Effect of spontaneous activity on stimulus detection in a simple neuronal model

  • Received: 01 March 2015 Accepted: 29 June 2018 Published: 01 January 2016
  • MSC : Primary: 62F10, 62P10; Secondary: 60K05.

  • It is studied what level of a continuous-valued signal is optimally estimable on the basis of first-spike latency neuronal data. When a spontaneous neuronal activity is present, the first spike after the stimulus onset may be caused either by the stimulus itself, or it may be a result of the prevailing spontaneous activity. Under certain regularity conditions, Fisher information is the inverse of the variance of the best estimator. It can be considered as a function of the signal intensity and then indicates accuracy of the estimation for each signal level. The Fisher information is normalized with respect to the time needed to obtain an observation. The accuracy of signal level estimation is investigated in basic discharge patterns modelled by a Poisson and a renewal process and the impact of the complex interaction between spontaneous activity and a delay of the response is shown.

    Citation: Marie Levakova. Effect of spontaneous activity on stimulus detection in a simple neuronal model[J]. Mathematical Biosciences and Engineering, 2016, 13(3): 551-568. doi: 10.3934/mbe.2016007

    Related Papers:

  • It is studied what level of a continuous-valued signal is optimally estimable on the basis of first-spike latency neuronal data. When a spontaneous neuronal activity is present, the first spike after the stimulus onset may be caused either by the stimulus itself, or it may be a result of the prevailing spontaneous activity. Under certain regularity conditions, Fisher information is the inverse of the variance of the best estimator. It can be considered as a function of the signal intensity and then indicates accuracy of the estimation for each signal level. The Fisher information is normalized with respect to the time needed to obtain an observation. The accuracy of signal level estimation is investigated in basic discharge patterns modelled by a Poisson and a renewal process and the impact of the complex interaction between spontaneous activity and a delay of the response is shown.


    加载中
    [1] Neural Comput., 11 (1999), 91-101.
    [2] J. Neurosci., 48 (1982), 217-237.
    [3] Neural Comput., 17 (2005), 839-858.
    [4] Neural Comput., 13 (2001), 1351-1377.
    [5] Proc. Natl. Acad. Sci. USA, 94 (1997), 5411-5416.
    [6] Neural Comput., 14 (2002), 2317-2351.
    [7] J. Neurosci., 32 (2012), 2998-3008.
    [8] Neural Comput., 10 (1998), 1731-1757.
    [9] Chem. Senses, 23 (1998), 181-196.
    [10] Biophys. J., 71 (1996), 3013-3021.
    [11] Methuen, London, 1966.
    [12] Nature Neurosci., 1 (1998), 501-507.
    [13] Nature Neurosci., 8 (2005), 1684-1689.
    [14] Nature, 381 (1996), 610-613.
    [15] J. Opt. Soc. Am. A, 24 (2007), 1529-1537.
    [16] J. Neurophysiol., 80 (1998), 2151-2160.
    [17] J. Neurosci. Meth., 83 (1998), 185-194.
    [18] J. Neurosci., 20 (2000), 1216-1228.
    [19] J. Neurophysiol., 87 (2002), 1749-1762.
    [20] J. Neurophysiol., 76 (1996), 1356-1360.
    [21] Biophys. J., 4 (1964), 41-68.
    [22] IEEE Trans. Biomed. Engineering, 36, 4-14.
    [23] Biol. Cybern., 103 (2010), 43-56.
    [24] Biol. Cybern., 92 (2005), 199-205.
    [25] Phys. Rev. E, 60 (1999), 4687-4695.
    [26] Phys. Rev. Lett., 84 (2000), p4773.
    [27] Springer, New York, 2010.
    [28] Experientia, 51 (1995), 1003-1027.
    [29] J. Neurophysiol., 77 (1997), 2616-2641.
    [30] J. Neurophysiol., 97 (2007), 1078-1087.
    [31] Neurocomputing, 38 (2001), 239-248.
    [32] J. Comput. Neurosci., 16 (2004), 129-138.
    [33] PLoS Comput. Biol., 4 (2008), e1000053, 11pp.
    [34] Neural Comput., 27 (2015), 1051-1057.
    [35] Math. Biosci. Eng., 11 (2014), 63-80.
    [36] Neural Comput., 17 (2005), 2240-2257.
    [37] BioSystems, 89 (2007), 10-15.
    [38] Math. Biosci., 207 (2007), 261-274.
    [39] J. Peripher. Nerv. Syst., 4 (1998), 27-42.
    [40] Biol. Cybern., 108 (2014), 475-493.
    [41] BioSystems, 136 (2015), 23-24.
    [42] J. Comput. Neurosci., 19 (2005), 199-221.
    [43] Nature, 411 (2001), 698-701.
    [44] Hearing Res., 167 (2002), 13-27.
    [45] J. Neurosci., 25 (2005), 10049-10060.
    [46] Neural Comput., 22 (2010), 1675-1697.
    [47] Neuron, 29 (2001), 769-777.
    [48] Phil. Trans. R. Soc. B, 369 (2014), 20120467.
    [49] Neurosci. Res. Prog. Bull., 6 (1968), 221-348.
    [50] Neuron, 32 (2001), 503-514.
    [51] BioSystems, 67 (2002), 187-193.
    [52] J. Neurophysiol., 85 (2001), 1039-1050.
    [53] Eur. J. Neurosci., 18 (2003), 1135-1154.
    [54] Network, 7 (1996), 687-716.
    [55] Phys. Rev. E, 86 (2012), 021128.
    [56] BioSystems, 112 (2013), 249-257.
    [57] Ann. Math. Stat., 28 (1957), 362-377.
    [58] Neural Comp., 14 (2002), 155-189.
    [59] Hearing Res., 35 (1988), 165-190.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2498) PDF downloads(477) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog