, J. Theor. Biol., 218 (2002), 309-321. doi: 10.1006/jtbi.2002.3078 |
[23] | D. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys., 115 (2001), 1716-1733. doi: 10.1063/1.1378322 |
[24] | R. Srivastava, M. S. Peterson, W. E. Bentley, Stochastic kinetic analysis of the escherichia coli stress circuit using σ32-targeted antisense, Biotechnol. Bioeng., 75 (2001), 120-129, doi: 10.1002/bit.1171 |