Citation: Erin N. Bodine, K. Lars Monia. A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma[J]. Mathematical Biosciences and Engineering, 2017, 14(4): 881-899. doi: 10.3934/mbe.2017047
[1] | Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008 |
[2] | Agustín Moreno Cañadas, Robinson-Julian Serna, Isaías David Marín Gaviria . Zavadskij modules over cluster-tilted algebras of type $ \mathbb{A} $. Electronic Research Archive, 2022, 30(9): 3435-3451. doi: 10.3934/era.2022175 |
[3] | Youming Chen, Weiguo Lyu, Song Yang . A note on the differential calculus of Hochschild theory for $ A_{\infty} $-algebras. Electronic Research Archive, 2022, 30(9): 3211-3237. doi: 10.3934/era.2022163 |
[4] | Xue Yu . Orientable vertex imprimitive complete maps. Electronic Research Archive, 2024, 32(4): 2466-2477. doi: 10.3934/era.2024113 |
[5] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[6] | Ming Ding, Zhiqi Chen, Jifu Li . The properties on F-manifold color algebras and pre-F-manifold color algebras. Electronic Research Archive, 2025, 33(1): 87-101. doi: 10.3934/era.2025005 |
[7] | Liqian Bai, Xueqing Chen, Ming Ding, Fan Xu . A generalized quantum cluster algebra of Kronecker type. Electronic Research Archive, 2024, 32(1): 670-685. doi: 10.3934/era.2024032 |
[8] | Xiuhai Fei, Haifang Zhang . Additivity of nonlinear higher anti-derivable mappings on generalized matrix algebras. Electronic Research Archive, 2023, 31(11): 6898-6912. doi: 10.3934/era.2023349 |
[9] | Doston Jumaniyozov, Ivan Kaygorodov, Abror Khudoyberdiyev . The algebraic classification of nilpotent commutative algebras. Electronic Research Archive, 2021, 29(6): 3909-3993. doi: 10.3934/era.2021068 |
[10] | Quanguo Chen, Yong Deng . Hopf algebra structures on generalized quaternion algebras. Electronic Research Archive, 2024, 32(5): 3334-3362. doi: 10.3934/era.2024154 |
Existing methods and algorithms appeared in some literatures assume that variables are independent, but it is not plausible. In many stochastic models and statistical applications, those variables involved are dependent. Hence, it is important and meaningful to extend the results of independent variables to dependent cases. One of these dependence structures is weakly dependent (i.e., $ {{\rho }^{*}} $-mixing or $ \tilde{\rho} $-mixing), which has attracted the concern by many researchers.
Definition 1.1. Let $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ be a sequence of random variables defined on a probability space $ \left(\Omega, \mathcal{F}, P \right) $. For any $ S\subset \text{N = }\left\{ 1, 2, \ldots \right\} $, define $ {{\mathcal{F}}_{S}} = \sigma \left({{X}_{i}}, i\in S \right) $. The set $ {{L}_{2}}\left({{\mathcal{F}}_{S}} \right) $ is the class of all $ \mathcal{F} $-measureable random variables with the finite second moment. For some integer $ s\ge 1 $, denote the mixing coefficient by
$ \begin{equation} {{\rho }^{*}}\left( s \right) = \sup \left\{ \rho \left( {{\mathcal{F}}_{S}}, {{\mathcal{F}}_{T}} \right):S, T\subset \text{N}, \text{dist}\left( S, T \right)\ge s \right\}, \end{equation} $ | (1.1) |
where
$ \begin{equation} \rho \left( {{\mathcal{F}}_{S}}, {{\mathcal{F}}_{T}} \right) = \sup \left\{ \frac{\left| EXY-EXEY \right|}{\sqrt{\operatorname{Var}X}\cdot \sqrt{\operatorname{Var}Y}}:X\in {{L}_{2}}\left( {{\mathcal{F}}_{S}} \right), Y\in {{L}_{2}}\left( {{\mathcal{F}}_{T}} \right) \right\}. \end{equation} $ | (1.2) |
Noting that the above fact $ \text{dist}\left(S, T \right)\ge s $ denotes $ \text{dist}\left(S, T \right) = \inf \left\{ \left| i-j \right|:i\in S, j\in T \right\}\ge s $. Obviously, $ 0\le {{\rho }^{*}}\left(s+1 \right)\le {{\rho }^{*}}\left(s \right)\le 1 $ and $ {{\rho }^{*}}\left(0 \right) = 1 $. The sequence $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ is called $ {{\rho }^{*}} $-mixing if there exists $ s\in \text{N} $ such that $ {{\rho }^{*}}\left(s \right) < 1 $. Clearly, if $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ is a sequence of independent random variables, then $ {{\rho }^{*}}\left(s \right) = 0 $ for all $ s\ge 1 $.
$ {{\rho }^{*}} $-mixing seems similarly to another dependent structure: $ \rho $-mixing, but they are quite different from each other. $ {{\rho }^{*}} $-mixing is also a wide range class of dependent structures, which was firstly introduced to the limit theorems by Bradley [4]. From then on, many scholars investigated the limit theory for $ {{\rho }^{*}} $-mixing random variables, and a number of important applications for $ {{\rho }^{*}} $-mixing have been established. For more details, we refer to [12,16,18,19,21,23,24] among others.
The concept of complete convergence was firstly given by Hsu and Robbins[9] as follows: A sequence of random variables $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ converges completely to a constant $ \lambda $ if $ \sum\limits_{n = 1}^{\infty }{P\left(\left| {{X}_{n}}-\lambda \right| > \varepsilon \right)} < \infty $ for all $ \varepsilon > 0 $. By the Borel-Cantelli lemma, the above result implies that $ {{X}_{n}}\to \lambda $ almost surely (a.s.). Thus, the complete convergence plays a crucial role in investigating the limit theory for summation of random variables as well as weighted sums.
Chow [8] introduced the following notion of complete moment convergence: Let $ \left\{ {{Z}_{n}}; n\ge 1 \right\} $ be a sequence of random variables, and $ {{a}_{n}} > 0 $, $ {{b}_{n}} > 0 $, $ q > 0 $. If $ \sum\limits_{n = 1}^{\infty }{{{a}_{n}}E\left(b_{n}^{-1}\left| {{Z}_{n}} \right|-\varepsilon \right)_{+}^{q}} < \infty $ for all $ \varepsilon \ge 0 $, then the sequence $ \left\{ {{Z}_{n}}; n\ge 1 \right\} $ is called to be the complete $ q $-th moment convergence. It will be shown that the complete moment convergence is the more general version of the complete convergence, and is also much stronger than the latter (see Remark 2.1).
According to the related statements of Rosalsky and Thành[14] as well as that of Thành[17], we recall the definition of stochastic domination as follows.
Definition 1.2. A sequence of random variables $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ is said to be stochastically dominated by a random variable $ X $ if for all $ x\ge 0 $ and $ n\ge 1 $,
$ \begin{equation*} {\mathop {\sup }\limits_{n \ge 1} }\, P\left( \left| {{X}_{n}} \right|\ge x \right)\le P\left( \left| X \right|\ge x \right). \end{equation*} $ |
The concept of stochastic domination is a slight generalization of identical distribution. It is clearly seen that stochastic dominance of $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ by the random variable $ X $ implies $ E{{\left| {{X}_{n}} \right|}^{p}}\le E{{\left| X \right|}^{p}} $ if the $ p $-th moment of $ \left| X \right| $ exists, i.e. $ E{{\left| X \right|}^{p}} < \infty $.
As is known to us all, the weighted sums of random variables are used widely in some important linear statistics (such as least squares estimators, nonparametric regression function estimators and jackknife estimates). Based on this respect, many probability statisticians devote to investigate the probability limiting behaviors for weighted sums of random variables. For example, Bai and Cheng[3], Cai[5], Chen and Sung[6], Cheng et al.[7], Lang et al.[11], Peng et al.[13], Sung[15,16] and Wu[20] among others.
Recently, Li et al.[12] extended the corresponding result of Chen and Sung[6] from negatively associated random variables to $ {{\rho }^{*}} $-mixing cases by a total different method, and obtained the following theorem.
Theorem A. Let $ \left\{ X, {{X}_{n}}; n\ge 1 \right\} $ be a sequence of identically distributed $ {{\rho }^{*}} $-mixing random variables with $ E{{X}_{n}} = 0 $, and let $ \left\{ {{a}_{ni}}; 1\le i\le n, n\ge 1 \right\} $ be an array of real constants such that $ \sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}} = O\left(n \right) $ for some $ 1 < \alpha \le 2 $. Set $ {{b}_{n}} = {{n}^{1/\alpha }}{{\left(\log n \right)}^{1/\gamma }} $ for $ 0 < \gamma < \alpha $. If $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $, then
$ \begin{equation} \sum\limits_{n = 1}^{\infty }{\frac{1}{n}}P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > \varepsilon {{b}_{n}} \right) < \infty \quad \text{for} \quad\forall \varepsilon > 0. \end{equation} $ | (1.3) |
In addition, Huang et al.[10] proved the following complete $ \alpha $-th moment convergence theorem for weighted sums of $ {{\rho }^{*}} $-mixing random variables under some moment conditions.
Theorem B. Let $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ be a sequence of $ {{\rho }^{*}} $-mixing random variables, which is stochastically dominated by a random variable $ X $, let $ \left\{ {{a}_{ni}}; 1\le i\le n, n\ge 1 \right\} $ be an array of real constants such that $ \sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}} = O\left(n \right) $ for some $ 0 < \alpha \le 2 $. Set $ {{b}_{n}} = {{n}^{1/\alpha }}{{\left(\log n \right)}^{1/\gamma }} $ for some $ \gamma > 0 $. Assume further that $ E{{X}_{n}} = 0 $ when $ 1 < \alpha \le 2 $. If
$ \begin{equation} \begin{array}{ll} E{{|X|}^{\alpha }} < \infty, &\;{\rm{for}}\;\quad\alpha > \gamma, \\ E|X|^{\alpha}\log (1+|X|) < \infty, &\;{\rm{for}}\;\quad \alpha = \gamma, \\ E|X|^{\gamma} < \infty, &\;{\rm{for}}\;\quad \alpha < \gamma, \\ \end{array} \end{equation} $ | (1.4) |
then
$ \begin{equation} \sum\limits_{n = 1}^{\infty }{\frac{1}{n}}E\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right|-\varepsilon \right)_{+}^{\alpha } < \infty \quad \text{ for } \forall \varepsilon > 0. \end{equation} $ | (1.5) |
It is interesting to find the optimal moment conditions for (1.5). Huang et al.[10] also posed a worth pondering problem whether the result (1.5) holds for the case $ \alpha > \gamma $ under the almost optimal moment condition $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $?
Mainly inspired by the related results of Li et al.[12], Chen and Sung[6] and Huang et al.[10], the authors will further study the convergence rate for weighted sums of $ {{\rho }^{*}} $-mixing random variables without assumptions of identical distribution. Under the almost optimal moment condition $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $ for $ 0 < \gamma < \alpha $ with $ 1 < \alpha \le 2 $, a version of the complete $ \alpha $-th moment convergence theorem for weighted sums of $ {{\rho }^{*}} $-mixing random variables is established. The main result not only improves the corresponding ones of Li et al.[12], Chen and Sung[6], but also partially settles the open problem posed by Huang et al.[10].
Now, we state the main result as follows. Some important auxiliary lemmas and the proof of the theorem will be detailed in the next section.
Theorem 1.1. Let $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ be a sequence of $ {{\rho }^{*}} $-mixing random variables with $ E{{X}_{n}} = 0 $, which is stochastically dominated by a random variable $ X $, let $ \left\{ {{a}_{ni}}; 1\le i\le n, n\ge 1 \right\} $ be an array of real constants such that $ \sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}} = O\left(n \right) $ for some $ 0 < \alpha \le 2 $. Set $ {{b}_{n}} = {{n}^{1/\alpha }}{{\left(\log n \right)}^{1/\gamma }} $ for $ \gamma > 0 $. If $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $ for $ \alpha > \gamma $ with $ 1 < \alpha \le 2 $, then (1.5) holds.
Throughout this paper, let $ I\left(A \right) $ be the indicator function of the event $ A $ and $ I(A, B) = I(A\bigcap B) $. The symbol $ C $ always presents a positive constant, which may be different in various places, and $ {{a}_{n}} = O\left({{b}_{n}} \right) $ stands for $ {{a}_{n}}\le C{{b}_{n}} $.
To prove our main result of this paper, we need the following important lemmas.
Lemma 2.1. (Utev and Peligrad[18]) Let $ p\ge 2 $, $ \left\{ {{X}_{n}}; n\ge 1 \right\} $ be a sequence of $ {{\rho }^{*}} $-mixing random variables with $ E{{X}_{n}} = 0 $ and $ E{{\left| {{X}_{n}} \right|}^{p}} < \infty $ for all $ n\ge 1 $. Then there exists a positive constant $ C $ depending only on $ p $, $ s $ and $ {{\rho }^{*}}\left(s \right) $ such that
$ \begin{equation} E\left( {\mathop {\max }\limits_{1 \le j \le n} }\, {{\left| \sum\limits_{i = 1}^{j}{{{X}_{i}}} \right|}^{p}} \right)\le C\left( \sum\limits_{i = 1}^{n}{E{{\left| {{X}_{i}} \right|}^{p}}}+{{\left( \sum\limits_{i = 1}^{n}{EX_{i}^{2}} \right)}^{p/2}} \right). \end{equation} $ | (2.1) |
In particular, if $ p = 2 $,
$ \begin{equation} E\left( {\mathop {\max }\limits_{1 \le j \le n} }\, {{\left| \sum\limits_{i = 1}^{j}{{{X}_{i}}} \right|}^{2}} \right)\le C\sum\limits_{i = 1}^{n}{EX_{i}^{2}}. \end{equation} $ | (2.2) |
The following one is a basic property for stochastic domination. For the details, one refers to Adler and Rosalsky[1] and Adler et al.[2], or Wu[22]. In fact, we can remove the constant $ C $ in those of Adler and Rosalsky[1] and Adler et al.[2], or Wu[22], since it was proved in Reference [[14], Theorem 2.4] (or [[17], Corollary 2.3]) that this is indeed equivalent to $ C = 1 $.
Lemma 2.2. Let $ \left\{ {{X}_{n}}, n\ge 1 \right\} $ be a sequence of random variables which is stochastically dominated by a random variable $ X $. For all $ \beta > 0 $ and $ b > 0 $, the following statements hold:
$ \begin{equation} E{{\left| {{X}_{n}} \right|}^{\beta }}I\left( \left| {{X}_{n}} \right|\le b \right)\le \left( E{{\left| X \right|}^{\beta }}I\left( \left| X \right|\le b \right)+{{b}^{\beta }}P\left( \left| X \right| > b \right) \right), \end{equation} $ | (2.3) |
$ \begin{equation} E{{\left| {{X}_{n}} \right|}^{\beta }}I\left( \left| {{X}_{n}} \right| > b \right)\le E{{\left| X \right|}^{\beta }}I\left( \left| X \right| > b \right). \end{equation} $ | (2.4) |
Consequently, $ E{{\left| {{X}_{n}} \right|}^{\beta }}\le E{{\left| X \right|}^{\beta }} $.
Lemma 2.3. Under the conditions of Theorem 1.1, if $ E{{{\left| X \right|}^{\alpha }}}/{{{\left(\log \left(1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty $ for $ 0 < \gamma < \alpha $ with $ 0 < \alpha \le 2 $, then
$ \begin{equation} \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}} < \infty. \end{equation} $ | (2.5) |
Proof. By Definition 1.2, noting that
$ \begin{eqnarray} \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}}&\le& \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}} \\ &\le& \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{0}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \frac{{{\left| {{a}_{ni}}X \right|}^{\alpha }}}{b_{n}^{\alpha }} > t \right)}dt}} \\ &\le& \sum\limits_{n = 1}^{\infty }{{{n}^{-1}}b_{n}^{-\alpha }\sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{\alpha }}}}. \end{eqnarray} $ | (2.6) |
It is easy to show that
$ \begin{eqnarray} \sum\limits_{n = 1}^{\infty }{{{n}^{-1}}b_{n}^{-\alpha }\sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}E{{\left| X \right|}^{\alpha }}I\left( \left| X \right|\le {{b}_{n}} \right)}}&\le& C\sum\limits_{n = 1}^{\infty }{b_{n}^{-\alpha }E{{\left| X \right|}^{\alpha }}I\left( \left| X \right|\le {{b}_{n}} \right)} \\ &\le& C\sum\limits_{n = 1}^{\infty }{b_{n}^{-\alpha }\sum\limits_{k = 1}^{n}{E{{\left| X \right|}^{\alpha }}I\left( {{b}_{k}} < \left| X \right|\le {{b}_{k+1}} \right)}} \\ &\le& C\sum\limits_{k = 1}^{\infty }{E{{\left| X \right|}^{\alpha }}I\left( {{b}_{k}} < \left| X \right|\le {{b}_{k+1}} \right){{\left( \log k \right)}^{1-\left( \alpha /\gamma \right)}}} \\ &\le& CE{{{\left| X \right|}^{\alpha }}}/{{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\left( \alpha /\gamma \right)-1}}}\; < \infty, \end{eqnarray} $ | (2.7) |
and
$ \begin{eqnarray} \sum\limits_{n = 1}^{\infty }{{{n}^{-1}}b_{n}^{-\alpha }\sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}E{{\left| X \right|}^{\alpha }}I\left( \left| X \right| > {{b}_{n}} \right)}}&\le& C\sum\limits_{n = 1}^{\infty }{b_{n}^{-\alpha }E{{\left| X \right|}^{\alpha }}I\left( \left| X \right| > {{b}_{n}} \right)} \\ & = &C\sum\limits_{n = 1}^{\infty }{b_{n}^{-\alpha }\sum\limits_{j = n}^{\infty }{E{{\left| X \right|}^{\alpha }}I\left( {{b}_{j}} < \left| X \right|\le {{b}_{j+1}} \right)}} \\ & = &C\sum\limits_{j = 1}^{\infty }{E{{\left| X \right|}^{\alpha }}I\left( {{b}_{j}} < \left| X \right|\le {{b}_{j+1}} \right)\sum\limits_{n = 1}^{j}{{{n}^{-1}}{{\left( \log n \right)}^{-\alpha /\gamma }}}} \\ &\le& C\sum\limits_{j = 1}^{\infty }{{{\left( \log j \right)}^{1-\left( \alpha /\gamma \right)}}E{{\left| X \right|}^{\alpha }}I\left( {{b}_{j}} < \left| X \right|\le {{b}_{j+1}} \right)} \\ &\le& CE{{{\left| X \right|}^{\alpha }}}/{{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\left( \alpha /\gamma \right)-1}}}\; < \infty. \end{eqnarray} $ | (2.8) |
Hence, (2.5) holds by (2.6)–(2.8).
Proof of Theorem 1.1. For any given $ \varepsilon > 0 $, observing that
$ \begin{eqnarray} \sum\limits_{n = 1}^{\infty }{\frac{1}{n}}E\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right|-\varepsilon \right)_{+}^{\alpha} & = & \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{0}^{\infty }{P\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right|-\varepsilon > {{t}^{1/\alpha}} \right)dt}} \\ & = & \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{0}^{1}{P\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > \varepsilon +{{t}^{1/\alpha}} \right)dt}} \\ &&+ \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{P\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > \varepsilon +{{t}^{1/\alpha}} \right)dt}} \\ &\le& \sum\limits_{n = 1}^{\infty }{\frac{1}{n}P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > \varepsilon {{b}_{n}} \right)} \\ &&+ \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha}} \right)dt}} \\ &\triangleq& I+J. \end{eqnarray} $ | (2.9) |
By Theorem A of Li et al.[12] declared in the first section, we get directly $ I < \infty $. In order to prove (1.5), it suffices to show that $ J < \infty $.
Without loss of generality, assume that $ {{a}_{ni}}\ge 0 $. For all $ t\ge 1 $ and $ 1\le i\le n $, $ n\in \text{N} $, define
$ \begin{equation*} {{Y}_{i}} = {{a}_{ni}}{{X}_{i}}I\left( \left| {{a}_{ni}}{{X}_{i}} \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right). \end{equation*} $ |
It is easy to check that
$ \begin{equation*} \left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)\subset \left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{Y}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)\bigcup \left( \bigcup\limits_{i = 1}^{n}{\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)} \right), \end{equation*} $ |
which implies
$ \begin{eqnarray} P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)&\le& P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{Y}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right) \\ && +P\left( \bigcup\limits_{i = 1}^{n}{\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)} \right). \end{eqnarray} $ | (2.10) |
To prove $ J < \infty $, we need only to show that
$ \begin{equation*} {{J}_{1}} = \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{Y}_{i}}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)dt}} < \infty, \end{equation*} $ |
$ \begin{equation*} {{J}_{2}} = \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{P\left( \bigcup\limits_{i = 1}^{n}{\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)dt}} < \infty. \end{equation*} $ |
Since
$ P\left( \bigcup\limits_{i = 1}^{n}{\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)\le \sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}, $ |
it follows from Lemma 2.3 that
$ \begin{equation*} {{J}_{2}}\le \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}} < \infty. \end{equation*} $ |
Next, we prove that
$ \begin{equation} {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{E{{Y}_{i}}} \right|\to 0. \end{equation} $ | (2.11) |
By $ E{{X}_{n}} = 0 $ and (2.4) of Lemma 2.2, it follows that
$ \begin{array}{l} {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{E{{Y}_{i}}} \right| = {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{E{{a}_{ni}}{{X}_{i}}I\left( \left| {{a}_{ni}}{{X}_{i}} \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right)} \right|\\ = {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{E{{a}_{ni}}{{X}_{i}}I\left( \left| {{a}_{ni}}{{X}_{i}} \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)} \right|\\ \le C{\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}\sum\limits_{i = 1}^{n}{E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}. \end{array} $ |
Observe that,
$ \begin{eqnarray} E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)& = &E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right|\le {{b}_{n}} \right) \\ &&+E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right| > {{b}_{n}} \right). \end{eqnarray} $ | (2.12) |
For $ 0 < \gamma < \alpha $ and $ 1 < \alpha \le 2 $, it is clearly shown that
$ \begin{align} & E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right|\le {{b}_{n}} \right) \le {{C}}b_{n}^{1-\alpha }{{t}^{\left( 1/\alpha \right)-1}}{{\left| {{a}_{ni}} \right|}^{\alpha }}E{{\left| X \right|}^{\alpha }}I\left( \left| X \right|\le {{b}_{n}} \right) \\ & \le {{C}}b_{n}^{1-\alpha }{{t}^{\left( 1/\alpha \right)-1}}{{\left| {{a}_{ni}} \right|}^{\alpha }}E\left( \frac{{{\left| X \right|}^{\alpha }}}{{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}} \right)I\left( \left| X \right|\le {{b}_{n}} \right) \\ & \le {{C}}{{t}^{\left( 1/\alpha \right)-1}}{{n}^{-1+\left( 1/\alpha \right)}}{{\left| {{a}_{ni}} \right|}^{\alpha }}{{(\log n)}^{\left( 1/\gamma \right)-1}}, \end{align} $ | (2.13) |
and
$ \begin{eqnarray} E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right| > {{b}_{n}} \right)&\le& {{C}}\left| {{a}_{ni}} \right|E\left| X \right|I\left( \left| X \right| > {{b}_{n}} \right) \\ &\le& {{C}}b_{n}^{1-\alpha }{{\left( \log \left( 1+{{b}_{n}} \right) \right)}^{\left( \alpha /\gamma \right)-1}}\left| {{a}_{ni}} \right| \\ &\le& {{C}}{{n}^{-1+\left( 1/\alpha \right)}}{{(\log n)}^{-1+\left( 1/\gamma \right)}}\left| {{a}_{ni}} \right|. \end{eqnarray} $ | (2.14) |
Thus,
$ \begin{eqnarray} {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}\sum\limits_{i = 1}^{n}{E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right|\le {{b}_{n}} \right)}&\le& Cb_{n}^{-1}{{n}^{-1+\left( 1/\alpha \right)}}{{(\log n)}^{\left( 1/\gamma \right)-1}}\sum\limits_{i = 1}^{n}{{{\left| {{a}_{ni}} \right|}^{\alpha }}} \\ &\le& C{{(\log n)}^{-1}}\to 0, \end{eqnarray} $ | (2.15) |
and
$ \begin{eqnarray} {\mathop {\sup }\limits_{t \ge 1} }\, \frac{1}{{{b}_{n}}{{t}^{1/\alpha }}}\sum\limits_{i = 1}^{n}{E\left| {{a}_{ni}}X \right|I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }}, \left| X \right| > {{b}_{n}} \right)}&\le& Cb_{n}^{-1}{{n}^{-1+\left( 1/\alpha \right)}}{{(\log n)}^{-1+\left( 1/\gamma \right)}}\sum\limits_{i = 1}^{n}{\left| {{a}_{ni}} \right|} \\ &\le& C{{(\log n)}^{-1}}\to 0. \end{eqnarray} $ | (2.16) |
Then, (2.11) holds by the argumentation of (2.12)–(2.16).
Hence, for $ n $ sufficiently large, we have that $ {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{E{{Y}_{i}}} \right|\le \frac{{{b}_{n}}{{t}^{1/\alpha }}}{2} $ holds uniformly for all $ t\ge 1 $. Therefore,
$ \begin{equation} {{J}_{1}} = \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{\left( {{Y}_{i}}-E{{Y}_{i}} \right)} \right| > \frac{{{b}_{n}}{{t}^{1/\alpha }}}{2} \right)dt}}. \end{equation} $ | (2.17) |
By the Markov's inequality, (2.2) of Lemma 2.1 and (2.3) of Lemma 2.2, we get that
$ \begin{eqnarray} {{J}_{1}}&\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}E\left( {\mathop {\max }\limits_{1 \le j \le n} }\, {{\left| \sum\limits_{i = 1}^{j}{\left( {{Y}_{i}}-E{{Y}_{i}} \right)} \right|}^{2}} \right)dt}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{Y}_{i}}-E{{Y}_{i}} \right|}^{2}}} \right)dt}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}{{X}_{i}} \right|}^{2}}I\left( \left| {{a}_{ni}}{{X}_{i}} \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)dt}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( \left| {{a}_{ni}}X \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)dt}} \\ &&+C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( \left| {{a}_{ni}}X \right|\le {{b}_{n}} \right)} \right)dt}} \\ &&+C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}} < \left| {{a}_{ni}}X \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)dt}} \\ &&+C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}} \\ & = &{{J}_{11}}+{{J}_{12}}+{{J}_{13}}. \end{eqnarray} $ | (2.18) |
Based on the formula (2.2) of Lemma 2.2 in Li et al.[10], we get that
$ \begin{eqnarray} {{J}_{11}}& = &\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( \left| {{a}_{ni}}X \right|\le {{b}_{n}} \right)} \right)dt}} \\ &\le& \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\frac{1}{b_{n}^{\alpha }}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{\alpha }}I\left( \left| {{a}_{ni}}X \right|\le {{b}_{n}} \right)} \right)} < \infty. \end{eqnarray} $ | (2.19) |
Denoting $ t = {{x}^{\alpha }} $, by (2.3) of Lemma 2.2, the Markov's inequality and Lemma 2.3, we also get that
$ \begin{eqnarray} {{J}_{12}}& = &\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\frac{1}{b_{n}^{2}{{t}^{2/\alpha }}}\left( \sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}} < \left| {{a}_{ni}}X \right|\le {{b}_{n}}{{t}^{1/\alpha }} \right)} \right)dt}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\int_{1}^{\infty }{{{x}^{\alpha -3}}\sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}} < \left| {{a}_{ni}}X \right|\le {{b}_{n}}x \right)}dx}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\sum\limits_{m = 1}^{\infty }{\int_{m}^{m+1}{{{x}^{\alpha -3}}\sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}} < \left| {{a}_{ni}}X \right|\le {{b}_{n}}x \right)}dx}}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\sum\limits_{m = 1}^{\infty }{{{m}^{\alpha -3}}\sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}} < \left| {{a}_{ni}}X \right|\le {{b}_{n}}\left( m+1 \right) \right)}}} \\ & = &C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\sum\limits_{i = 1}^{n}{\sum\limits_{m = 1}^{\infty }{\sum\limits_{s = 1}^{m}{{{m}^{\alpha -3}}E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}}s < \left| {{a}_{ni}}X \right|\le {{b}_{n}}\left( s+1 \right) \right)}}}} \\ & = &C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\sum\limits_{i = 1}^{n}{\sum\limits_{s = 1}^{\infty }{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}}s < \left| {{a}_{ni}}X \right|\le {{b}_{n}}\left( s+1 \right) \right)\sum\limits_{m = s}^{\infty }{{{m}^{\alpha -3}}}}}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{2}}\sum\limits_{i = 1}^{n}{\sum\limits_{s = 1}^{\infty }{E{{\left| {{a}_{ni}}X \right|}^{2}}I\left( {{b}_{n}}s < \left| {{a}_{ni}}X \right|\le {{b}_{n}}\left( s+1 \right) \right){{s}^{\alpha -2}}}}} \\ &\le& C\sum\limits_{n = 1}^{\infty }{\frac{1}{nb_{n}^{\alpha }}\sum\limits_{i = 1}^{n}{E{{\left| {{a}_{ni}}X \right|}^{\alpha }}I\left( \left| {{a}_{ni}}X \right| > {{b}_{n}} \right)}} \\ &\le& CE{{{\left| X \right|}^{\alpha }}}/{{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty. \end{eqnarray} $ | (2.20) |
Analogous to the argumentation of Lemma 2.3, it is easy to show that
$ \begin{equation} {{J}_{13}} = \sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{1}^{\infty }{\sum\limits_{i = 1}^{n}{P\left( \left| {{a}_{ni}}X \right| > {{b}_{n}}{{t}^{1/\alpha }} \right)}dt}}\le CE{{{\left| X \right|}^{\alpha }}}/{{{\left( \log \left( 1+\left| X \right| \right) \right)}^{\alpha /\gamma -1}}}\; < \infty. \end{equation} $ | (2.21) |
Hence, the desired result $ {{J}_{1}} < \infty $ holds by the above statements. The proof of Theorem 1.1 is completed.
Remark 2.1. Under the conditions of Theorem 1.1, noting that
$ \begin{eqnarray} \infty & > & \sum\limits_{n = 1}^{\infty }{\frac{1}{n}}E\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right|-\varepsilon \right)_{+}^{\alpha} \\ & = & \sum\limits_{n = 1}^{\infty }{\frac{1}{n}}\int_{0}^{\infty }{P\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right|-\varepsilon > {{t}^{1/\alpha}} \right)d}t \\ &\ge& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}\int_{0}^{{{\varepsilon }^{\alpha }}}{P\left( \frac{1}{{{b}_{n}}}{\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > \varepsilon +{{t}^{1/\alpha }} \right)}dt} \\ &\ge& C\sum\limits_{n = 1}^{\infty }{\frac{1}{n}}P\left( {\mathop {\max }\limits_{1 \le j \le n} }\, \left| \sum\limits_{i = 1}^{j}{{{a}_{ni}}{{X}_{i}}} \right| > 2\varepsilon{{b}_{n}} \right)\quad \text{for} \quad\forall \varepsilon > 0. \end{eqnarray} $ | (2.22) |
Since $ \varepsilon > 0 $ is arbitrary, it follows from (2.22) that the complete moment convergence is much stronger than the complete convergence. Compared with the corresponding results of Li et al.[12], Chen and Sung[6], it is worth pointing out that Theorem 1.1 of this paper is an extension and improvement of those of Li et al.[12], Chen and Sung[6] under the same moment condition. In addition, the main result partially settles the open problem posed by Huang et al.[10] for the case $ 0 < \gamma < \alpha $ with $ 1 < \alpha \le 2 $.
In this work, we consider the problem of complete moment convergence for weighted sums of weakly dependent (or $ {{\rho }^{*}} $-mixing) random variables. The main results of this paper are presented in the form of the main theorem and a remark as well as Lemma 2.3, which plays a vital role to prove the main theorem. The presented main theorem improves and generalizes the corresponding complete convergence results of Li et al.[12] and Chen and Sung[6].
The authors are most grateful to the Editor as well as the anonymous referees for carefully reading the manuscript and for offering some valuable suggestions and comments, which greatly enabled them to improve this paper. This paper is supported by the Doctor and Professor Natural Science Foundation of Guilin University of Aerospace Technology.
All authors declare no conflicts of interest in this paper.
[1] | [ W.C. Allee, Integration of problems concerning protozoan populations with those of general biology, American Naturalist, 75 (1941): 473-487. |
[2] | [ U. Amaldi, Particle accelerators take up the fight against cancer, CERN Courier, URL http://cerncourier.com/cws/article/cern/29777. |
[3] | [ L. Barbara,G. Benzi,S. Gaini,F. Fusconi,G. Zironi,S. Siringo,A. Rigamonti,C. Barabara,W. Grigioni,A. Mazziotti,L. Bolondi, Natural history of small untreated hepatocellular carcinoma in cirrhosis: A multivariate analysis of prognostic factors of tumor growth rate and patient survival, Hepatology, 16 (1992): 132-137. |
[4] | [ S.M. Blower,E.N. Bodine,K. Grovit-Ferbas, Predicting the potential public health impact of disease-modifying HIV vaccines in South Africa: The problem of subtypes, Current Drug Targest -Infectious Disorders, 5 (2005): 179-192. |
[5] | [ S. Blower,H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: {An HIV} model, as an example, International Statistical Review, 62 (1994): 229-243. |
[6] | [ E.N. Bodine,M.V. Martinez, Optimal genetic augmentation strategies for a threatened species using a continent-island model, Letters in Biomathematics, 1 (2014): 23-39. |
[7] | [ T. Bortfeld, An analytical approximate of the bragg curve for therapeutic proton beams, Medical Physics, 24 (1997): 2024-2033. |
[8] | [ T. Bortfeld,W. Schlegel, An analytic approximation of depth-dose distributions for therapeutic proton beams, Physics in Medicine & Biology, 41 (1996): 1331-1339. |
[9] | [ D. Boukal,L. Berec, Single-species models of the allee effect: Extinction boundaries, sex ratios, and mate encounters, Journal of Theoretical Biology, 218 (2002): 375-394. |
[10] | [ W.H. Bragg,R. Kleenman, On the ionization curve of radium, Philosophical Magazine, S6 (1904): 726-738. |
[11] | [ T. Chiba,K. Tokuuye,Y. Matsuzaki,S. Sugahara,Y. Chuganji,K. Kagei,J. Shoda,M. Hata,M. Abei,H. Igaki,N. Tanaka,Y. Akine, Proton beam therapy for hepatocellular carcinoma: A retrospective review of 162 patients, Clinical Cancer Research, 11 (2005): 3799-3805. |
[12] | [ F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford Biology, Oxford University Press, 2009. |
[13] | [ F. Dionisi,L. Widesott,S. Lorentini,M. Amichetti, Is there a role for proton therapy in the treatment of hepatocellular carcinoma? A systematic review, Radiotherapy & Oncology, 111 (2014): 1-10. |
[14] | [ N. Fausto, Liver regeneration, Journal of Hepatology, 32 (2000): 19-31. |
[15] | [ A. Grajdeanu, Modeling Diffusion in a Discrete Environment, Technical Report GMU-CS-TR-2007-1, Department of Computer Science, George Mason University, Fairfax, VA, 2007. |
[16] | [ I. Hara,M. Murakami,K. Kagawa,K. Sugimura,S. Kamidono,Y. Hishikawa,M. Abe, Experience with conformal proton therapy for early prostate cancer, American Journal of Clinical Oncology, 27 (2004): 323-327. |
[17] | [ D. Jette,W. Chen, Creating a spread-out bragg peak in proton beams, Physics in Medicine & Biology, 56 (2011): N131-N138. |
[18] | [ R. Kjellberg,T. Hanamura,K. Davis,S. Lyons,R. Adams, Bragg-peak proton-beam therapy for arteriovenous malformations of the brain, New England Journal of Medicine, 309 (1983): 269-274. |
[19] | [ K.B. Lee,J.-S. Lee,J.-W. Park,T.-L. Huh,Y. Lee, Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases, Experimental & Molecular Medicine, 40 (2008): 118-129. |
[20] | [ R. Levy,R. Schulte, Stereotactic radiosurgery with charged-particle beams: Technique and clinical experience, Translational Cancer Research, 1 (2012): 159-172. |
[21] | [ E. Lindblom, The Impact of Hypoxia on Tumour Control Probability in the High-Dose Range Used in Stereotactic Body Radiation Therapy, PhD thesis, Stockholm University, 2012. |
[22] | [ S. MacDonald,T. DeLaney,J. Loeffler, Proton beam radiation therapy, Cancer Investigation, 24 (2006): 199-208. |
[23] | [ O. Manley, A mathematical model of cancer networks with radiation therapy, Journal of Young Investigators, 27 (2014): 17-26. |
[24] | [ G.K. Michalopoulos,M.C. DeFrances, Liver regeneration, Science, 276 (1997): 60-66. |
[25] | [ N. Nagasue,H. Yukaya,Y. Ogawa,H. Kohno,T. Nakamura, Human liver regeneration after major hepatic resection; A Study of Normal Liver and Livers with Chronic Hepatitis and Cirrhosis, Annals of Surgery, 206 (1987): 30-39. |
[26] | [ N. Okazaki,M. Yoshino,T. Yoshida,M. Suzuki,N. Moriyama,K. Takayasu,M. Makuuchi,S. Yamazaki,H. Hasegawa,M. Noguchi,S. Hirohashi, Evalulation of the prognosis for small hepatocellular carcinoma bbase on tumor volume doubling times, Cancer, 63 (1989): 2207-2210. |
[27] | [ H. Paganetti and T. Bortfeld, New Technologies in Radiation Oncology, Medical Radiology Series, Springer-Verlag, chapter Proton Beam Radiotherapy -The State of the Art, (2006), 345-363. |
[28] | [ R.E. Schwarz,G.K. Abou-Alfa,J.F. Geschwind,S. Krishnan,R. Salem,A.P. Venook, Nonoperative therapies for combined modality treatment of hepatocellular cancer: expert consensus statement, HPB, 12 (2010): 313-320. |
[29] | [ R. Siegel,K. Miller,A. Jemal, Cancer statistics, 2015, CA: A Cancer Journal for Clinicians, 65 (2015): 5-29. |
[30] | [ J.D. Slater,C.J.J. Rossi,L.T. Yonemoto,D.A. Bush,B.R. Jabola,R.P. Levy,R.I. Grove,W. Preston,J.M. Slater, Proton therapy for prostate cancer: the initial loma linda university experience, International Journal of Radiation Oncololy Biology Physics, 59 (2004): 348-352. |
[31] | [ A. Terahara,A. Niemierko,M. Goitein,D. Finkelstein,E. Hug,N. Liebsch,D. O'Farrell,S. Lyons,J. Munzenrider, Analysis of the relationship betwen tumor dose inhomogeneity and local control in patients with skull base chordoma, International Journal of Radiation Oncololy Biology Physics, 45 (1999): 351-358. |
[32] | [ M. Tubiana, Tumor cell proliferation kinetics and tumor growth rate, Acta Oncologica, 28 (1989): 113-121. |
[33] | [ W. Ulmer,B. Schaffner, Foundation of an analytical proton beamlet model for inclusion in a general proton dose calculation system, Radiation Physics and Chemistry, 80 (2011): 378-389. |
[34] | [ D. Weber,A. Trofimov,T. DeLaney,T. Bortfeld, A treatment plan comparison of intensity modulated photon and proton therapy for paraspinal sarcomas, International Journal of Radiation Oncololy Biology Physics, 58 (2004): 1596-1606. |
[35] | [ U. Weber,G. Kraft, Comparison of carbon ions vs protons, The Cancer Journal, 15 (2009): 325-332. |
[36] | [ E. Werner, A general theoretical and computational framework for understanding cancer, arXiv: 1110.5865. |
[37] | [ R. Wilson, Radiological use of fast protons, Radiology, 47 (1946): 487-491. |
[38] | [ J.F. Ziegler, The stopping of energetic light ions in elemental matter, Journal of Applied Physics, 85 (1999): 1249-1272. |
1. | Yukun Xiao, Jianzhi Han, Cocommutative connected vertex (operator) bialgebras, 2025, 212, 03930440, 105461, 10.1016/j.geomphys.2025.105461 |