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Abstract. Proton therapy is a type of radiation therapy used to treat cancer.
It provides more localized particle exposure than other types of radiotherapy

(e.g., x-ray and electron) thus reducing damage to tissue surrounding a tu-

mor and reducing unwanted side effects. We have developed a novel discrete
difference equation model of the spatial and temporal dynamics of cancer and

healthy cells before, during, and after the application of a proton therapy treat-

ment course. Specifically, the model simulates the growth and diffusion of the
cancer and healthy cells in and surrounding a tumor over one spatial dimension

(tissue depth) and the treatment of the tumor with discrete bursts of proton
radiation. We demonstrate how to use data from in vitro and clinical studies

to parameterize the model. Specifically, we use data from studies of Hepato-

cellular carcinoma, a common form of liver cancer. Using the parameterized
model we compare the ability of different clinically used treatment courses to

control the tumor. Our results show that treatment courses which use confor-

mal proton therapy (targeting the tumor from multiple angles) provides better
control of the tumor while using lower treatment doses than a non-conformal

treatment course, and thus should be recommend for use when feasible.

1. Introduction. Modern oncology provides a wide array of alternative cancer
treatment options. With 1.6 million cases in the U.S. in 2014 and only 600,000
deaths, treatment capabilities are improving [29]. Treatment regimes are usually
designed to balance the expedited removal/reduction of cancer cells with the quality
of life and long term health of the patient.

One common form of cancer treatment is external beam radiotherapy, often re-
ferred to as just radiation therapy. In radiation therapy beams of x-rays (high
energy photons), gamma rays, or other charged particles are fired into the body of
a patient at a specifically targeted point. As the beam passes through tissue the
DNA of cells are damaged, typically resulting in cell death. Note that the cell death
does not occur instantaneously as the radiation is applied. Depending on the type
of cell, it may take several hours or even days before the damaged cells begin to die.
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By firing the beam multiple times from different angles, referred to as conformal
radiation therapy, radiation oncologists can cause significant damage to cancer cells
[27]. Though damage is done to both cancer cells and surrounding healthy cells, the
aim of radiation therapy is to kill cancer cells while minimizing damage to healthy
cells [27, 22, 20].

Proton therapy is a form of radiation that uses a particle accelerator to form
a beam of high energy protons that are fired into the patient to irradiate cancer
cells. The advantage of proton therapy is that it provides more localized treatment
and allows for higher dose treatments for patients than radiation therapy using
photons. As shown in Figure 1 and first observed by Bragg and Kleenman [10],
charged particle beams of proton mass deliver the majority of their dose (energy
per unit mass) at a depth near the end of their range and over a narrow depth range
(about 0.5-1.0 cm) known as the Bragg peak region [20, 35, 22, 2]. For a single Bragg
peak curve, the depth at which the maximum dosage is received, called the target
depth, can be controlled by altering the initial energy generated by the particle
accelerator forming the proton beam. Note that the amount of dosage received at
tissue depths greater than the target depth quickly fall off to zero.

Figure 1. Dose delivered by a single proton beam targeted at a
depth of 12 cm (shown by the dashed line).

The narrowness of the Bragg peak, and the relatively low dose outside the Bragg
peak region prompted Wilson in 1946 [37] to suggest the use of protons for radiation
therapy as a means of minimizing damage to tissue surrounding a tumor site, and
the first patient treated with proton therapy was in 1954 at the Lawrence Berkeley
Laboratory [27, 2]. Since then it has been observed that proton therapy results
in a higher probability of tumor control and patient tolerance (i.e., less negative
side-effects) than treatment with photon therapy [27]. Due to the ability of proton
therapy to target a narrow region, the use of proton therapy has been of particular
interest in treating tumors growing in close proximity to what are called serially
organized tissues in which damage to a small portion of this type of tissue will have
secondary effects on adjacent tissue such that normal function may cease [21, 27],
for example the spinal chord. Proton therapy has been used to treat tumors located
in a variety of locations, including the paranasal sinus [31], the prostate [16, 30],
the brain [18], the base of the skull [34], and the liver [11].

Since the mass of a typical tumor targeted with proton therapy is wider than the
Bragg peak region of a single proton beam, to treat the entire tumor a proton beam
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is modulated to create a spread out Bragg peak (SOBP) [22]. Modulation is achieved
through a sequence of absorbers, each creating a single Bragg peak curve with the
sequential set of Bragg peaks occurring at decreasing depths and with decreasing
relative dosage [27]. Figure 2 shows a SOBP which is the sum of the sequence of
Bragg peak curves shown. A typical treatment session involves the firing of one or
more modulated proton beams [27]. If multiple modulated beams are fired, each
beam targets the tumor from a different angle in a treatment method known as
conformal proton therapy.

Figure 2. The relative dose of a SOBP curve (thick curve) com-
prised of 12 Bragg peaks (thin curves). The shaded region shows
the range of targeted depths.

Due to the fact that the relative dose of a proton therapy treatment is hetero-
geneously delivered over a range of depths, we have developed a spatially explicit
model to examine the effects of proton therapy upon a tumor mass and surrounding
tissue. Specifically, we have formulated a discrete difference equation patch model
with discrete diffusion to simulate tumor growth over one-dimensional space and
with discrete bursts of applied proton therapy. Using this model we examine the
effects of applying proton therapy multiple times over a period of several weeks
(a single treatment course). The development of our model builds off of existing
models of linear cancer networks [36, 23] which are briefly described in Section 2.
A detailed description of our proposed model and assumptions are given in Sec-
tion 3. In Section 4 we describe how the model is parameterized using data from
in vitro and clinical studies. As an example, we parameterize the model for the
treatment of Hepatocellular carcinoma, a common form of liver cancer. In Section
5 we describe and compare the results of simulations. We examine one treatment
course of non-conformal proton therapy and two different conformal proton therapy
treatment courses. Finally, in Section 6 we consider the implication and impact of
our results, discuss the potential drawbacks of our proposed model, and consider
some future extensions to the proposed model.

2. Linear cancer networks. In 2011, Werner proposed a general theoretical
framework describing all possible cancer networks [36]. Werner’s new paradigm
presents many open research problems, and much work remains to be done in
translating these abstract networks into descriptive implementations such as dif-
ferential equation or descrete difference equation models in order to simulate and
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quantify the impact of radiation and other therapies. Linear cancer networks, one
of the conceptual frameworks of tumor growth developed by Werner [36], allows
for a simplified approach to modeling tumor development. A tumor is assumed to
begin with cancer stem cells (denoted as A cells) which differentiate to produce non-
proliferating cancer cells (denoted as B cells). It is assumed the B cells amass to
form the bulk of the tumor. A single A cell, however, will continue differentiating,
producing more and more B cells.

Let A(t) be the number of A cells at time t, and B(t) be the number of B cells
at time t. The initial model of a linear cancer network proposed by Werner [36]
assumed the number of A cells remained constant, while the growth rate of B cells
increased linearly with respect to the number of A cells (hence the name linear
cancer networks). This simple model is described by dA/dt = 0 and dB/dt = kAA,
where kA is the differentiation rate for the B cells. Manley [23] expanded on the
model proposed by Werner by adding the cells of healthy tissue, H(t), to the model,
and allowing logistic growth of the cancer cells which is justified by previous research
on tumor growth rates (see [32] for details). This expanded model is described by

dA

dt
= kAA

(
1− A

MA

)
− rA (1a)

dB

dt
= kAA

(
A

MA

)(
1− B

MB

)
− δB − rB (1b)

dH

dt
= kHH

(
1− H

MH

)
− rH , (1c)

where MA, MB , and MH represent the carrying capacities of the A, B, and H cells
in a given tissue volume, respectively; kA and kH are the intrinsic growth rates of
the cancer and healthy cells, respectively; δ is the natural death rate of tumor cells;
and rA, rB , and rH are constant death rates due to radiation therapy. Manley uses
the model to explore the effects of both photon and proton radiation therapy, but
the assumption of a continuous application of the therapy and a spatially homoge-
neous dosage is unrealistic. Thus, we propose a spatial explicit model where the
application of proton therapy is applied in discrete bursts.

3. Model description & assumptions. The model we propose builds on the
Werner-Manley model given in System (1). However, our model is discrete in time
and space (using discrete difference equations), uses diffusion to simulate tumor
growth, and allows for the repeated application of proton radiation in discrete
bursts. Our model uses a depth-range targeted SOBP to simulate the application
of proton radiation and assumes cell death over time due to a single application of
proton radiation is modeled by a Gaussian distribution function.

Let Ait, B
i
t, and Hi

t be the densities of A, B, and H cells respectively at time t
and depth i, where t, i ∈ N. Each time step t represents 1 hour, and each depth
i represents a layer of tissue 1 mm thick. Let P it be the relative dose of proton
therapy at time t and depth i. We assume that cancer stem cells and healthy
cells will diffuse from tissue depths of high concentration to tissue depths of low
concentration, and use the formulation for discrete diffusion described in [15]. Since
the Werner-Manley model of the linear cancer networks assumes the amassing of B
cells, we consider the diffusion of B cells to be negligible. Our model is given by
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Ait+1 = Ait + kAA
i
t

(
1− Ait

MA

)
−AitP it + dA

n∑
j=0

(Ajt −Ait)e−(j−i)
2/µA (2a)

Bit+1 = Bit + kAA
i
t

(
Ait
MA

)(
1− Bit

MB

)
−BitP it (2b)

Hi
t+1 = Hi

t + kHH
i
t

(
1− Hi

t

1−Ait −Bit

)
−Hi

tP
i
t + dH

n∑
j=0

(Hj
t −Hi

t)e
−(j−i)2/µH ,

(2c)

where MA, MB represent the relative carrying capacities of the A and B cells
respectively, and kA and kH are the intrinsic growth rates of the cancer and healthy
cells, respectively. Note that for any given tissue depth i, Ait + Bti + Hi

t ≤ 1, and
thus the maximum density at tissue depth i is 1 cell per unit area. The effective
rates of diffusion for A and H cells are given by parameters µA and µH , respectively,
and the diffusion coefficients dA and dH are defined as

dA =

 n∑
i=0

n∑
j=0

(
e−(j−i)

2/µA

)−1 and dH =

 n∑
i=0

n∑
j=0

(
e−(j−i)

2/µH

)−1 .
For a given time t, let τ be the set of previous times at which proton therapy has

been applied. Then

P it = α
∑
t∗∈τ

[
Dit∗e−β(t−t

∗−δ)2
]
, (2d)

where α is the maximum cell death rate at tissue depth i due to a single proton
treatment, Dit∗ is the relative dose at depth i and time t∗ due to the treatment
applied at time t∗, δ is the number of hours after t∗ at which the cell death rate is
maximized due to treatment applied at t∗, and β determines the time range over
which the majority of cell death occurs. The relative dose D over all tissue depths
is defined by a clinical approximation of the solution to the Bethe-Block Equation
which simulates a Bragg-Peak curve (see Section 3.1). Note that the formulation of
P ti allows for the delayed effect of proton therapy treatment applied at a previous
time step to combine with the effect of treatment applied at a later time step thus
accounting for the delayed effect of a proton therapy treatment on cell death.

3.1. Bethe-Bloch equation. High energy particles such as protons and photons
damage tissue through which they travel in distinct patterns defined by their stop-
ping power. As a particle travels through a given material, it may collide with the
molecules or cells of that material, releasing a portion of its energy. The stopping
power of a charged particle, S(z), is defined to be the amount of energy at depth z a
given material will receive when high energy particles pass through it [10, 33]. The
Bethe-Bloch formula, explained in detail in [38], gives the stopping power of a given
system of excited particles through a given material. However, in a clinical setting,
the stopping power, and the dose at each depth, is determined from an approximate
solution to the Bethe-Bloch equation, which we will refer to as a clinical solution.

3.1.1. A clinical solution for the Bethe-Bloch equation. We use the clinical solution
of the Bethe-Bloch equation developed by Ulmer and Schaffner [33] to represent the
stoppage power (and thus the dose) of the protons at various tissue depths. Let R
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be the target depth. The initial energy generated by the particle accelerator, E0, is
defined as a function of R [7],

E0 =

(
R

0.0022

)1/1.77

. (3)

The dosage at depth z given target depth R, S(z,R), is approximated by

S(z,R) ≈
6∑

n=1

φn(z,R), (4)

where the functions φi(z,R) are defined as

φ1(z,R) = C1 exp

(
−
(
R− z
τ0

)2
)
θ(z) (5a)

φ2(z,R) = 2C2 θ(z) (5b)

φ3(z,R) = 2C3 exp (−Qp (R− z)) θ(z) (5c)

φ4(z,R) = 2C4

( z
R

)2
θ(z) (5d)

φ5(z,R) = 2C5

(
1− z

R

)
θ(z) (5e)

φ6(z,R) =

(
5∑
i=2

φn(R,R)

)
exp

(
−2(z −R)2

)
ψ(z). (5f)

The coefficients Ci for i = 1, . . . , 6, and Qp are functions of E0 (and thus functions
of the target depth R) and are given in Table 1. The functions θ(z) and ψ(z) are
step functions defined by

θ(z) =

{
1, z ≤ R
0 z > R

and ψ(z) =

{
0, z ≤ R
1 z > R

. (6)

Note that z = R is the depth at which maximum dosage is received, and that the
functions φ1(z), . . . , φ5(z) provide the approximation of S(z,R) for 0 ≤ z ≤ R,
while the function φ6(z) provides the approximation of S(z,R) for z ≥ R. The
Bragg peak curves in Figures 1 and 2 are generated using this approximation.

Table 1. Coefficients and parameters for clinical approximation
of the Bethe-Bloch formula (Equations (4)-(6)) as given in [33].

Parameter Value Parameter Value

C1 2.277463 − 0.0018473E0 C2 0.243100 − 0.0007000E0

C3 1.029500 − 0.0010300E0 C4 0.405300 − 0.0007000E0

C5 0.007000 τ0 10−5

Qp
π(6.267510 + 0.0010300E0)

R (1 + (2.11791 × 10−5)E0 + (0.9192399 × 10−7)E2
0)
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3.1.2. Formulating a spread Out Bragg peak (SOBP). A SOBP curve is formed as a
weighted sum of multiple Bragg peak curves. A method for determining the weights
of each single Bragg peak curve was developed by Bortfeld [8], and refined by Jette
and Chen [17]. For a SOBP created using n+ 1 Bragg peak curves distributed over
a target region [(1− χ)Rmax, Rmax], the target depth of the kth curve is given by

Rk =

[
1−

(
1− k

n

)
χ

]
Rmax, for k = 0, 1, . . . , n, (7)

and thus the kth Bragg peak curve is given by S(z,Rk). Note that R0 = Rmax,
Rn = (1 − χ)Rmax, and χ represents the proportion of the region [0, R0] which is
targeted. The SOBP curve represents the dose at tissue depth z (in MeV cm2/g)
and is defined as

D(z,Rmax, χ) =

n∑
k=0

wkS(z,Rk), (8)

with each weight wk defined by

wk =


1−

(
1− 1

2n

)1−1/p
k = 0[

1− 1
n

(
k − 1

2

)]1−1/p − [1− 1
n

(
k + 1

2

)]1−1/p
1 ≤ k ≤ n− 1(

1
2n

)1−1/p
k = n,

(9)

where the parameter p is adjusted to keep the dose over target region relatively
constant. Note that Figure 2 shows a SOBP composed of 12 Bragg peak curves
(n = 11) with Rmax = 12 cm, χ = 0.3, and p = 2.

For our model (System (2)), the relative dose at depth i due to treatment applied
at time step t∗ is approximated by

Dit∗ =
D
(
z(i)+z(i+1)

2 , Rmax, χ
)

Dmax
(10)

where z(i) is the tissue depth (in cm), and Dmax = max
z

[D(z,Rmax, χ)]. Note that

the relative dose for tissue depth i is calculated at the midpoint of the ith subinterval
[i, i+ 1].

4. Model parameters for a case of hepatocellular carcinoma. As a sample
case, we have used parameters which describe the growth and treatment of Hepa-
tocellular carcinoma (HCC), a common form of liver cancer. Proton therapy has
been used to treat HCC, but there remains a need for research and clinical trials to
determine the effects of proton therapy used alone and with other treatment options
[13]. Using the model proposed in Section 3 with parameters which describe the
growth of liver cells (hepatocytes) and the impact of proton therapy on HCC we
are able to examine the temporal and spatial effects of treating HCC with proton
therapy alone.

All parameters used for the numerical simulation of the growth and treatment of
HCC tumors are given in Table 2, with their derivation and/or biological motivation
described in detail through the remainder of this section.

4.1. Parameters defining spatial & temporal scales. We assume that each
depth i represents a layer of tissue 1 mm thick. For the simulations shown in
Section 5, we use a spatial domain of 20.1 cm, i.e. i ∈ 0, 1, . . . , 200. Additionally,
each time step t represents the passing of 1 hour.
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Table 2. Values of parameters used in simulations of the model
described in Section 3.

Parameter Value

kA Cancer cell growth rate (hours−1) 0.008 165

kH Healthy cell growth rate (hours−1) 2.108 703

MA Relative carrying capacity of A cells in 1 mm layer of tissue 0.225

MB Relative carrying capacity of B cells in 1 mm layer of tissue 0.675

µA Effective diffusion rate for A cells 0.133 642

µH Effective diffusion rate for H cells 0.131 166

α Maximum cell death rate at depth i from a single treatment 0.02

β Determines range over which the majority of cell death occurs 0.0075

δ Hours after treatment at which cell death rate is maximized 47

4.2. Instrinic growth & effective diffusion rates of H cells. In the absence
of cancer cells, when a portion of the liver is surgically removed, the liver cells will
regenerate quickly (see liver regeneration studies [25, 24, 14] for details). Together,
the parameters kH (the intrinsic growth rate of H cells) and µH (the effective
diffusion rate of H cells) determine how quickly healthy tissue is able to regenerate
across the spatial domain. To determine appropriate values of kH and µH we used
data for liver cell regeneration provided by Nagasue, et al. [25]. In this study, five
patients with normal livers (no chirrosis or chronic hepatitis) had right lobectomies
where 60% of the volume of their liver was removed leaving 40% of each patient’s
original liver volume directly after surgery. Averaging across the five patients, after
8 days liver volumes had recovered to 49% of the original liver volumes, and after
100 days liver volumes had recovered to 98% of the original liver volumes.

To determine the values of kH and µH which would best approximate the aver-
aged patient data presented by Nagasue, et al. [25] we use Latin Hypercube sampling
to generate 2000 pairs of (kH , µH) assuming possible values of kH and µH to be uni-
formly distributed over [0.0005, 3] and [0.05, 3], respectively (see [5, 4, 6] for details
and examples of Latin Hypercube sampling). Next, we simulate System (2) with
no cancer cells (i.e., Ait = Bit = 0 for all i and t) and no proton therapy treatment
over 100 days (2400 times steps) for each of the (kH , µH) parameter pairs. Each
simulation uses a healthy cell initial condition of

Hi
0 =

{
1 i = 0, . . . , 80

0 i = 81, . . . , 200
,

i.e., we start with 40% of the total possible volume of healthy cells. Lastly, we select
kH and µH such that

min
kH , µH

√
(H192 − 0.49)2 + (H2400 − 0.98)2 where Ht =

1

201

∑
i

Hi
t .

This process yields the parameter values kH = 2.108703 and µH = 0.131166. Note
that 8 days is 192 time steps and 100 days is 2400 times steps.
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4.3. Relative carrying capacities. Recall that System (2) is constructed such
that Ait + Bit + Hi

t ≤ 1. We further assume that the relative carrying capacities
of A and B cells at tissue depth i is MA + MB < 1, thus a particular layer can
become mostly cancer cells, but cannot be composed entirely of cancer cells. Next,
an underlying assumption of linear cancer networks is that A cells proliferate, while
B cells accumulate. Thus, we assume that MB > MA. Specifically for the results
shown in Section 5 we assume MA + MB = 0.9 and MB = 3MA, which together
yield MA = 0.225 and MB = 0.675.

4.4. Instrinic growth & diffusion rates of A cells. The tumor volume doubling
time (TVDT) of HCCs varies greatly. In a study of 15 patients with small (< 5 cm
in diameter) HCC tumors by Okazaki, et al. [26] the range in TVDTs was 39–305
days with mean 102 ± 77 days. In study of 39 patients with small (< 5 cm in
diameter) HCC tumors by Barbara, et al. [3] the range in TVDTs was 27–605 days
with mean of 204 ± 135 days. For parameterization of System (2) we assumed a
TVDT of 150 days. A doubling in tumor volume is assumed to be equivalent to a
doubling in cancer cell density. Thus, if we let

Ct =
1

201

∑
i

(
Ait +Bit

)
be the average cancer density across all tissue depths at time t, then after 150 days
(t = 3600) we expect

C3600 = 2C0. (11)

However, since Model 2 accounts for only one spatial dimension, if we assume the
HCCs develop in a volume that can be approximated by sphere, then for a tumor
with diameter d0 at time t = 0, the diameter t days later will be

dt ≈ d0 × 10t/(10 TD), (12)

where TD is the tumor volume doubling time. For example, if TD = 150 and the
tumor is 30 mm in diameter at t = 0 (i.e., d0 = 30), then after 150 days (t = 3600)
the tumor will have a diameter of 38 mm (i.e., d3600 = 38).

For the purpose of measurement, we assume that tissue depths with Ait + Bit ≥
0.55 are “visible” as part of the tumor, and thus contribute to the diameter of the
tumor. To determine parameter combinations that would result in a tumor volume
doubling time of 150 days, we start with a visible 30 mm tumor located in the center
of the spatial domain. Specifically, we use initial conditions

Ai0 =

{
0.1375 i = 85, . . . , 114

0 otherwise
, Bi0 =

{
0.4125 i = 85, . . . , 114

0 otherwise
, and

Hi
0 = 1−Ai0 −Bi0.

Notice, for i = 85, . . . , 114, Ai0 +Bi0 = 0.55 and Bi0 = 3Ai0.
To determine values of kA and µA for which C3600 ≈ 2C0 and d3600 = 38,

we again use Latin Hypercube sampling to generate 1000 pairs of (kA, µA) assum-
ing possible values of kA and µA to be uniformly distributed over [0.0005, 0.1] and
[0.05, 1.0], respectively. Next, we simulate System (2) with no proton therapy treat-
ment over 150 days (3600 times steps) for each of the 1000 (kA, µA) parameter pairs.
Lastly, we select the (kA, µA) parameter pair such that d3600 = 38 and

min
kA, µA

∣∣∣∣C3600

C0
− 2

∣∣∣∣ .
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This process yields the parameter values kA = 0.008165 and µA = 0.133642 and
result in C3600 = 2.037C0 and d3600 = 38.

4.5. Parameters for application of proton therapy. Proton radiation dam-
ages the DNA of cells, but does not cause the immediate cell death. An experiment
by Lee, et al. [19] on the effects of proton therapy on HCC cell death found that
in a culture of HCC cells exposed to a 5 Gy dose proton beam (a typical patient
dose) there was virtually no effect on cell death during the first 24 hours, but only
about 66.5% of the cells were alive after 72 hours. If the dose was lowered to 2 Gy,
there was still virtually not effect on cell death during the first 24 hours, and 74.7%
of the cells were alive after 72 hours. Since Lee, et al. [19] do not provide data on
cell death after 72 hours, for both doses we have assumed the increase in cell death
after 72 hours is minimal.

We approximate the HCC cell death rate at time t and tissue depth i from a
single proton therapy treatment applied at time t = 0 by the function

f(t) = αe−β(t−δ)
2

, (13)

where α is the maximum cell death rate at depth i from a single treatment, δ is
the hours after a single treatment at which the cell death rate is maximized, and β
defines the range over which the majority of the cell death occurs. Let xt be the
proportion of the initial HCC cell culture left after time t. If a single treatment of
proton therapy is applied at t = 0, then

xt+1 = xt(1− f(t)). (14)

Using Equation (14), we determined estimates for α, β, and γ that fit the data for
both the 5 Gy and 2 Gy dose experiments performed by Lee, et al [19].

5 Gy Dose: Parameter values α = 0.020, β = 0.00750, and δ = 47 yield
x24 = 0.999, x72 = 0.663, and x100 = 0.662 which approximates the data from Lee,
et al. [19] for a 5 Gy dose.

2 Gy Dose: Parameter values α = 0.015, β = 0.00845, and δ = 50 yield
x24 = 1.000, x72 = 0.748, and x100 = 0.748 which approximates the data from Lee,
et al. [19] for a 2 Gy dose.

Figure 3 shows the time dependent cell death rate at a particular tissue depth
due to a single applications of proton therapy treatment using a 5 Gy dose (solid
cure) and a 2 Gy dose (dashed curve).

5. Numerical simulations of growth & treatment of an HCC tumor. The
parameter values used for each of the simulations discussed here are given in Table
2. Note a single treatment course refers to a set of proton therapy treamtents given
to a patient over a 1–2 month period after which there is a period of no treatment
so that the patient can recover from any adverse side effects of the treatment. After
the period of no treatment the patient is usually re-evaluated to determine how
much of the cancer remains.

5.1. Non-conformal treatment course. To simulate the effects of a typical (non-
conformal) proton therapy treatment course given to a HCC patient we used a
treatment course (multiple doses of proton therapy administered over several weeks)
similar to those reported by a retrospective review of proton therapy treatment in
162 HCC patients [11]. Of the 162 patients, the median dose given to a patient
was 4.5 Gy, however dose size ranged from 2.9–6.0 Gy. Patients received 10–24
doses over 13–50 days. Typically, the larger the dose size, the fewer doses given.
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Figure 3. Time dependent cell death rate at tissue depth i due
to a single proton therapy treatment as described by Equation (13)
with α = 0.020, β = 0.00750, and δ = 47 for 5 Gy dose (solid curve)
and α = 0.015, β = 0.00845, and δ = 50 for 2 Gy dose (dashed
curve).

Of the 162 patients, the treatment course given most often was a dose of 4.5 Gy
given 16 times over the course of 24 to 43 days. Since the data we used for time
dependent cell death rate used a 2.0 Gy dose and a 5.0 Gy dose, we approximated
this treatment course with a dose schedule of 5.0 Gy given 16 times over 35 days
(5 weeks) with the dosing schedule as shown in Table 3(a). Note a total of 80 Gy
of proton radiation are administered over the 5 weeks.

Table 3. Proton therapy treatment course of (a) 16 doses over
35 days (5 weeks), and (b) 20 doses over 49 days (7 weeks). The
number in each box indicates the day of the treatment course and
shaded boxes indicate the days on which treatment is administered.

(a) 5 week treatment course

Week S M T W T F S

1 1 2 3 4 5 6 7

2 8 9 10 11 12 13 14

3 15 16 17 18 19 20 21

4 22 23 24 25 26 27 28

5 29 30 31 32 33 34 35

(b) 7 week treatment course

Week S M T W T F S

1 1 2 3 4 5 6 7

2 8 9 10 11 12 13 14

3 15 16 17 18 19 20 21

4 22 23 24 25 26 27 28

5 29 30 31 32 33 34 35

6 36 37 38 39 40 41 42

7 43 44 45 46 47 48 49

The simulation uses initial conditions

Ai0 =

{
0.1375 i = 85, . . . , 114

0 otherwise
, Bi0 =

{
0.4125 i = 85, . . . , 114

0 otherwise
, and

Hi
0 = 1−Ai0 −Bi0.
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Notice, for i = 85, . . . , 114, Ai0 + Bi0 = 0.55 and Bi0 = 3Ai0. The simulation allows
the tumor to grow for 150 days (3600 times steps), and Day 1 of the treatment
schedule begins on Day 151 of the simulation. We assume that treatment is given
at noon each day it is scheduled, thus the first dose is administered at noon on
Day 152 of the simulation (time step t = 152 × 24 + 12 = 3660). After the 35 day
treatment period, the simulation continues another 90 days (without treatment) to
allow for observation of tumor growth after treatment. Thus, the entire simulation
is 275 days (6600 time steps).

The results of the simulation are shown in Figures 4(a) and 4(b). Again, for the
purposes of measurement, we assume that tissue depths with Ait + Bit ≥ 0.55 are
“visible” as a part of the tumor, and thus contribute to the diameter of the tumor,
dt. At the beginning of the simulation the cancer cells (A and B cells) only exist at
tissue depths i = 85, . . . , 114 making the diameter of the tumor 30 mm (d0 = 30).
After 150 days of no treatment, there are 2.037 times as many cancer cells present as
at the start of the simulation (C3600 = 2.037 C0, using the notation of Section 4),
and the diameter of the visible tumor has grown to 38 mm (d3600 = 38). After the 35
day treatment period, there are 0.062 times as many cancer cells present as at Day
150 (C4440 = 0.062 C3600, nearly a 94% reduction in cancer cell density), and the
diameter of the visible tumor has shrunk to 0 mm (d4440 = 0). Though this result
seems promising, after the additional 90 day observation period, there are 1.188
times as many cancer cells present as at Day 150 (C6600 = 1.188 C3600, almost a
19% increase in cancer cell density when compared to right before treatment), and
the diameter of visible tumor has increased to 44 mm (d6600 = 44). These results
are summarized in Table 4. Note, if no proton therapy treatment had been given
over the 35 day treatment period, then by Day 275 there would be 1.236 times as
many cancer cells present as at Day 150 (C6600 = 1.236 C3600) and the diameter of
visible tumor would have increased to 46 mm (d6600 = 46). This means, the patient
is only slightly better off for having undergone the treatment.

In Figure 4(b) we see the healthy cells quickly rebound into the tumor region
during and shortly after treatment, but as the observation period progresses the
healthy cells are removed from the tumor region as the tumor re-establishes itself.
Upon close inspection of Figure 4(b), a shaded triangle centered around the tumor
can be seen. Figure 5 shows a close up of a portion of this region from Figure 4(b).
Specifically, it shows tissue depths i = 75, . . . , 90 for the first 6 hours of Day 30 of
the simulation, that is t = 721, . . . , 726. The checkerboard pattern that forms is
a result of the combination of the diffusion of healthy cells and the overcrowding
effects of logistic growth. For clarity, in hours 1 and 2 of Day 30 (t = 721 and
t = 722) boxes are formed around three tissue depths: 75 mm, 79 mm, and 82 mm.
The values shown in each box indicate the value of Hi

t at that time and tissue depth.
Notice, within the checkerboard patterned region the density of healthy cells are
switching to values above 1 (the carrying capacity of any single tissue depth) and
below 1. When a particular tissue depth gains a healthy cell density greater than 1,
diffusion will move healthy cells out of that depth to lower density depths (darker
shaded cells) and the overcrowding effects of logistic growth with eliminate cells
from that tissue depth causing a lower cell density at that tissue depth in the next
time step. Conversely, when the healthy cell density at a particular tissue depth
is below 1, diffusion will move healthy cells from higher density depths (lighter
shaded cells) into that tissue depth, and the logistic growth will additionally cause
the production of some new healthy cells. Together, the effects of diffusion and
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(a) Cancer cells (A + B);

Non-conformal treatment

(b) Cancer cells (H); Non-

conformal treatment

(c) Cancer cells (A+B); Con-

formal treatment A

(d) Cancer cells (H); Confor-

mal treatment A

(e) Cancer cells (A+B); Con-
formal treatment B

(f) Cancer cells (H); Confor-
mal treatment B

Figure 4. Simulation of the growth and treatment of a hepatocel-
lular carcinoma for each of the treatment courses: non-conformal
(top row), conformal A (middle row), conformal B (bottom row).
The color bars on the right show the value of Ait+Bit (left column)
and Hi

t (right column) for a given tissue depth i and time step t.
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logistic growth work to create the resulting checkerboard pattern which, over time,
grows outward from the tumor region.

Figure 5. Healthy Cells (H) during the first 6 hours of Day 30 of
the simulation shown in Figure 4(b). In the first and second hours,
boxes have been formed around three tissue depths 7.5 cm, 7.9 cm,
and 8.2 cm. The values shown in each box indicate the value of Hi

t

at that time and tissue depth.

5.2. Treatment courses with conformal proton therapy. Since our model
contains only one spatial dimension we only have the options of the proton beam
originating from the left side of the spatial domain or from the right side. The
simulation shown in Section 5.1 assumes that the beam is being fired from the
left side of the spatial domain. To simulate the effects of conformal proton therapy
where multiple modulated beams are targeted upon the tumor from different angles,
we now consider simulations in which the beam is fired from both the left and right
sides of the spatial domain.

Typically, when conformal proton therapy is used, the dose of each fired beam
is smaller than if only a single beam is used. Recall, the data we used for the time
dependent cell death rate used a 2 Gy dose and a 5 Gy dose. For the conformal
proton treatment we will assume each fired beam (one from the left and one from
the right) is a 2 Gy dose, giving a total dose of 4 Gy (less than was delivered in
each dose in the simulation described in Section 5.1). To compare the results of the
conformal treatment to the non-conformal treatment simulation of Section 5.1, we
use two different treatment courses.

(A) 4 Gy total dose given 16 times over 35 days (5 weeks) as shown in Table 3(a);
total of 64 Gy of proton irradiation administered

(B) 4 Gy total dose given 20 times over 49 days (7 weeks) as shown in Table 3(b);
total of 80 Gy of proton irradiation administered

Note that treatment course A uses the same scheduling as was used in the Section
5.1 example, but each dose is lower (and being delivered by two 2 Gy beams).
Treatment course B delivers the same amount of proton radiation but in smaller
doses (and being delivered by two 2 Gy beams) and over a longer period of time.

For both of the following simulations, as with the previous simulation (Section
5.1), we assume that tissue depths with Ait + Bit ≥ 0.55 are “visible” as a part of
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the tumor, and thus contribute to the tumor diameter at time t, dt. Additionally,
the initial conditions are the same as in the previous simulation, and the results for
the first 150 days (when no treatment is administered) as the same as described for
the previous simulation (that is, C3600 = 2.037C0 and d3600 = 38).

5.2.1. Results of treatment course A. The results of the simulation using treatment
course A are shown in Figures 4(c) and 4(d). After the 35 day treatment period,
there are 0.011 times as many cancer cells present as at Day 150 (C4440 = 0.011 C0

nearly a 99% reduction in cancer cell density), and the diameter of the visible
tumor has shrunk to 0 mm (d4440 = 0). Note, that though this results is an
improvement over the non-conformal treatment course described in Section 5.1,
after the additional 90 day observation period, there are 1.161 times as many cancer
cells present as at Day 150 (C6600 = 1.161 C3600, more than a 16% increase in
cancer cell density when compared to right before treatment), and the diameter of
the visible tumor has increased to 44 mm (d6600 = 44).

5.2.2. Results of treatment course B. The results of the simulation using treatment
course B are shown in Figures 4(e) and 4(f). After the 49 day treatment period (t =
4776), there are 0.003 times as many cancer cells present as at Day 150 (C4776 =
0.003 C0 over a 99% reduction in cancer cell density), and the diameter of the
visible tumor has shrunk to 0 mm (d4776 = 0). Note, that though this results is an
improvement over the non-conformal treatment course described in Section 5.1 and
conformal treatment course A, after the additional 90 day observation period, there
are 1.154 times as many cancer cells present as at Day 150 (C6936 = 1.154 C3600,
slightly more than a 15% increase in cancer cell density when compared to right
before treatment), and the diameter of the visible tumor has increased to 44 mm
(d6936 = 44).

The results for conformal treatment courses A and B are summarized in Table 4.
As in the simulation described in Section 5.1, in each conformal treatment simula-
tion the healthy cells quickly rebound into the tumor region during and shortly after
treatment, but as the observation period progresses the healthy cells are removed
from the tumor region as the tumor re-establishes itself.

6. Discussion. We have proposed a model to simulate the spatial and temporal
dynamics of cancer and healthy cells before, during, and after the application of
proton therapy. As an example of how the model can be applied, we have used data
from in vitro clinical studies of hepatocellular carcinoma to parameterize the model,
explore numerical simulations, and compare different treatment courses. Within the
numerical simulations we looked at both non-conformal and conformal treatment
regimes. In each of the numerical simulations the resurgence of the cancer cells and
the tumor after the 90 day observation period suggest the given treatment course
is not sufficient. However, there are reasons to remain hopeful.

First, note that the patient’s immune response is not included in our proposed
model. In the simulation of each of the three treatment courses described in Section
5, the cancer cell density directly after the treatment period was lowered to 6.2%
or lower of the cell density directly before treatment was administered. For many
forms of cancer, including hepatocellular carcinoma, once of the density of cancer
cells is low enough, a sufficiently healthy immune system will work to remove the
remaining cancer cells. This suggests a type of Allee effect (see [1], [9], and [12]
for details) which causes the decay of the cancer cell population once it falls below
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Table 4. Summary of results from all treatment courses where
t = 0 is the initial time, ts is the time at which the treatment
course starts (ts = 3600 for all treatment courses), te is the time at
which the treatment course ends (te = 4440 for non-conformal and
conformal treatment course A, and te = 4776 for conformal treat-
ment course B), and to is the time at which the 90-day observation
period ends (to = te + 2160 for all treatment courses).

t = 0 ts te to

Non-Conformal
Cell Density C0 2.037 C0 0.062 Cts 1.188 Cts

Tumor Diameter 30 mm 38 mm 0 mm 44 mm

Conformal A
Cell Density C0 2.037 C0 0.011 Cts 1.161 Cts

Tumor Diameter 30 mm 38 mm 0 mm 44 mm

Conformal B
Cell Density C0 2.037 C0 0.003 Cts 1.154 Cts

Tumor Diameter 30 mm 38 mm 0 mm 44 mm

a certain threshold. This feature is not included in the model we proposed, but if
it were, we may see the elimination of the remaining cancer cells after the proton
therapy treatment course is administered.

Secondly, clinical studies show that proton therapy may be administered in con-
junction with or sequentially with other forms of treatment. For example, the
treatment of hepatocellular carcinomas with proton therapy may be combined with
transarterial chemoembolization (TACE) [28]. The model we have proposed here
simulates the effects of proton therapy used alone, not in conjunction with other
therapies. We hypothesize that an extension of this model which included both
proton therapy and TACE used sequentially would show improved results, possibly
leading to the elimination of the cancer cells entirely.

In addition to the possible model extensions proposed above, another obvious
extension would be to increases the spatial domain of this model to be three-
dimensional. Increasing the spatial domain to three dimensions would allow for
infinitely more possibilities in the structure of the conformal treatment courses.
Other possible model extensions could be informed by the variety of cancer net-
works proposed by Werner, including exponential cancer networks [36, Section 6],
geometric cancer networks which may provide an more accurate model of logistic
growth of cancer cells at the network level [36, Section 8], linear cancer networks
with stochastic dedifferentiation [36, Section 9], and cancer networks with explicitly
modeled cell communication [36, Sections 11–12].

Lastly, in the simulations shown in Section 5, we considered the application of
only a single treatment course. However, a patient who shows regeneration of the
tumor after a given observation period would likely undergo a second treatment
period. An interesting extension of this model would be to consider the optimal
length of the observation period before applying a second treatment course. A
clinician would need to wait long enough for the patient to recover from the first
round of treatment and for there to be evidence of the tumor’s regrowth, but waiting
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too long could result in an even larger tumor as we saw after the 90-day observation
period in the simulations in Section 5.

Both conformal treatment courses result in lower densities of cancer cells directly
after the treatment period and after the 90 day observation period when compared
with the non-conformal treatment course. It should be noted that since conformal
treatment course A delivers a lower total amount of proton radiation (64 Gy instead
of the 80 Gy) when compared to the non-conformal treatment course and conformal
treatment course B, we would expect conformal treatment course A to result in fewer
adverse side effects than the other two treatment courses. Additionally since both
conformal treatment courses deliver better results than the non-conformal treatment
course, when a conformal treatment regime is an option for a patient, our results
suggest it will lead to better control of the targeted tumor. Furthermore, since
both conformal treatment courses administer a lower dose on each treatment day
than the non-conformal treatment course, the conformal treatment courses may be
advised in patients with lower tolerances to irradiation.

As the use of proton therapy increases, the need for useful mathematical models
which describe both the effectiveness of treatment and the cellular dynamics in
the tissues surrounding the tumor are needed. Our model provides a tool which
addresses both of these objectives and is novel in its use of both spatial and temporal
dynamics in simulating the effects of proton radiation therapy. Though we have
used the model here to explore the impact of proton therapy on hepatocellular
carcinomas, by following the methods laid out in Section 4 one can reparameterize
the model for other types of cancer. Though there are many directions in which
this model could be expanded, the ability to use this model to compare different
treatment courses (like the comparison of non-conformal and conformal treatment
options) make this model a powerful tool.
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