On the properties of input-to-output transformations in neuronal networks

  • Received: 01 March 2015 Accepted: 29 June 2018 Published: 01 January 2016
  • MSC : Primary: 92B20, 68T10; Secondary: 68M10, 05D40.

  • Information processing in neuronal networks in certain important cases can be considered as maps of binary vectors, where ones (spikes) and zeros (no spikes) of input neurons are transformed into spikes and no spikes of output neurons. A simple but fundamental characteristic of such a map is how it transforms distances between input vectors into distances between output vectors. We advanced earlier known results by finding an exact solution to this problem for McCulloch-Pitts neurons. The obtained explicit formulas allow for detailed analysis of how the network connectivity and neuronal excitability affect the transformation of distances in neurons. As an application, we explored a simple model of information processing in the hippocampus, a brain area critically implicated in learning and memory. We found network connectivity and neuronal excitability parameter values that optimize discrimination between similar and distinct inputs. A decrease of neuronal excitability, which in biological neurons may be associated with decreased inhibition, impaired the optimality of discrimination.

    Citation: Andrey Olypher, Jean Vaillant. On the properties of input-to-output transformations in neuronal networks[J]. Mathematical Biosciences and Engineering, 2016, 13(3): 579-596. doi: 10.3934/mbe.2016009

    Related Papers:

    [1] Hang Yu, Jiarui Shi, Jin Qian, Shi Wang, Sheng Li . Single dendritic neural classification with an effective spherical search-based whale learning algorithm. Mathematical Biosciences and Engineering, 2023, 20(4): 7594-7632. doi: 10.3934/mbe.2023328
    [2] Kseniia Kravchuk, Alexander Vidybida . Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness. Mathematical Biosciences and Engineering, 2014, 11(1): 81-104. doi: 10.3934/mbe.2014.11.81
    [3] Guowei Wang, Yan Fu . Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels. Mathematical Biosciences and Engineering, 2023, 20(2): 3944-3969. doi: 10.3934/mbe.2023184
    [4] Sven Blankenburg, Benjamin Lindner . The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences and Engineering, 2016, 13(3): 461-481. doi: 10.3934/mbe.2016001
    [5] Diego Fasoli, Stefano Panzeri . Mathematical studies of the dynamics of finite-size binary neural networks: A review of recent progress. Mathematical Biosciences and Engineering, 2019, 16(6): 8025-8059. doi: 10.3934/mbe.2019404
    [6] Hideaki Kim, Shigeru Shinomoto . Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Mathematical Biosciences and Engineering, 2014, 11(1): 49-62. doi: 10.3934/mbe.2014.11.49
    [7] Mahtab Mehrabbeik, Fatemeh Parastesh, Janarthanan Ramadoss, Karthikeyan Rajagopal, Hamidreza Namazi, Sajad Jafari . Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Mathematical Biosciences and Engineering, 2021, 18(6): 9394-9409. doi: 10.3934/mbe.2021462
    [8] Hwayeon Ryu, Sue Ann Campbell . Stability, bifurcation and phase-locking of time-delayed excitatory-inhibitory neural networks. Mathematical Biosciences and Engineering, 2020, 17(6): 7931-7957. doi: 10.3934/mbe.2020403
    [9] Ravi Agarwal, Snezhana Hristova, Donal O’Regan, Radoslava Terzieva . Stability properties of neural networks with non-instantaneous impulses. Mathematical Biosciences and Engineering, 2019, 16(3): 1210-1227. doi: 10.3934/mbe.2019058
    [10] Changgui Gu, Ping Wang, Tongfeng Weng, Huijie Yang, Jos Rohling . Heterogeneity of neuronal properties determines the collective behavior of the neurons in the suprachiasmatic nucleus. Mathematical Biosciences and Engineering, 2019, 16(4): 1893-1913. doi: 10.3934/mbe.2019092
  • Information processing in neuronal networks in certain important cases can be considered as maps of binary vectors, where ones (spikes) and zeros (no spikes) of input neurons are transformed into spikes and no spikes of output neurons. A simple but fundamental characteristic of such a map is how it transforms distances between input vectors into distances between output vectors. We advanced earlier known results by finding an exact solution to this problem for McCulloch-Pitts neurons. The obtained explicit formulas allow for detailed analysis of how the network connectivity and neuronal excitability affect the transformation of distances in neurons. As an application, we explored a simple model of information processing in the hippocampus, a brain area critically implicated in learning and memory. We found network connectivity and neuronal excitability parameter values that optimize discrimination between similar and distinct inputs. A decrease of neuronal excitability, which in biological neurons may be associated with decreased inhibition, impaired the optimality of discrimination.


    [1] in The Hippocampus Book (eds. P. Andersen, R. Morris, D. Amaral, T. Bliss and J. O'Keefe), Oxford University Press, 2006, 9-36.
    [2] preprint, (2015).
    [3] Neuron, 82 (2014), 670-681.
    [4] J. Neurosci., 15 (1995), 47-60.
    [5] Proc. Natl. Acad. Sci. USA, 101 (2004), 2560-2565.
    [6] Neuron, 43 (2004), 745-757.
    [7] Trends Neurosci., 37 (2014), 136-145.
    [8] Neuron, 22 (1999), 383-394.
    [9] Proc. Symposium on Switching Circuit Theory and Logical Design (FOCS), (1961), 34-38.
    [10] PLoS Comput. Biol., 9 (2013), e1002919.
    [11] Physiology (Bethesda), 25 (2010), 319-329.
    [12] Hippocampus, 20 (2010), 423-446.
    [13] Wiley, New York, NY, 1968.
    [14] P. Natl. Acad. Sci. USA, 95 (1998), 3182-3187.
    [15] J. Comput. Neurosci., 15 (2003), 5-17.
    [16] edition, Addison-Wesley Professional, 1994.
    [17] Proc. of AIP Conf., 1510 (2013), 101-119.
    [18] Comput. Stat. Data Anal., 51 (2006), 1575-1583.
    [19] Nat. Neurosci., 8 (2005), 1667-1676.
    [20] Nat. Rev. Neurosci., 9 (2008), 813-825.
    [21] Curr. Opin. Neurobiol., 19 (2009), 544-552.
    [22] Neural. Comput., 20 (2008), 1717-1731.
    [23] 2000. Available from: http://savannah.gnu.org/bugs/download.php?file_id=24016.
    [24] Nat. Neurosci., 3 (2000), 895-903.
    [25] B. Math. Biophys., 5 (1943), 115-133.
    [26] Neuroscience, 102 (2001), 527-540.
    [27] Neuron, 80 (2013), 765-774.
    [28] Neuroscience, 111 (2002), 553-566.
    [29] SFN Meeting Planner, 11 (2010), p56.
    [30] Front Comput. Neurosci., 6 (2012), p57.
    [31] arXiv:1312.1206, (2013).
    [32] Front Comput. Neurosci., 6 (2012), p71.
    [33] Science, 297 (2002), 359-365.
    [34] J. Physiol., 548 (2003), 245-258.
    [35] PLoS Comput. Biol., 10 (2014), e1003648.
    [36] Hippocampus, 4 (1994), 374-391.
    [37] Neural Comput., 24 (2012), 2873-2899.
  • This article has been cited by:

    1. Roger D. Traub, Miles A. Whittington, Processing of cell assemblies in the lateral entorhinal cortex, 2022, 33, 0334-1763, 829, 10.1515/revneuro-2022-0011
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2641) PDF downloads(484) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog