We first determine the automorphism group of the twisted Heisenberg-Virasoro vertex operator algebra VL(ℓ123,0). Then, for any integer t>1, we introduce a new Lie algebra Lt, and show that σt-twisted VL(ℓ123,0)(ℓ2=0)-modules are in one-to-one correspondence with restricted Lt-modules of level ℓ13, where σt is an order t automorphism of VL(ℓ123,0). At the end, we give a complete list of irreducible σt-twisted VL(ℓ123,0)(ℓ2=0)-modules.
Citation: Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra[J]. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008
[1] | Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008 |
[2] | Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013 |
[3] |
Kengo Matsumoto .
|
[4] | Yanni Yang, Quanguo Chen . The criteria for automorphisms on finite-dimensional algebras. Electronic Research Archive, 2024, 32(11): 6140-6152. doi: 10.3934/era.2024285 |
[5] | Xue Yu . Orientable vertex imprimitive complete maps. Electronic Research Archive, 2024, 32(4): 2466-2477. doi: 10.3934/era.2024113 |
[6] | Peigen Cao, Fang Li, Siyang Liu, Jie Pan . A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27(0): 1-6. doi: 10.3934/era.2019006 |
[7] | Jingjing Hai, Xian Ling . Normalizer property of finite groups with almost simple subgroups. Electronic Research Archive, 2022, 30(11): 4232-4237. doi: 10.3934/era.2022215 |
[8] | Agustín Moreno Cañadas, Robinson-Julian Serna, Isaías David Marín Gaviria . Zavadskij modules over cluster-tilted algebras of type $ \mathbb{A} $. Electronic Research Archive, 2022, 30(9): 3435-3451. doi: 10.3934/era.2022175 |
[9] | Lin Shen, Shu Wang, Yongxin Wang . The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28(2): 691-719. doi: 10.3934/era.2020036 |
[10] | Yaguo Guo, Shilin Yang . Projective class rings of the category of Yetter-Drinfeld modules over the $ 2 $-rank Taft algebra. Electronic Research Archive, 2023, 31(8): 5006-5024. doi: 10.3934/era.2023256 |
We first determine the automorphism group of the twisted Heisenberg-Virasoro vertex operator algebra VL(ℓ123,0). Then, for any integer t>1, we introduce a new Lie algebra Lt, and show that σt-twisted VL(ℓ123,0)(ℓ2=0)-modules are in one-to-one correspondence with restricted Lt-modules of level ℓ13, where σt is an order t automorphism of VL(ℓ123,0). At the end, we give a complete list of irreducible σt-twisted VL(ℓ123,0)(ℓ2=0)-modules.
Let
{f(t)ddt+g(t) | f(t),g(t)∈C[t,t−1]}. |
Determining the automorphism group
The automorphism group of the twisted Heisenberg-Virasoro algebra
In [12], all irreducible modules for the vertex operator algebra
[Lm,Ln]=(m−n)Lm+n+δm+n,0m3−m12k1, |
[Lm,In+1t]=−(n+1t)Im+n+1t, |
[Im+1t,In+1t]=(m+1t)δm+n+2t,0δt,2k3,[Lt,ki]=0,i=1,3. |
Note that when
This paper is organized as follows. In Section 2, we review the notions and some results of vertex operator algebras, automorphisms and twisted modules for vertex operator algebras. In Section 3, we study the automorphism group of the twisted Heisenberg-Virasoro vertex operator algebra
For later use, we recall the following result (cf. Proposition 2.3.7 of [13]).
Lemma 2.1.
(x1−x2)m(∂∂x2)nx−11δ(x2x1)=0 | (2.1) |
for
Let
Definition 2.2. An automorphism of a vertex operator algebra
σ(1)=1,σ(ω)=ωandσ(unv)=σ(u)nσ(v) |
for any
The group of all automorphisms of a vertex operator algebra
V=V0⊕V1⊕⋯⊕Vt−1, |
where
Now we recall some notions regarding to twisted modules from [14].
Definition 2.3. Let
YW(⋅,z):V⟶(EndW)[[z1t,z−1t]] |
satisfying the following conditions:
(TW1)
(TW2)
(TW3)
(TW4) For any
z−10δ(z1−z2z0)YW(u,z1)YW(v,z2)−z−10δ(z2−z1−z0)YW(v,z2)YW(u,z1)=z−121tt−1∑k=0δ((z1−z0z2)1t)YW(Y(σku,z0)v,z2). |
If
Definition 2.4. For
(TW5)
(TW6)
(TW7)
Remark 2.5. Let
[L(0),YW(v,z)]=zYW(L(−1)v,z)+YW(L(0)v,z) | (2.2) |
for
vnW(h)⊆W(h+wtv−n−1)forn∈1tZ,h∈C. |
It follows that a
W[h]=∐α+1tZ=hW(α). | (2.3) |
Then
W=∐h∈C/1tZW[h]. | (2.4) |
In particular, if
W=W[h] | (2.5) |
for some
Remark 2.6. Let
YW(Y(u,z0)v,z2)=Resz1(z1−z0z2)kt⋅X, | (2.6) |
where
X=z−10δ(z1−z2z0)YW(u,z1)YW(v,z2)−z−10δ(z2−z1−z0)YW(v,z2)YW(u,z1). |
Then it can be easily deduced that for any
YW(unv,z)=Resz1∞∑j=0(−1)j(ktj)zkt−j1z−kt⋅Yj, | (2.7) |
where
Yj=((z1−z)n+jYW(u,z1)YW(v,z)−(−z+z1)n+jYW(v,z)YW(u,z1)), |
Definition 2.7. A homomorphism between two
fYM(v,z)=YW(v,z)f. | (2.8) |
If
f(M(h))⊆W(h)forh∈C. | (2.9) |
Using the formula (2.7), similarly as Proposition 4.5.1 of [13], there is the following result.
Proposition 2.8. Let
Y(a,z)ψ=ψY(a,z)fora∈S, |
where
In the following, we review from Section 3 of [14] the local systems of twisted vertex operators.
Definition 2.9. Let
Definition 2.10. Two
(z1−z2)na(z1)b(z2)=(z1−z2)nb(z2)a(z1). |
A
Denote by
Definition 2.11. Let
a(z)nb(z)=Resz1Resz0(z1−z0z)ktzn0⋅X, | (2.10) |
where
X=z−10δ(z1−zz0)a(z1)b(z)−z−10δ(z−z1−z0)b(z)a(z1). |
For any set
In this section, we first recall the definition of the twisted Heisenberg-Virasoro algebra
Recall the definition of the twisted Heisenberg-Virasoro algebra
Definition 3.1. The twisted Heisenberg-Virasoro algebra
[Lm,Ln]=(m−n)Lm+n+δm+n,0m3−m12c1, | (3.1) |
[Lm,In]=−nIm+n−δm+n,0(m2+m)c2, | (3.2) |
[Im,In]=mδm+n,0c3,[L,ci]=0,i=1,2,3. | (3.3) |
Clearly,
Let
L(z)=∑n∈ZLnz−n−2,I(z)=∑n∈ZInz−n−1, |
then the defining relations of
[L(z1),L(z2)]=∑m,n∈Z(m−n)Lm+nz−m−21z−n−22+∑m∈Zm3−m12c1z−m−21zm−22=ddz2(L(z2))z−11δ(z2z1)+2L(z2)∂∂z2z−11δ(z2z1)+c112(∂∂z2)3z−11δ(z2z1), | (3.4) |
[L(z1),I(z2)]=−∑m,n∈ZnIm+nz−m−21z−n−12−∑m∈Z(m2+m)c2z−m−21zm−12=ddz2(I(z2))z−11δ(z2z1)+I(z2)∂∂z2z−11δ(z2z1)−(∂∂z2)2z−11δ(z2z1)c2, | (3.5) |
[I(z1),I(z2)]=∑m∈Zmc3z−m−11zm−12=∂∂z2z−11δ(z2z1)c3. | (3.6) |
We recall the construction of the twisted Heisenberg-Virasoro vertex operator algebra
L(≤1)=∐n≤1CL−n⊕∐n≤0CI−n⊕3∑i=1Cci, |
L(≥2)=∐n≥2CL−n⊕∐n≥1CI−n. |
They are graded subalgebras of
L=L(≤1)⊕L(≥2). |
Let
VL(ℓ123,0)=U(L)⊗U(L(≤1))Cℓ123, | (3.7) |
where
VL(ℓ123,0)=∐n≥0VL(ℓ123,0)(n), |
where
I−k1⋯I−ksL−m1⋯L−mr1 |
for
Now we give our first main result. The automorphism group of
Theorem 3.2. (1) If
(2) If
(3) If both
Proof. Let
φ:VL(ℓ123,0)⟶VL(ℓ123,0) |
be an automorphism of the vertex operator algebra
Then, on the one hand, we have
φ(L1I)=aL1I=a[L1,I−1]1=−2aℓ21, |
on the other hand, we have
φ(L1I)=φ([L1,I−1]1)=−2ℓ21. |
Therefore if
Suppose now
φ(I1I)=φ(I)1φ(I)=a2I1I−11=a2[I1,I−1]1=a2ℓ31, |
on the other hand,
φ(I1I)=φ([I1,I−1]1)=ℓ31. |
So if
Now let
In this section, we always assume
Note that if
Definition 4.1. Let
[Lm,Ln]=(m−n)Lm+n+δm+n,0m3−m12k1, | (4.1) |
[Lm,In+1t]=−(n+1t)Im+n+1t, | (4.2) |
[Im+1t,In+1t]=(m+1t)δm+n+2t,0δt,2k3,[Lt,ki]=0,i=1,3. | (4.3) |
Note that if
Form the generating function as
L(z)=∑n∈ZLnz−n−2,Iσt(z)=∑n∈ZIn+1tz−n−1t−1. |
Then the defining relations (4.1), (4.2), (4.3) amount to:
[L(z1),L(z2)]=ddz2(L(z2))z−11δ(z2z1)+2L(z2)∂∂z2z−11δ(z2z1)+112(∂∂z2)3z−11δ(z2z1)k1, | (4.4) |
[L(z1),Iσt(z2)]=−∑m,n∈Z(n+1t)Im+n+1tz−m−21z−n−1t−12=ddz2(Iσt(z2))z−11δ(z2z1)+Iσt(z2)∂∂z2z−11δ(z2z1), | (4.5) |
[Iσt(z1),Iσt(z2)]=∑m∈Z(m+1t)z−m−1t−11zm+1t−12δt,2k3=∂∂z2(z−11δ(z2z1)(z2z1)1t)δt,2k3. | (4.6) |
Now we construct irreducible
(Lt)≥0=(∐m≥0CLm)⊕(∐n≥0CIn+1t)⊕Ck1⊕Ck3. |
It is a subalgebra of
Let
MLt(k1,k3,h)=U(Lt)⊗U((Lt)≥0)Ck13,h. |
Set
1k13,h=1∈Ck13,h⊂MLt(k1,k3,h). |
Then
MLt(k1,k3,h)=∐n≥0MLt(k1,k3,h)n+h, |
where
I−k1+1t⋯I−ks+1tL−m1⋯L−mr1k13,h |
for
Remark 4.2. As a module for
L01k13,h=h1k13,h,ki=ki,i=1,3, |
and
Lm1k13,h=0,In+1t1k13,h=0form≥1,n≥0. |
In general,
LLt(k1,k3,h)=MLt(k1,k3,h)/TLt(k1,k3,h). |
Then
Definition 4.3. An
It is easy to see that
Theorem 4.4. If
Yσt(L−21,z)=L(z)=∑n∈ZLnz−n−2, |
Yσt(I−11,z)=Iσt(z)=∑n∈ZIn+1tz−n−1t−1. |
Proof. Let
By Lemma 2.11 of [14],
By the universal property of
ψ:VL(ℓ123,0)⟶⟨UW⟩;1↦1W. |
Then
ψ(ωnv)=L(z)nψ(v)=ψ(ω)nψ(v), |
ψ(Inv)=Iσt(z)nψ(v)=ψ(I)nψ(v) |
for all
Conversely, we have
Theorem 4.5. If
Proof. Let
[YW(a,z1),YW(b,z2)]=∞∑j=01j!((∂∂z2)jz−11δ(z2z1)(z2z1)kt)YW(ajb,z2), |
where
(L−21)jL−21=(j+1)Lj−31+δj−3,0(j−1)3−(j−1)12c11, |
so
[YW(L−21,z1),YW(L−21,z2)]=YW(L−31,z2)z−12δ(z1z2)+2YW(L−21,z2)(∂∂z1)z−12δ(z1z2)+112(∂∂z1)3z−12δ(z1z2)ℓ11. | (4.7) |
For
(L−21)jI−11=Ij−21, |
so
[YW(L−21,z1),YW(I−11,z2)]=YW(I−21,z2)z−11δ(z2z1)+YW(I−11,z2)(∂∂z2)z−11δ(z2z1). | (4.8) |
For
(I−11)jI−11=jδj−1,0c31, |
so
[YW(I−11,z1),YW(I−11,z2)]=(∂∂z2)z−11δ(z2z1)(z2z1)1tℓ31. | (4.9) |
Note that for
Let
L(0)t=CL0⊕Ck1⊕Ck3,L(n)t=CL−nfor0≠n∈Z, |
L(−1t+n)t=CI−n+1t,L(k)t=0fork∈1tZ,k∉Z,−1t+Z. |
Then
By Theorem 4.4 and Theorem 4.5 we have the following result.
Theorem 4.6. The
Hence irreducible restricted
Now we give the complete list of irreducible
Theorem 4.7. Let
Proof. Let
L0w=hw,Lmw=0,In+1tw=0 |
for
φ:MLt(ℓ1,ℓ3,h)⟶W |
such that
φ(MLt(ℓ1,ℓ3,h))=W |
and
Kerφ=TLt(ℓ1,ℓ3,h). |
Thus
It is interesting and important to classify the irreducible modules for the fixed point subalgebra
σ:VL(ℓ123,0)⟶VL(ℓ123,0) |
is defined on the basis elements by
I−k1⋯I−ksL−m1⋯L−mr1↦(−1)sI−k1⋯I−ksL−m1⋯L−mr1, |
and extended linearly, where
VL(ℓ123,0)+={v∈VL(ℓ123,0) | σ(v)=v} |
be the fixed point subalgebra under
For
c~Vir=ℓ1−1+12ℓ22ℓ3. |
Let
VL(ℓ123,0)≅VH(ℓ3,0)⊗V~Vir(c~Vir,0) |
as vertex operator algebras.
It is well known that there exists an order 2 isomorphism of the Heisenberg vertex operator algebra
σ:VH(ℓ3,0)⟶VH(ℓ3,0) |
be the order 2 automorphism which is defined on the basis elements by
I−k1⋯I−ks1↦(−1)sI−k1⋯I−ks1 |
and extended linearly, where
Then it is immediate to see that when
VL(ℓ123,0)+≅VH(ℓ3,0)+⊗V~Vir(c~Vir,0). |
Up to isomorphism, irreducible modules for the vertex operator algebra
For other automorphism
[1] |
D. Adamović and G. Radobolja, Free field realization of the twisted Heisenberg-Virasoro algebra at level zero and its applications, J. Pure Appl. Algebra, 219 (2015), 4322–4342. doi: 10.1016/j.jpaa.2015.02.019
![]() |
[2] |
D. Adamović and G. Radobolja, Self-dual and logarithmic representations of the twisted Heisenberg-Virasoro algebra at level zero, Commun. Contemp. Math., 21 (2019), 1850008, 26 pp. doi: 10.1142/S0219199718500086
![]() |
[3] |
Moduli spaces of curves and representation theory. Comm. Math. Phys. (1988) 117: 1-36. ![]() |
[4] |
Representations of the twisted Heisenberg-Virasoro algebra at level zero. Canad. Math. Bull. (2003) 46: 529-537. ![]() |
[5] |
Y. Billig, A category of modules for the full toroidal Lie algebra, Int. Math. Res. Not., (2006), Art. ID. 68395, 46pp. doi: 10.1155/IMRN/2006/68395
![]() |
[6] |
Classification of irreducible modules for the vertex operator algebra M(1)+. J. Algebra (1999) 216: 384-404. ![]() |
[7] |
I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104 (1993), no. 494, ⅷ+64 pp. doi: 10.1090/memo/0494
![]() |
[8] |
Quantum group GLq(2) and quantum Laplace operator via semi-infinite cohomology. J. Noncommut. Geom. (2013) 7: 1007-1026. ![]() |
[9] |
Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. (1992) 66: 123-168. ![]() |
[10] |
q-Virasoro algebra and vertex algebras. J. Pure Appl. Algebra (2015) 219: 1258-1277. ![]() |
[11] |
Associating vertex algebras with the unitary Lie algebra. J. Algebra (2015) 424: 126-146. ![]() |
[12] | Twisted Heisenberg-Virasoro vertex operator algebra. Glas. Mat. Ser. Ⅲ (2019) 54: 369-407. |
[13] |
J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and their Representations, Progress in Mathematics, Vol. 227, Birkhäuser, Boston, Inc., Boston, MA, 2004. doi: 10.1007/978-0-8176-8186-9
![]() |
[14] |
H.-S. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, In: Moonshine, the Monster, and related topics, pp. 203–236, Contemp. Math. 193, Amer. Math. Soc., Providence, RI, 1996. doi: 10.1090/conm/193/02373
![]() |
[15] |
The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra. Comm. Algebra (2006) 34: 2547-2558. ![]() |
[16] |
W. Wang, Rationality of virasoro vertex operator algebras, Internat. Math. Res. Notices, (1993), 197–211. doi: 10.1155/S1073792893000212
![]() |
1. | Hongyan Guo, Chengkang Xu, Restricted modules for gap-p Virasoro algebra and twisted modules for certain vertex algebras, 2023, 227, 00224049, 107322, 10.1016/j.jpaa.2023.107322 | |
2. | Hongyan Guo, Huaimin Li, Restricted modules and associated vertex algebras of extended Heisenberg-Virasoro algebra, 2023, 635, 00218693, 463, 10.1016/j.jalgebra.2023.07.044 |