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ABSTRACT. Information processing in neuronal networks in certain important
cases can be considered as maps of binary vectors, where ones (spikes) and
zeros (no spikes) of input neurons are transformed into spikes and no spikes of
output neurons. A simple but fundamental characteristic of such a map is how
it transforms distances between input vectors into distances between output
vectors. We advanced earlier known results by finding an exact solution to this
problem for McCulloch-Pitts neurons. The obtained explicit formulas allow
for detailed analysis of how the network connectivity and neuronal excitability
affect the transformation of distances in neurons. As an application, we ex-
plored a simple model of information processing in the hippocampus, a brain
area critically implicated in learning and memory. We found network connec-
tivity and neuronal excitability parameter values that optimize discrimination
between similar and distinct inputs. A decrease of neuronal excitability, which
in biological neurons may be associated with decreased inhibition, impaired
the optimality of discrimination.

1. Introduction. In many brain areas neuronal spiking does not correlate directly
with external stimuli or motor activity of the animal. Neurons transform apparently
abstract inputs to abstract outputs. The hippocampus — a brain area critically im-
plicated in learning and memory — provides an important example [1]. Hippocampal
principal neurons are connected with tens of thousands input neurons [26]. However,
the content of these inputs and corresponding outputs is poorly understood even in
the case of the most studied place cells that receive and signal not just the infor-
mation about the animal’s location [14, 28, 27, 7]. Other examples that attracted
considerable attention of neuroscientists include the information transfer from the
hippocampus to the cortex [37] and from the antennal lobe to the mushroom body
in the olfactory system of insects [15, 17].

Analysis of neuronal responses to arbitrary inputs is challenging. Current ex-
perimental techniques have limited possibilities. In the hippocampus, the most
advanced methods allow for selective activation of no more than hundred synaptic
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connections of a principal neuron [21]. In computational models, arbitrary spatio-
temporal input patterns can be simulated [22, 12]. However computational resources
limit sampling, repertoire and accuracy of the obtained results.

Here we study a special case when information processing in neuronal networks
can be considered as maps of binary vectors, where ones (spikes) and zeros (no
spikes) of input neurons are transformed into spikes and no spikes of output neurons.
Such situations arise when neuronal excitability undergoes strong and fast periodic
modulation. Two examples. In behaving rats, neuronal excitability of hippocampal
neurons exhibits synchronous oscillations with a 40-100 Hz frequency [4]. In insects,
excitability of mushroom body neurons is synchronized at about 50 Hz [33]. What
would be the use of a one layer network that recodes its inputs? With regards to
the hippocampal field CA1 one hypothesis suggests that CA1 principal cells may
recode time-contingent combinations of stimuli, represented in the downstream CA3
network, into more compact representations. For example, simultaneously active
representations of stimuli A, B, C, D, and E could be recoded into representations
of ABC and BDE [36].

An important and interesting question regarding input-to-output maps in neu-
ronal networks is to how they transform the distances between inputs into the
distances between the corresponding outputs (Fig. 1). On one side, the transfor-
mation of distances is a fundamental mathematical characteristic of a map. On the
other side, it allows one, for example, to contrast normal and abnormal information
processing in neuronal networks. Indeed, intuitively, if an input pattern makes a
target neuron spike then the ‘healthy’ target neuron should also spike in response
to similar patterns - otherwise, neurons would be too sensitive to noise. At the
same time neurons should discriminate between sufficiently different input patterns
and spike selectively. In the simple example above, the CA1 network may recode
the combination of stimuli A, B, and C and the combination of stimuli A, B, and
E similarly or differently. What does determine that?

In [29, 30], we studied this problem using simulations of multi-compartmental
models of hippocampal neurons. To proceed with computationally demanding stud-
ies of how neuronal excitability and network connectivity affect information pro-
cessing we needed a deeper understanding of the mathematical properties of the
problem, which has led to the study reported here.

Using a combinatorial approach we obtained new results to this problem — ex-
act and explicit formulas for the expected distance between the neuronal outputs
provided certain distance between its inputs. These results allow for studying how
different input-to-output transformations are for similar and distinct inputs.

The outline of the paper is as follows. Section 2 contains necessary notations and
some auxiliary results. We solve the problem in the case when the target neuron
is connected with all the neurons of the input network in section 3. This result
is used in section 4 to solve the general case in which some neurons of the input
network are not connected to the target neuron. Finally, in section 5, we apply
the formulas from section 4 to a simple model of a hippocampal network to show
how connectivity and excitability of the neuron can optimize the network ability to
discriminate between similar and distinct inputs.

Portions of this work were presented in preliminary form in [31].

2. Definitions and auxiliary results. Let V™ = {0,1}" be the space of binary
inputs. The components of the binary vectors from V" equal to one (zero) represent
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FIGURE 1. Transformation of inputs in a neuronal network. The input
pattern is a binary vector that represents activity in input neurons (top
circles) within a short time window. Ones in this vector correspond
to spiking neurons (filled circles), zeros — to the neurons that do not
spike (empty circles). Input neurons are connected to the neurons of
the output network (bottom circles). Each input pattern makes some
of the output neurons spike. Given the distance between the two input
patterns X and Y how close are the output binary patterns T(X) and
T(Y)?

spiking (quiescence) of the corresponding input neurons. McCulloch-Pitts (MCP)
neurons are binary linear threshold functions on vectors from V™ [25]. Let L = L(xz)
be such a function. An input € V™ makes the MCP neuron spike or L(x) = 1, if
(w, z) > 0; here (w, x) = wix1 +waxs + - -+ + Wy Ty, is the dot product of w and x.
The neuron is quiescent or L(z) = 0 if (w,z) < 6. In what follows we assume that
all the components of w are binary, w € V™.

We studied how input-to-output transformations in MCP neurons depend on the
threshold @, the number n of neurons in the input network, the number m of the
input neurons that spike within a time window considered, and the number k of the
connections between the output neuron and the input neurons. We assumed that
in each input pattern, m simultaneously spiking neurons are selected randomly, the
spiking of one input neuron is independent from the spiking of the others, and the
patterns are equiprobable. If p — the probability of input neuron spiking, determined
by a given mean firing rate, is the same for all the input neurons, then m is equal to
the mean number of simultaneously spiking neurons, np. k connections between the
target neuron and the input neurons with non-zero weights are randomly distributed
and there is no link between the input patterns and the set of non-zero weights.
Note that the assumption of random weights does not imply that neurons close to
the target neuron cannot have connections with input neurons close to the input
neurons of the target neurons (cf. [5]).

By choosing a proper value of the spike threshold 6 the input-output curve of
the MCP neuron can be made close to the input-output curves of detailed neuronal
models. For comparison, we chose a model from [19]. In that model, the principal
cell has k = 4407 excitatory synapses from CA3 principal cells. The number 4407
was obtained using the estimates of the synaptic densities from [26]. In [30], we
reasoned that these synapses could come from a subpopulation of n = 28009 CA3
principal cells. To match a typical level of spiking activity in CA3, the number m of
spiking CA3 neurons in each random input pattern, a binary vector of length 28009,
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was set to 1540. Each excitatory input in the Jarsky et al. (2005) model considered
here was accompanied by activation of 871 randomly selected inhibitory synapses.
These numbers of the model are of course random samples from the corresponding
ranges of feasible values; see discussion of parameter values in [30].

The spike threshold of the MCP neuron was chosen to be 6§ = 258 to attain the
best match between the input-output characteristics of the two neuronal models for
m = 1540 (Fig. 2).

The input-output characteristic for the MCP neuron in Figure 2 was calculated
using the formula

min(k,0,m) (m) (n—m)
Prob(L(z) =1)=1- Y L2kt (1)
j=0 (k)
The sum in (1) is the probability of not spiking. Each term in the sum is equal
to the probability that a weighted combination of the input pattern components is
below the threshold 8. The probabilities obey the hypergeometric distribution with
parameters n, m, and k.

We characterize the input-to-output transformation in MCP neurons in terms
of Hamming distances. The Hamming distance between z,y € V™ is H(z,y) =
(x —y,xz —y), 0 < H(xz,y) < n. The number of ones is the Hamming length |z| of
z, x| = >0 2, = (x,x). Let V*, 0 < m < n be the subset of V" vectors with
Hamming length m : V,, = {z € V", |z| = m}.

It is easy to verify that for z,y € V;*, H(z,y) obeys a binomial distribution.
Indeed, the probability that the Hamming distance between a component of one
vector and the correspondent component of the other vector equal one is equal to
2m/n - (1 —m/n). Therefore

E(H(z,y)) = 2m- (1 - =). (2)

The maximum of F(H (x,y)) is attained at m = n/2.

The expected Hamming distance between network outputs is the sum of the
expected Hamming distances for individual neurons. Suppose there are N output
neurons. Let P, be the probability of an input pair w. Then the Hamming distance
between the corresponding outputs for the i—th neuron, H*(w), i = 1,--- , N, is a
random variable with the expected value

E(H') =) P,H'(w).

Consider now the Hamming distance between the outputs of the whole network
Hyetwy = Zfil H'. By definition of the expected value,

N
I:Inetw = E(Hnetw) - ZE(HZ) (3)
=1

In the case of identical neurons with the same number of connections all E(H?")
are equal, E(H') = H, and Hpery = N - H. A trivial generalization holds for
networks that consist of several categories of identical neurons. In that case the
expected Hamming distance between the outputs of the network is equal to the
sum of the products of the expected Hamming distances for individual neurons
from the categories and the numbers of neurons in those categories.
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FIGURE 2. Probability of spiking in a detailed model of a hippocampal
neuron and an MCP neuron. The hippocampal model neuron and MCP
neuron were connected with & = 4407 out of n = 28009 neurons in the
input network. The network had m% of neurons active. The data points
for the probability P of spiking for the detailed neuronal model (dots)
are the averages for 200 random input patterns. The points are fitted
with a Boltzmann function a/(1 4+ exp(—bz + ¢)) + d with a = —1.004,
b=3.161, c = —19.98, d = 0.9902 (black curve). For the MCP neuron,
P was calculated according to (1) (grey curve). The neuronal model is
from [19].

Figure 3 illustrates formula (3) for the case of five input neurons and several
(N =1,2,3) identical neurons in the output network. For one output MCP neuron
H= 0.4; see (12) below. The figure shows convergence of ﬁnetw to 0.4, 0.8 and 1.2
for one, two, and three output neurons with the increase of the number of sampled
pairs of inputs.

The example of Figure 3 also exposes the lack of independence of output neurons.
In the case of independence, H, ., for N = 3 would obey the binomial distribution
with the parameters N = 3 and p = 0.4. The probabilities of Hyety = 0, 1, 2, and
3 would be 0.216, 0.432, 0.288, and 0.064 respectively. However, direct evaluation
of the probabilities based on the Hamming distances for all 60 possible input pairs
gives the values 0.133, 0.600, 0.200, and 0.067.

3. Uniform binary weighing. In this section, we consider an auxiliary case when
all the synaptic weights of the target neuron are equal to one. Suppose an input
x makes the neuron spike. Let Prob (L(y) = 1| L(z) = 1, H(z,y) = d) be the
probability that an input y makes the MCP neuron spike provided y is at the
Hamming distance d from x. This probability characterizes the sensitivity of the
neuron L to differences between inputs.

To calculate the probability consider function f(n,m,m’,d) equal to the number
of the pairs (z,y), x € V., y € V., at distance d from each other. A direct counting
of the appropriate pairs gives
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FIGURE 3. Average Hamming distance between outputs of networks.
The output networks consisted of one (left), two (middle), and three
(right) McCulloch-Pitts neurons with § = 1. Every output neuron was
connected with three (k = 3) randomly chosen input neurons. The first
neuron was connected with neurons number 1, 3, 4 of the input network.
The second and third neurons were connected with the input neurons
number 1, 2, 3, and number 2, 3, 5 respectively. The curves represent
the average Hamming distance ﬁnetw across the pairs of 5-dimensional
(n = 5) input binary vectors with two ones (m = 2) in each vector and
Hamming distance 2 between them (d = 2). The pairs of inputs were
selected in random order, the same for the all three graphs. The number
of all such pairs is equal to 60. The exact values of Hcry (dashed lines)
are multiples of 0.4, the f[netw value for one output neuron; see Eqn.
(12). n,k,m,d are the parameters of the studied model.

fn,m,m’d) = (Z) <<:c77y>>(m'n—_<$y>>)

- (:L) <0.5(m fm' = d)) (0.5(77:t o + d))' (4)

In the above formula, (z,y) = 0.5(m +m' —d) and m’ — (z,y) = 0.5(m’ —m + d)
because of the assumption H(z,y) = (z — y,x — y) = d.

Using f(n,m, m’,d) one can easily obtain the probability mass function of H for
x,y € V7 (see also a related result in Appendix.)

D"

The proof of Result 1 is as follows: formula (5) is the ratio of the number of
combinations of x,y € V" such that H(z,y) = d, and the total number of combina-
tions of x,y € V. The first number is given by f(n, m,m,d). The second number

Result 1: Suppose z,y € V. Then

Prob(H(z,y) =d) = (5)

is equal to (:@)2 Obvious simplifications lead to the result.

One can verify that the formula (5) is consistent with (2).

Function f(n,m,m’,d) can be also interpreted as the number of ways of putting
n pairs of vector components (z;,y;), ¢ = 1,...,n, into 4 distinct categories: (1, 1),
(1,0), (0,1), and (0,0). Indeed, the expanding of the binomial coefficients in (4)
shows that f(n,m,m’,d) is the multinomial coefficient
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The main auxiliary result determines the conditional probability that input y

makes the neuron L spike provided all the synaptic weights are equal to one (‘uni-
form weighing’) and y is at distance d from some input « of length m.

Result 2 : Let |w| =n and P, = Prob(L(y) = 1| H(z,y) = d,|z| = m). Then
Z f(n’m’ m,7d)
m’€D(g41,n]

bu= Z Yf(n,m,mﬂd) ’ @

m/eD[O,n]

f(n7 m, m/7 d) =

where Dy, ) is the set of all m’ from [a,b] such that: 1) m +m’ — d is an even
number, and 2) maxz(d —m,m —d) <m’ < min(m+d,2n —m — d).

Denominator in (7) is the number of all possible combinations of z, |z| = m,
and y such that H(z,y) = d. Numerator is the number of those combinations that
satisfy an additional condition (w,y) = |y| = m’' > 6. The conditions for Dy, ;) are
those for which all binomial coefficients that involve m’ in the corresponding sums
have non-negative integer coefficients.

In appendix, we deduce an equivalent form of (7).

To numerically evaluate formulas for probabilities we used Matlab (MathWorks,
Natick, MA) and a PC with a 1.5 GHz processor and 2.5 Gb memory. To preserve
accuracy, we made calculations with all the digits utilizing a publicly available
Matlab package VPI by John D’Errico.

4. Arbitrary binary weighing. Here we generalize the results of the previous
section to the case of arbitrary binary weighing when the target neuron may be not
connected with some neurons from the input network. Zero weights can for example
model ‘silent’; ineffective synapses [20]. Silent synapses can be essential for optimal
information processing in neurons. For example modelling studies [6, 10] suggest
that the maximal storage capacity of Purkinje cells of the cerebellum is attained
when a large fraction of their synapses have zero weights.

Below we assume that the non-zero weights are the first k£ weights of w: w; =1,
i <k, w; = 0,7 > k. There is no loss of generality in this assumption since
we average across inputs. Let Pk be the projector to the first k& coordinates such
that Ppax = (z1,22,...,7k,0,...,0). Denote u = (Pyx, Ppx), ' = (Pry, Pry), and
d = H(Pyz, Pry). The following proposition determines the probability that input
y makes the neuron spike provided input z, || = m, makes the neuron spike, and
H(xz,y) =d.
Result 3 : Let |w| =k, k < n, and let P, = Prob(L(y) = 1| L(z) = 1,H(x,y) =
d,|x| = m). Then

min(d,k) min(m,k) n

Z Z Z Z f(ka,uﬂulv(s)f(n*kvm*:uﬁm/7,ul7d75)

0=0 p=[0]+1 m'=0 ' €Qg41,m"

min(d,k) min(m,k) n ’

Z DD IS f(kuu 0)f(n—k,m—p,m — ' d—09)

= p=[0]4+1 m'=0 u’' €Qo 1/
(8)

P, =
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where f is defined by formula (4), |#] is the largest integer not greater than 6, and
Qla,p) is the set of y from [a, b] for which all binomial coefficients that involve u' in
the corresponding sum have non-negative integer coefficients.

Let k < n. To derive (8) consider first k components of vectors z and y separately
from the rest n — k components. For the first & components we can assume that
all the weights of L are equal to one. Therefore the number of all the combinations
of Pyz and Pyy such that (Pyz, Prx) = p, (Pry, Pry) = ¢ and H(Pyz, Pry) = 6
is equal to f(k,u,p’,d); cf. (4). Each of these combinations is multiplied by the
number of possible combinations of the rest n — k components. For the latter
combinations the weights of L also can be considered uniform (all equal to zero).
The number of combinations is also given by function f from (4) with appropriate
arguments. Subsets (), ) are natural generalizations of subsets D, ;) from Result 2.
They specify values of y' from intervals [a,b] such that all binomial coefficients
involving p’ in the corresponding sums have non-negative integer lower indexes.

When k = n, formula (8) reduces to formula (7). Indeed, ¢ takes only one value
d = d provided m = pand m’ = ¢/, Then f(n —k,m —p,m' —p/,d—4§) = 1.

When the inputs have the same length, m’ = m, formula (8) gets simpler:

min(d,k) min(m,k)

Z S > e 6 f(n—kom = pom— g d—0)
0=0 p=|0]+1 ' E€Qo+1,m]

min(d,k) min(m,k)

Z Yoo D flep ' 8) f(n—kym = pym =y d = 6)

0=0 p=|0]+1 ' €Q0,m]

The probability P? that L(y) = 0 provided |z| = |y| = m, L(z) = 0 and
H(z,y) = d can be expressed in a similar way:

min(d,k) 6]

Z S>> fleop ) f(n—kom—pom— ' d—0)
0 _ = n=0p'€Qo,0]
Pa B min(d,k) 0] . (10)

Z Z Z (ki 0) f(n—k,m — p,m —p!,d —6)

0=0 p=0u'€Qo,m)

From Result 3, we get the following result which determines the probability that
two binary inputs x and y of length d, that make the neuron spike, are at Hamming
distance d from each other.

Result 4 : Let |w| =k, k < n, |z| = |y| = m. Then

Prob(H(z,y) = d | L(z) = 1, L(y) = 1)

min(d,k) min(m,k)

Z Z Z f(kau7u/75)f(n_k7m_,uam_ul7d_6)
_ =0  pu=[0]+1 p €Q9+1m] _ ' (11)

2 67

n=[6]+1

The numerator in (11) is the same as in formula (9) and the denominator is the
total number of combinations of x,y € V7 such that L(x) = L(y) = 1 for the case
k <n.
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Using the above results we now obtain a formula for the expected Hamming
distance H between L(z) and L(y) provided z and y have the same Hamming
length m and are at Hamming distance d from each other. H close to one implies
neuron L has often the same value on two input patterns x and y. H close to zero
implies neuron L has often different values on two input patterns x and y.

Result 5 : Let z,y € V', H(z,y) = d and L is a neuron with the weights w € V}”".
Then H, the expected Hamming distance between L(z) and L(y), is equal to

H=1— (P, Prob(L(z) = 1) + P? - Prob(L(x) = 0)). (12)

In (12), P, is determined by (9), PO by (10), and Prob(L(z) = 1) by (1);
Prob(L(x) =0) =1— Prob(L(z) =1).

Note that in the case when all the weights are equal to one, |w| = n, H=0.
If m > 6 then H(L(x),L(y)) = 0 since L(z) = 1 and L(y) = 1. If m < 6 then
H(L(zx),L(y)) = 0 since L(xz) =0 and L(y) = 0.

To approximate function f (Eqn. (6)) one can use the Stirling’s formula for
factorials ([13], p.54) according to which for any natural n

1
n! &~ V2mn" 0% (1 + K) (13)
n

The next section has an example of using such an appoximation.

5. Application. We applied the above formulas to analyze information processing
in the field CA1 principal cells of the rat hippocampus during slow gamma (25-
55Hz) populational rhythm when the input to CA1l is predominantly formed by
inputs from CA3 neurons [3]. In the context of our model, inhibitory interneurons
of the CA1 network contribute to input-to-output transformation in CA1 principal
cells in two ways. Feed-forward interneurons mostly determine the value of the
threshold 6. Feed-back interneurons help to synchronize and discretize excitability
in principal cells. They also reset the excitability by the beginning of every input-
to-output cycle of transformation. The MCP model obviously does not exhibit any
behavior other than spiking or no spiking. Yet, as we showed earlier (Fig. 2), the
averaged input-to-output characteristic of the MCP model can be made close to
that of a detailed neuronal model which in turn approximates the corresponding
properties of biological neurons [19].

In the first example, we adapted the model of a CA1 neuron from [12]. The input
network, representing neurons from the field CA3 of the hippocampus, consisted of
n = 100 neurons. The binary patterns had length m = 20. The spike threshold level
0 = 8 roughly corresponded to the average level of spiking of the CA1 neurons in the
model. We evaluated H using (12) for # = 8 and 6 = 4. In accord with intuition,
small distances d between x and y were transformed into small expected distances H
between the corresponding outputs for the both threshold values (Fig. 4). However,
for & = 8 the greatest values of H were attained at about two times greater values
of k compared to the case 6 = 4.

To reveal the difference between the cases of § = 8 and 6 = 4 we looked at the
corresponding values of P,. In both cases, P, had a qualitatively similar dependence
from the number £ of unit weights of the neuron and from the distance d between
the inputs (Fig. 5A, B). However, for some values of k and d the difference was
quite notable (Fig. 5C).
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FIGURE 4. Expected Hamming distance H between outputs L(z), L(y)
of neuron L as a function of the Hamming distance d between inputs =z,
y and the number of non-zero weights k. (A) 8 =8. (B) § = 4. n = 100,
m=m' = 20.

||®:8|| _ II®:4H

FIGURE 5. Probability that an input makes a neuron spike conditional
on proximity to another input that makes the neuron spike. Probability
P = P, as a function of the distance d between inputs and the number
k of non-zero weights in the neuron is shown for two different values of
threshold 6, (A) # = 8 and (B) 6§ = 4. (C) The difference between the
probabilities in (A) and (B) is small for most but not all values of k and
d. n =100, m = m' = 20.

We chose two values of d for the further analysis. One value, d = 32, is the
expected distance between a pair of randomly selected binary patterns with 20 ones
out of 100 (cf. (12)). It is equal to 80% of the maximal distance d = 40. We refer
to the patterns with such distance between each other as distinct. The other value
d = 4 is 10% of the maximal distance between patterns. We refer to the patterns
with such d as similar.

Figure 6A shows the probability of neuronal spiking for similar (black curve)
and distinct (gray curve) patterns. The difference between the probabilities (dotted
curve) attained the maximum at k = 30, that is when the model CA1 neuron was
connected with 30 CA3 neurons. The maximal difference between the probabilities
for the two categories of patterns was equal to 0.55.

A decrease of the spiking threshold from 6 = 8 to # = 4 made the connectivity
with thirty CA3 input neurons non-optimal (Fig. 6B). The conditional probabilities
of spiking for similar and distinct patterns changed, as well as the difference between
them. As a result, the difference between the probabilities for £ = 30 became equal
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FIGURE 6. Probability of neuronal spiking for distinct and similar in-
puts. (A) The probability for similar inputs (d = 4) (black) and distinct
inputs (d = 32) (gray) has maximal difference (dotted) for k¥ = 30 non-
zero weights (black triangle) for 6 = 8. (B) For a smaller threshold
0 = 4, k = 30 does not maximize the difference between the probabili-
ties. m = 100, m = m’ = 20.

to 0.14 that signifies a considerable decrease of the neuron’s ability to discriminate
between similar and distinct inputs.

We conclude the first example with an application of the Sterling’s formula (13)
to evaluation of the expected Hamming distance from Fig. 4A. First, we expressed
the formula (12) for H in terms of function f (Eqn. (6)) :

min(d,k) min(m,k,[6]) Z

a=( X
5=0 n=0 K EQIp+1,m)

min(m,k,|0])

>

=0

f(k:,,u,u’,é)f(n—k:,m—u,m—u',d—é)

min(m,k)

>

HEQ 6] +1,m)

* f(n3 m’ m’ d)il'

f(k,u,u’,é)f(nfk,mfp,mfu',df5)))

(14)

The divisor at the very end of the formula stands for the number of pairs (z,y),
xz,y € V7 such that H(z,y) = d. The rest of the formula is the number of
x,y € V' with H(z,y) = d and such that either L(z) =0, L(y) = 1 (first term) or
L(z) = 1,L(y) = 0 (second term). For multinomial coefficients (cf. (Eqn. (6)) the
Sterling’s formula implies

#;3%4' ~ exp{nin(n) + 0.5In(27n) + In(1 + 1/(12n))
4 (15)
=3 @iln(w;) + 0.5n(2mwa;) + In(1 + 1/(121;))}.

Every term in sum (14) consists of a product of two multinomial coefficients
divided by another one. For those coefficients we combined the exponents of (15)
for computational efficiency.
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FIGURE 7. The expected Hamming distance ]flasymp between outputs
L(z), L(y) of neuron L as a function of the Hamming distance d between
inputs z, y and the number of non-zero weights k& approximated using
the Stirling’s formula. (A) Hasymp. (B) Hasymp — H, where H is the
expected Hamming distance calculated ‘exactly’ (Fig. 4A). n = 100,
m=m' =20, 0=8.

The values of Hygymp obtained using (14), (15) were very close to the exact values
of H (Fig. 7A). The difference |H — Hygymp| did not exceed 1 x 1073 (Fig. 7B) and
was everywhere negative. Importantly, it took about two orders of magnitude less
time to compute f[asymp than to compute H. When only the main term of the
Sterling’s formula (without 1/12n) was used, the error of the approximation was
notably larger, up to 0.06, but the characteristic behavior of H was still captured.

In the second example, we considered an MCP neuron, which approximates a
multi-compartmental model of a CA1l neuron from [19]. As we mentioned above,
the target neuron was connected with k& = 4407 out of n = 28009 CA3 model
neurons. The typical level of activity in the network of CA3 neurons corresponded
to m = 1540. The spike threshold of the MCP neuron was chosen to be # = 258 to
attain the best match between the input-output characteristics of the two neuronal
models for that value of m (Fig. 2).

We studied the probability that this model neuron spikes differently to different
inputs of fixed Hamming length. We considered (H)q, the average Hamming dis-
tance between the neuronal outputs, equal to H additionally averaged with respect
to all possible Hamming distances between pairs of inputs.

One way to calculate (H), is to use the formula

2m

(H)a=> H- Prob(H(z,y) = d)
d=0
with H and Prob(H(z,y) = d) determined by (12) and (5) respectively.
We used a simpler formula

(H)g =2 Prob(L(z) =1) - (1 — Prob(L(z) = 1)), (16)

with Prob(L(z) = 1) determined by (1).
We varied k with step 20 starting from k& = 0. (H)4 attained its maximal value
at k = 4700 (Fig. 8), which is close to k = 4407, the number of input connections
of the multi-compartmental neuropal model. When the threshold was decreased by

20% to 6 = 206.4, the curve for (H)q shifted to the left, as in the first example (cf.
Fig. 4). The maximum was attained at k = 3760.
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FIGURE 8. Probability of different responses to different inputs in an
MCP neuron. (H)q from (16) (black curves) as a function of k. When

= 258 was decreased by 20% to 6 = 206.4 the value of k at which (H)4
attained its maximum decreased from k = 4700 to k = 3760. Close
values of (FI Ya were obtained under the assumption that the number
of spikes in the input patterns was not fixed but followed a binomial

distribution [15] (red curves); n = 28009 and m = 1550.

In evaluating (H), one may approximate the probability of neuronal spiking in
the input network by m/n as in [15] instead of restricting the number of spiking neu-
rons by m, and correspondingly use not a hypergeometric, as in (1), but a binomial
distribution. Both approaches give similar results for the parameters considered
(Fig. 8) .

6. Discussion and conclusions. One of the basic characteristics of neuronal in-
formation processing is how they discriminate inputs. In this work, we modeled the
case when the activity of neurons in input and output networks is discretized in
time, for example by synchronous periodic modulation of excitability. Then spiking
or quiescence of input neurons within a time bin can be considered as an input
binary pattern and the resulting spiking of output neurons as the corresponding
output binary pattern.

When the distance between pairs of input patterns is fixed, there is a distribution
of the distances between pairs of the corresponding output patterns. In the case
of one output neuron the distribution is determined by the probability that if an
input makes the output neuron spike then another input, at a certain distance from
the first one, also makes the output neuron spike. We found an exact and explicit
formula for this probability for individual McCallough - Pitts (MCP) neurons.
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A natural question regarding input-to-output transformations in neurons is whe-
ther these transformations are optimal in processing different inputs. Various crite-
ria of optimality are possible. An earlier result allowed to determine parameters for
which the input-to-output transformation in MCP neurons maximally separated
different inputs on average [15]. That result applies mostly to pairs of distinct
inputs because under the assumption of binomial distribution used in [15] the ex-
pected difference between inputs is relatively large (cf. (5)). However, in biological
networks many inputs representing the same or similar states of the environment
are often similar. The formulas such as the one for H (Eqn. 14) can be used for
such inputs since these formulas depend on the distance d between input patterns
but not on the probability of that.

Here, we focused on transformations of distinct and similar inputs. The analysis
of input-to-output transformations between similar and distinct inputs is important
since neurons have to be reliable and robust to ignore minor differences between
inputs and at the same time be selective to acknowledge major differences between
inputs; see also a discussion in [37]. The behavior of the mean distance between
neuronal responses as a function of the distance between inputs, when the inputs
and responses occur within short time windows, can be used as a quantitative
characteristic of neuronal functioning. This characteristic can complement such
standard characteristics as for example the input-output characteristic that shows
the probability of neuronal spiking in response to neuronal stimulation with certain
frequency.

An example, considered in this work, suggests that an optimal discrimination
between similar and distinct inputs requires a balance between network connectiv-
ity and neuronal excitability. In particular, more excitable neurons should receive
inputs from a smaller number of neurons to discriminate between similar and dis-
tinct input patterns (Fig. 5 and Fig. 6). Further studies should clarify the nature
of this balance.

A difference between a transformation of such inputs was found in a network of
multi-compartmental models of CA1 pyramidal neurons [30]. In that model, the
connectivity parameter k was about 15 % of the total number of input neurons.
Our results (Fig. 5) suggest that such a difference can be a common phenomenon
when the proportion of the input neurons that effect the target neuron is relatively
small, as in the case of CAl network.

In the present work we studied how CA1 processed CA3 inputs. In a similar way
one can study processing of EC inputs in CA1. A separate analysis of CA3 and EC
inputs makes sense since in rats, involved in exploratory behavior, the hippocampal
field CA1 neurons tend to process their inputs from another hippocampal field,
CA3, and entorhinal cortex (EC) separately in time [11, 3]. The differences in CA1
responses are mostly attributed to the different nature of signals generated by CA3
and EC networks. In particular, the CA3 network, in contrast to the EC network,
supposedly follows attractor dynamics [35]. We hypothesize that the CA3 and EC
signals are not just different but also CA1 principal cells process the signals from
CA3 and EC differently. Namely, CA1 neurons are less sensitive to small variations
in CA3 inputs compared to small variations in EC inputs. The network model
and the corresponding formulas obtained in the present study suggest focusing on
connectivity between CA3, EC and CAl principal neurons (parameters n and k
in the present model) and the level of spiking activity in CA3 and EC (parameter
m in the present model) along with the neurophysiological properties of synapses
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and the effect of feedforward interneurons (parameter 6 in the present model) to
verify the reason(s) for different CA1 processing of CA3 and EC inputs. In [30]
we proposed that the above hypothesis can be tested experimentally by stimulating
CA3 and EC presynaptic sites of CA1 principal cells and comparing variability of
CA1 responses. The formulas obtained in the present study should help in designing
this experiment and interpreting its results.

Analysis of linear threshold functions has a relatively long history; see, e.g. [9].
Our results are related most closely to the recent results of Garcia-Sanchez and
Huerta [15] and Valiant [37], who also studied input-to-output transformations in
MCP neurons. Compared to [15], our work is more concerned with specific distances
between inputs, rather than just different inputs. Valiant [37] studied input-to-
output transformation with a focus on sequences of the corresponding maps and
fixed points of those maps.

The MCP neuronal model with binary weights that we used in this study is an
oversimplification of a biological neuron. Recent experimental data provide some
support to this model. In particular, input-to-output transformations in hippocam-
pal neurons and networks in some cases allow for linear approximation [8, 32].
Next, the assumption of binary synaptic weights is equivalent to the assumption
that some synapses are ineffective while the others are of equal weight. In the case
of the hippocampal field CA1 the assumption is supported by the observation that
excitatory synapses at different locations make similar contribution to the changes
of the membrane potential in the soma of the neurons in that area [24, 34]. Ongoing
research on hippocampal synapses (see e.g. [2]) should further clarify the accuracy
of our assumptions.

The results of our study offer a new approach in experimenting with multiple
neuron stimulations. In addition to analyses of neuronal responses to individual
input patterns, one can estimate differences between the input patterns and explore
the differences between the corresponding output patterns. The results for simple
networks of MCP neurons obtained in this study may help in such research.

From the mathematical and computational point of view the results of the present
study can be developed in a number of directions. One direction is to design ap-
proximations and efficient computational algorithms for numerical evaluation of the
formulas. Here, as an example, we demonstrated that using the Sterling’s formula
for factorials drastically decreased the computation time without considerable loss
of accuracy. This approach can be refined further as proposed in ([23, 18]).

Another direction is to take into account small random variations of weights and
inputs and use the firing probability of output neurons, conditional on Hamming
distance between unperturbed pairs of inputs, as a sensitivity measure of the impact
of such variations on the predicted firing.

Acknowledgments. The author thank the anonymous reviewers for their valuable
comments. The study was supported in part by the Bonus Qualité Recherche from
the UAG Scientific Council.

Appendix. Here we simplify (7) using some properties of binomial coefficients. We
rewrite (7) using the definition (4) of the function f(n,m,m’,d). The coefficient (")
in numerator and denominator of the formula can be canceled out. Denominator

5= Zn: <0.5(m :an/ - d)) (0.5(773 . :Z + d)) (17)

m’=0
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- gn_:o <O.5(m - Z; + O.5m’> <0.5(d —nn;) T 0.5m’)>

can be simplified using a variant of Vandermonde’s identity ([16], Eqn.(5.23))

Z<mik><nik):<l—l;in>’ (18)

k

that is valid for nonnegative integer I, and integer m, n. When m — d, and conse-
quently m’ are both even then the application of (18) to (17) yields S = (7). In
the case when m — d is odd m/ is also odd, and (18) can be applied to

= Zn: (0.5(m i) 0.5(m’ — 1)) <0.5(d —m +n1;f0-5(m’ - 1)>>'

m’/=1

The result is the same, S = (’}), and the formula (7) becomes

Zn: 0.5(m +mm' - d)> (0.5(7:/ . Z + d)>

P = m/=0+1 ) (19)

v n
d
The symmetry relation (Z) = (nﬁk) applied to (O'S(mfm,_d)), turns formula (19)

into a sum of the probabilities of the hypergeometric distribution with parameters
n, m, d:

P 2": (0-5(m St d)) (0.5(7:’ s d)) |

n
m’'=60+1
(3

Formula (20) leads to a formula that quantifies the distribution of binary patterns
of fixed Hamming weight.

Result 6 : Let z € V', y € V" and H(x,y) = d. Then

m\ (n—m
d d d
AS-PA NSV
Prob(y e Vi |z eV, H(z,y) =d) = (n) 2

d
0 otherwise.

(20)

To prove Result 6, in (20) choose 6 so that m > 6. For m’ = m, the sum in (20)
reduces just to one term. Inequalities in Result 6 follow from the condition that the
low values in the binomial coefficients are non-negative integers.

Figure 9 represents the probabilities from Result 6 calculated for n = 20000
(a typical number of inputs to a cortical neuron) depending on the number m of
ones (activated synapses) in the pattern and Hamming distance d. Note that the
curves do not represent probability density functions. For d = 0, x = y the curve
is the horizontal line Prob = 1. The probability from Result 6 is symmetric about
m = n/2 and attains its maximum at this value. Indeed, according to an urn model
for the hypergeometric distribution, the calculated probability is the probability of
having an equal number of black and white balls in a sample of d balls picked at
random from an urn that has m black and n — m white balls. Accordingly, the
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FIGURE 9. Probability that binary vectors have the same Hamming
length provided certain distance between them. P is the probability that
the binary vector y has the Hamming weight m provided H(z,y) = d
and |z| = m. n = 20000.

probability is the greatest when the number of black and white balls is the same,
m = n/2 (for even n) or differs by one (for odd n).
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