In this paper, we will establish a criterion for automorphisms of finite-dimensional algebras. As an application, we will describe all automorphisms of the single-parameter generalized quaternion algebra. Additionally, we will obtain all automorphisms of Sweedler's 4-dimensional Hopf algebra.
Citation: Yanni Yang, Quanguo Chen. The criteria for automorphisms on finite-dimensional algebras[J]. Electronic Research Archive, 2024, 32(11): 6140-6152. doi: 10.3934/era.2024285
[1] | Quanguo Chen, Yong Deng . Hopf algebra structures on generalized quaternion algebras. Electronic Research Archive, 2024, 32(5): 3334-3362. doi: 10.3934/era.2024154 |
[2] |
Kengo Matsumoto .
|
[3] | Peigen Cao, Fang Li, Siyang Liu, Jie Pan . A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27(0): 1-6. doi: 10.3934/era.2019006 |
[4] | Dong Su, Shilin Yang . Representation rings of extensions of Hopf algebra of Kac-Paljutkin type. Electronic Research Archive, 2024, 32(9): 5201-5230. doi: 10.3934/era.2024240 |
[5] | Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008 |
[6] |
Bing Sun, Liangyun Chen, Yan Cao .
On the universal |
[7] | Neşet Deniz Turgay . On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28(2): 951-959. doi: 10.3934/era.2020050 |
[8] | Jingjing Hai, Xian Ling . Normalizer property of finite groups with almost simple subgroups. Electronic Research Archive, 2022, 30(11): 4232-4237. doi: 10.3934/era.2022215 |
[9] | Xue Yu . Orientable vertex imprimitive complete maps. Electronic Research Archive, 2024, 32(4): 2466-2477. doi: 10.3934/era.2024113 |
[10] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
In this paper, we will establish a criterion for automorphisms of finite-dimensional algebras. As an application, we will describe all automorphisms of the single-parameter generalized quaternion algebra. Additionally, we will obtain all automorphisms of Sweedler's 4-dimensional Hopf algebra.
The study of algebraic automorphisms on different algebraic systems is a classic direction in algebra. Usually, it is very difficult to determine the automorphisms of an algebra. How to describe the automorphisms in an algebra is still an open problem. A well-studied example is the automorphism group of an incidence algebra [1,2]. Andruskiewitsch and Dumas studied the algebra automorphisms and Hopf algebra automorphisms of the positive part of the quantum enveloping algebra of simple complex finite-dimensional Lie algebras in [3]. For more works on the algebra automorphisms of other algebras, please refer to [4,5,6,7,8,9,10].
The purpose of this paper is to find an effective method to determine the automorphisms of finite-dimensional algebras. Using the method, we not only describe all automorphisms of low-dimensional algebras, but also identify some good automorphisms of high-dimensional algebras.
The paper is organized as follows:
In Section 2, we establish a criterion for automorphisms of finite-dimensional algebras. In Section 3, as an application, we give all automorphisms of the single-parameter generalized quaternion algebra. As special cases of the single-parameter generalized quaternion algebra, all automorphisms on the semi-quaternion algebra and the split semi-quaternion algebra are given. Since Sweedler's 4-dimensional Hopf algebra, as an algebra, is a split semi-quaternion algebra, all algebraic automorphisms in Sweedler's 4-dimensional Hopf algebra are described.
Throughout the paper, R denotes the real number field. All algebras are over R, and linear refers to R-linear. Given a matrix M, MT denotes the transpose of M.
Let
η1=(10⋮0),η2=(01⋮0),⋯,ηn=(00⋮1) |
be the standard basis of Rn.
Let A be a finite-dimensional algebra with unit 1 and generators g1,g2,⋯,gs which are subject to certain relationships. Assume that {α1=1,α2,⋯,αn} is a basis for A. Using the relationships among the gi, we have
(α1α2⋮αn)(α1,α2,⋯,αn)=U1α1+U2α2+⋯+Unαn, | (2.1) |
where each Ui is a n×n digital matrix. By dividing Ui into block matrices by the columns, we obtain
Ui=(iγ1,iγ2,⋯,iγn), iγj=(iu1jiu2j⋮iunj). |
Construct the following matrices
Wi=(1γi,2γi,⋯,nγi),i=1,2,⋯,n. |
Definition 2.1. With the matrices Ui(i=1,2,⋯,n) as above. We call Wi(i=1,2,⋯,n) the matrix induced from the i-th columns of {Uj}nj=1.
Lemma 2.2. Let P be a linear transformation on A, and
P=(a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮an1an2⋯ann)=(ξ1,ξ2,⋯,ξn), |
the matrix of P with respect to the basis α1,α2,⋯,αn. Then we have
P(αi)P(αj)=(α1,α2,⋯,αn)(ξjξj⋱ξj)TCTξi, | (2.2) |
for all i,j=1,2,⋯,n, where
C=(U1,U2,⋯,Un). |
Proof. For all i,j, since
P(αi)P(αj)=ξTi(α1α2⋮αn)(α1,α2,⋯,αn)ξj=ξTi(U1α1+U2α2+⋯+Unαn)ξj=ξTiU1ξjα1+ξTiU2ξjα2+⋯+ξTiUnξjαn=ξTiC(ξjξj⋱ξj)(α1α2⋮αn), |
it follows that (2.2) holds.
Example 2.3. Recall that a single-parameter quaternion q is an expression of the form
q=a0+a1e1+a2e2+a3e3, |
where a0,a1,a2,a3 are real numbers and e1,e2,e3 satisfy the following equalities:
e21=−μ,e22=0,e23=0,e1e2=e3=−e2e1,e2e3=0=−e3e2,e3e1=μe2=−e1e3, |
where 0≠μ∈R. The set of single-parameter quaternions is denoted by Hμ[8], and Hμ is an associative algebra. We call Hμ an algebra of single-parameter quaternions (or single-parameter quaternion algebra).
Observe that Hμ is a 4-dimensional algebra with basis 1,e1,e2,e3. By computing
(1e1e2e3)(1,e1,e2,e3)=(1e1e2e3e1−μe3−μe2e2−e300e3μe200)=(10000−μ0000000000)1+(0100100000000000)e1+(0010000−μ10000μ00)e2+(000100100−1001000)e3. |
We have the corresponding Ui(i=1,2,3,4) as follows:
U1=(10000−μ0000000000),U2=(0100100000000000),U3=(0010000−μ10000μ00), |
U4=(000100100−1001000). |
Thus we have
C=(10000100001000010−μ001000000−μ00100000000010000−100000000000μ001000). |
Let P be a linear transformation on Hμ, and
P=(a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44)=(ξ1,ξ2,ξ3,ξ4), |
the matrix of P with respect to the basis α1=1,α2=e1,α3=e2,α4=e3. For instance, we aim to compute P(e1)P(e2), i.e., P(α2)P(α3). Since
(a13000a23000a33000a430000a13000a23000a33000a430000a13000a23000a33000a430000a13000a23000a33000a43)TCT(a12a22a32a42)=(a12a13−a22a23μa13a22+a12a23−a22a43μ+a23a42μ+a13a32+a12a33−a23a32+a22a33+a13a42+a12a43) |
by Lemma 2.2, we have
P(e1)P(e2)=(1,e1,e2,e3)(a12a13−a22a23μa13a22+a12a23−a22a43μ+a23a42μ+a13a32+a12a33−a23a32+a22a33+a13a42+a12a43). |
Theorem 2.4. With notation as shown in Lemma 2.2. Then P is an automorphism if and only if ξ1=η1 and the matrix P is an invertible matrix and satisfies the following equation:
(W1,W2,⋯,Wn)(P0000P0000⋱0000P)T=PTC(P0000P0000⋱0000P)K, | (2.3) |
where C is shown in Lemma 2.2 and
K=(η10⋯0η20⋯0⋯ηn0⋯00η1⋯00η2⋯0⋯0ηn⋯0⋮⋮⋱⋮⋮⋮⋱⋮⋯⋮⋮⋱⋮00⋯η100⋯η2⋯00⋯ηn). |
Proof. From (2.1), it follows that
αiαj=(α1,α2,⋯,αn)(1uij2uij⋮nuij),∀i,j=1,2,⋯,n. | (2.4) |
For a fixed j, by using (2.4), we have
P(αiαj)=(α1,α2,⋯,αn)P(1uij2uij⋮nuij). |
Since P(αiαj)=P(αi)P(αj), for all i, it follows that
(ξjξj⋱ξj)TCTξi=P(1uij2uij⋮nuij), |
which is equivalent to
(ξjξj⋱ξj)TCTP=P(1u1j1u2j⋯1unj2u1j2u2j⋯2unj⋮⋮⋮⋮nu1jnu2j⋯nunj)=PWTj. |
Thus
(W1,W2,⋯,Wn)(P0000P0000⋱0000P)T=PTC(ξ10⋯0ξ20⋯0⋯ξn0⋯00ξ1⋯00ξ2⋯0⋯0ξn⋯0⋮⋮⋱⋮⋮⋮⋱⋮⋯⋮⋮⋱⋮00⋯ξ100⋯ξ2⋯00⋯ξn)=PTC(P0000P0000⋱0000P)K. |
From P(1)=1, we obtain ξ1=η1. The proof is completed.
Example 2.5. Let Ui(i=1,2,3,4) and C be given in Example 2.3. By Definition 2.1, we can obtain the desired Wi(i=1,2,3,4) as follows:
W1=(1000010000100001),W2=(0100−μ000000−100μ0),W3=(0010000100000000), |
W4=(000100−μ000000000). |
Thus, we have
(W1,W2,W3,W4)=(10000100001000010100−μ000000100−μ00010000−100000000000100μ000000000) |
and
K=(1000000000000000000010000000000000000000100000000000000000001000010000000000000000000100000000000000000001000000000000000000010000100000000000000000001000000000000000000010000000000000000000100001000000000000000000010000000000000000000100000000000000000001). |
In this section, we consider the application of Theorem 2.4 to Hμ. To describe all automorphisms on Hμ, we need to determine the matrices P that satisfy the condition (2.3). Let
P=(1a12a13a140a22a23a240a32a33a340a42a43a44). |
Since
LHS of (2.3)=(W1,W2,W3,W4)(P0000P0000P0000P)T=(10000100001000010100−μ000000100−μ00010000−100000000000100μ000000000)(1a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a44)T=(M1,M2,M3,M4), |
where
M1=(1000a12a22a32a42a13a23a33a43a14a24a34a44),M2=(a12a22a32a42−μ000−a14−a24−a34−a44a13μa23μa33μa43μ), |
M3=(a13a23a33a43a14a24a34a4400000000),M4=(a14a24a34a44a13(−μ)a23(−μ)a33(−μ)a43(−μ)00000000), |
and
RHS of (2.3)=PTC(P0000P0000⋱0000P)K=(1a12a13a140a22a23a240a32a33a340a42a43a44)T(10000100001000010−μ001000000−μ00100000000001000−1000000000000μ01000)(1a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a4400000000000000001a12a13a140000000000000a22a23a240000000000000a32a33a340000000000000a42a43a44)(1000000000000000000010000000000000000000100000000000000000001000010000000000000000000100000000000000000001000000000000000000010000100000000000000000001000000000000000000010000000000000000000100001000000000000000000010000000000000000000100000000000000000001)=(N1,N2,N3,N4), |
where
N1=(1000a12a22a32a42a13a23a33a43a14a24a34a44), |
N2=(a12a22a32a42a212−a222μ2a12a222a12a322a12a42a12a13−a22a23μa13a22+a12a23−a23a42μ+a22a43μ+a13a32+a12a33a23a32−a22a33+a13a42+a12a43a12a14−a22a24μa14a22+a12a24−a24a42μ+a22a44μ+a14a32+a12a34a24a32−a22a34+a14a42+a12a44), |
N3=(a13a23a33a43a12a13−a22a23μa13a22+a12a23−a22a43μ+a23a42μ+a13a32+a12a33−a23a32+a22a33+a13a42+a12a43a213−a223μ2a13a232a13a332a13a43a13a14−a23a24μa14a23+a13a24−a24a43μ+a23a44μ+a14a33+a13a34a24a33−a23a34+a14a43+a13a44), |
N4=(a14a24a34a44a12a14−a22a24μa14a22+a12a24−a22a44μ+a24a42μ+a14a32+a12a34−a24a32+a22a34+a14a42+a12a44a13a14−a23a24μa14a23+a13a24−a23a44μ+a24a43μ+a14a33+a13a34−a24a33+a23a34+a14a43+a13a44a214−a224μ2a14a242a14a342a14a44), |
we have Mi=Ni(i=1,2,3,4), and obtain the following system of equations:
a222μ−a212−μ=0, | (a1) |
−2a12a22=0, | (a2) |
−2a12a32=0, | (a3) |
−2a12a42=0, | (a4) |
a22a23μ−a12a13+a14=0, | (a5) |
−a13a22−a12a23+a24=0, | (a6) |
−a23a42μ+a22a43μ−a13a32−a12a33+a34=0, | (a7) |
a23a32−a22a33−a13a42−a12a43+a44=0, | (a8) |
a13(−μ)+a22a24μ−a12a14=0, | (a9) |
−a23μ−a14a22−a12a24=0, | (a10) |
−a33μ−a24a42μ+a22a44μ−a14a32−a12a34=0, | (a11) |
−a43μ+a24a32−a22a34−a14a42−a12a44=0, | (a12) |
a22a23μ−a12a13−a14=0, | (a13) |
−a13a22−a12a23−a24=0, | (a14) |
a23a42μ−a22a43μ−a13a32−a12a33−a34=0, | (a15) |
−a23a32+a22a33−a13a42−a12a43−a44=0, | (a16) |
a223μ−a213=0, | (a17) |
−2a13a23=0, | (a18) |
−2a13a33=0, | (a19) |
−2a13a43=0, | (a20) |
a23a24μ−a13a14=0, | (a21) |
−a14a23−a13a24=0, | (22) |
−a24a43μ+a23a44μ−a14a33−a13a34=0, | (a23) |
a24a33−a23a34−a14a43−a13a44=0, | (a24) |
a13μ+a22a24μ−a12a14=0, | (a25) |
a23μ−a14a22−a12a24=0, | (a26) |
a33μ+a24a42μ−a22a44μ−a14a32−a12a34=0, | (a27) |
a43μ−a24a32+a22a34−a14a42−a12a44=0, | (a28) |
a23a24μ−a13a14=0, | (a29) |
−a14a23−a13a24=0, | (a30) |
a24a43μ−a23a44μ−a14a33−a13a34=0, | (a31) |
−a24a33+a23a34−a14a43−a13a44=0, | (a32) |
a224μ−a214=0, | (a33) |
−2a14a24=0, | (a34) |
−2a14a34=0, | (a35) |
−2a14a44=0. | (a36) |
All automorphisms on Hμ can be described as follows:
Theorem 3.1. Each automorphism P on Hμ has one of the following forms:
(i) P(1)=1, P(e1)=−e1+ae2+de3, P(e2)=be2+cμe3, P(e3)=ce2−be3,
(ii) P(1)=1, P(e1)=e1+ae2+de3, P(e2)=be2−cμe3, P(e3)=ce2+be3,
where a,b,c,d are parameters and μb2+c2μ≠0.
Proof. From (a6) and (a14), we obtain a24=0. Therefore, from (a33), we have a14=0. Taking a24=0 and a14=0 in (a25) and (a26) yields a13=a23=0.
If a12=0, then, from (a1), we have a22=1 or −1. If a22=1, then the system of Eqs (a1)–(a36) is equivalent to the following system of equations
a43μ+a34=0,a44−a33=0. |
Thus, we obtain the desired P as follows:
P=(100001000a32a33a340a42−a34μa33), |
which is just the (ⅱ) of Theorem 3.1. If a22=−1, then we get the (ⅰ) of Theorem 3.1.
If a12≠0, from (a34)–(a36), one has a34=a44=0, which makes P degenerate.
If μ=1, then Hμ is the algebra of semi-quaternions. If μ=−1, then Hμ is the algebra of split semi-quaternions. By applying Theorem 3.1 to these special cases, we have the following:
Corollary 3.2. Each automorphism P on the algebra of semi-quaternions has one of the following forms:
(i) P(1)=1, P(e1)=−e1+ae2+de3, P(e2)=be2+ce3, P(e3)=ce2−be3,
(ii) P(1)=1, P(e1)=e1+ae2+de3, P(e2)=be2−ce3, P(e3)=ce2+be3,
where a,b,c,d are parameters and b2+c2≠0.
Corollary 3.3. Each automorphism P on the algebra of split semi-quaternions has one of the following forms:
(i) P(1)=1, P(e1)=−e1+ae2+de3, P(e2)=be2−ce3, P(e3)=ce2−be3,
(ii) P(1)=1, P(e1)=e1+ae2+de3, P(e2)=be2+ce3, P(e3)=ce2+be3,
where a,b,c,d are parameters and c2−b2≠0.
Corollary 3.3 gives us an extra surprise. Using Corollary 3.3, we can determine all automorphisms on Sweedler's 4-dimensional Hopf algebra. First, recall that Sweedler algebra H4 is generated by two elements g and ν subject to
g2=1,ν2=0,gν+νg=0. |
The comultiplication, antipode, and counit of H4 are given by
Δ(g)=g⊗g,Δ(ν)=g⊗ν+ν⊗1,ε(g)=1,ε(ν)=0,S(g)=g,S(ν)=−gν. |
Note that the dimension of H4 is four with 1,g,ν,gν forming a basis for H4. By setting e1=g,e2=ν,e3=gv, we see that H4 as an algebra is a split semi-quaternion algebra. Thus, by Corollary 3.3, we have the following result.
Corollary 3.4. Each automorphism P on Sweedler's 4-dimensional Hopf algebra has one of the following forms:
(i) P(1)=1, P(g)=−g+aν+dgν, P(ν)=bν−cgν, P(gν)=cν−bgν,
(ii) P(1)=1, P(g)=g+aν+dgν, P(ν)=bν+cgν, P(gν)=cν+bgν,
where a,b,c,d are parameters and c2−b2≠0.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors sincerely thank the referees for numerous very valuable comments and suggestions on this article. This work was supported by the National Natural Science Foundation of China (No. 12271292), the Natural Science Foundation of Shandong Province (No. ZR2022MA002) and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2019D01B04).
The authors declare there are no conflicts of interest.
[1] |
K. Baclawski, Automorphisms and derivations of incidence algebras, Proc. Amer. Math. Soc., 36 (1972), 351–356. https://doi.org/10.2307/2039158 doi: 10.2307/2039158
![]() |
[2] | W. Scharlau, Automorphisms and involutions of incidence algebras, in Representations of Algebras, Springer-Verlag, (1975), 340–350. https://doi.org/10.1007/BFb0081233 |
[3] | N. Andruskiewitsch, F. Dumas, On the automorphisms of U+q(g), preprint, arXiv: math/0301066. |
[4] | J. Gomez-Torrecillas, L. El Kaoutit, The group of automorphisms of the coordinate ring of quantum symplectic space, Beitr. Algebra Geom., 43 (2002), 597–601. |
[5] |
S. Launois, T. H. Lenagan, Primitive ideals and automorphisms of quantum matrices, Algebras Represent. Theory, 10 (2007), 339–365. https://doi.org/10.1007/s10468-007-9059-0 doi: 10.1007/s10468-007-9059-0
![]() |
[6] |
T. Li, Q. W. Wang, Structure preserving quaternion biconjugate gradient method, SIAM J. Matrix Anal. Appl., 45 (2024), 306–326. https://doi.org/10.1137/23M1547299 doi: 10.1137/23M1547299
![]() |
[7] |
T. Li, Q. W. Wang, Structure preserving quaternion full orthogonalization method with applications, Numer. Linear Algebra Appl., 30 (2023), e2495. https://doi.org/10.1002/nla.2495 doi: 10.1002/nla.2495
![]() |
[8] | H. Pottman, J. Wallner, Computational Line Geometry, Springer-Verlag, 2001. https://doi.org/10.1007/978-3-642-04018-4 |
[9] |
M. Suárez-Alvarez, Q. Vivas, Automorphisms and isomorphisms of quantum generalized Weyl algebras, J. Algebra, 424 (2015), 540–552. https://doi.org/10.1016/j.jalgebra.2014.08.045 doi: 10.1016/j.jalgebra.2014.08.045
![]() |
[10] |
X. F. Zhang, W. Ding, T. Li, Tensor form of GPBiCG algorithm for solving the generalized Sylvester quaternion tensor equations, J. Franklin Inst., 360 (2023), 5929–5946. https://doi.org/10.1016/j.jfranklin.2023.04.009 doi: 10.1016/j.jfranklin.2023.04.009
![]() |