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Abstract. It is studied what level of a continuous-valued signal is optimally

estimable on the basis of first-spike latency neuronal data. When a spontaneous
neuronal activity is present, the first spike after the stimulus onset may be

caused either by the stimulus itself, or it may be a result of the prevailing

spontaneous activity. Under certain regularity conditions, Fisher information
is the inverse of the variance of the best estimator. It can be considered as a

function of the signal intensity and then indicates accuracy of the estimation

for each signal level. The Fisher information is normalized with respect to the
time needed to obtain an observation. The accuracy of signal level estimation

is investigated in basic discharge patterns modelled by a Poisson and a renewal

process and the impact of the complex interaction between spontaneous activity
and a delay of the response is shown.

1. Introduction. The question how the information from the environment is en-
coded in the activity of neurons is one of the central problems in neuroscience. Be-
cause the time course of the membrane potential during action potentials (spikes)
is stereotyped, signals need to be conveyed by the pattern of spikes. Rate coding,
based on firing rates of individual cells, is the most commonly studied neural code
([32, 35, 36, 37, 38] and many more). Nevertheless, it is not the only option. The
delay from stimulus onset to the first evoked spike, called a first-spike latency, may
carry significant information in addition to the spike count, as has been shown e.g.
in the auditory [19, 42], visual [20, 52], olfactory [53] and somatosensory systems
[47, 50, 51]. When speaking about latency coding, it is inherently supposed that the
latency varies as the stimulus level changes and thus the latency can signal what is
the actual stimulus level.

A potential objection to the idea of latency coding is that the neuron, which is
responsible for decoding the information about the stimulus level, does not have the
exact knowledge about timing of the stimulus onset and therefore cannot evaluate
the first-spike latency. However, there are several possible ways how nervous system
can maintain a temporal reference about stimulus onset, as outlined in [48], and
they provide two possible explanations how the latency could be involved in the
processing of the information about a stimulus.

Firstly, experimental research done on primate auditory cortex [7] revealed a
mechanism based on the existence of two different groups of neurons. Neurons
of the first type react to the stimulus rapidly and with a very low variability with
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respect to the quality of the signal, providing the information about stimulus timing
but not about its properties. Neurons of the second type respond typically only to
some stimuli and with longer and more variable latencies, which are related to the
stimulus qualities.

Secondly, the latency may affect the synchronization of the first spikes occurring
after the stimulus onset produced by different neurons. Assume that a neuron under
consideration receives spikes from a certain group of afferent neurons and can rec-
ognize the first evoked spikes from these neurons, but does not know their latencies,
because the time of the stimulus onset is unknown. The mean of the latency depends
on the stimulus level, so the stronger is the stimulus, the shorter is the latency. We
may also expect the variance of the latency to be smaller for stronger stimuli, so the
first evoked spikes for weak stimuli are likely to be considerably jittered, whereas the
first evoked spikes for stronger stimuli would be elicited approximately at the same
time. Thus, latencies relative to one another in the ensemble of neurons might be
decoded instead of the absolute latency ([16, 18, 29, 31, 48]). This point is debated
in Discussion.

The analysis presented in this paper focuses on the activity of a single neuron.
In reality, the information about the stimulus is encoded by a simultaneous activity
of a group of neurons. If the population of neurons is homogeneous, i.e. neurons
in the ensemble respond independently and stochastically identically ([28, 33, 59]),
then their joint activity can be studied using repeated recordings of one particular
neuron exposed to a stereotyped stimulus.

Experimental data can be investigated using various statistical methods. Either
the nonparametric approach may be applied and then the whole probability density
function (pdf) of the time to the first evoked spike is estimated, as was shown e.g.
in [46], or the more common strategy is adopted, when a certain stochastic model
for the first-spike latency distribution is assumed, and then the problem reduces to
the estimation of key parameters of such model. However, the whole distribution of
latency is often not studied in detail and only the mean of the latency is investigated.

There are many statistical methods dealing with the estimation of the latency
([4, 17, 40, 46, 55, 56] and many others), a review is provided in [41]. Their precision
has been assessed, for example, by means of Monte Carlo simulations. The aim of
this paper is to investigate the accuracy of estimation of the key parameters of
latency, i.e. parameters related to the stimulation level, using the concept of Fisher
information. It shows what is the minimum mean square error attainable by the
best unbiased estimator satisfying certain regularity conditions. Application of
Fisher information in neural computation has become a common tool, it was used
e.g. in [3, 6, 8, 24, 25, 26, 32, 36, 37, 38, 54, 58]. The novel contribution of this
paper is to investigate how precisely the signal level of the applied stimulus can be
reconstructed from the measurements of the time to the first spike after stimulus
onset and how it is affected by the presence of spontaneous neuronal activity and
the delay of the response.

2. Spike train model. When a neuronal response is investigated experimentally,
occurrence of spikes is recorded in time and it is analysed, how the spiking pattern
changes after presentation of a stimulus at a fixed time t0. An excitatory response
is considered throughout the paper, although an inhibitory response can be also
incorporated in some of the models introduced here. In an excitatory case, the
neuron is typically either silent or fires spontaneously with a low background firing
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rate up to t0 and after t0 (and presumably some additional delay) the stimulus
evokes some extra spikes, that would not occur otherwise. The following scenarios
are compared in later sections:

1. Absence of a spontaneous activity:
The neuron is completely silent in the absence of stimulation.
(a) Instantaneous response – The response, viewed as the random process

generating spikes, starts immediately after t0, so that the first evoked
spike can be observed arbitrary close to t0.

(b) Response with a delay – Response starts after t0 and a delay ω, which is
a positive constant and has the meaning of the minimum reaction time
due to finite transmission times of the involved electro-chemical processes.
Therefore the first evoked spike cannot occur before t0 + ω.

2. Presence of a spontaneous activity:
In the absence of stimulation the neuron elicits spikes spontaneously. The
response has a form of additional spikes observed on the top of the background
spontaneous activity.
(a) Instantaneous response – The response starts immediately after t0.
(b) Response with a delay – The response starts after t0 + ω.

The spontaneous activity, whenever considered in this paper, is described by a
Poisson process. This is based on results from [10], where the statistical properties of
neuronal firing rate described by the classical Hodgkin-Huxley neuronal model with
the inclusion of stochastic channel dynamics were analyzed and it was shown that
the spontaneous activity arising from channel fluctuations is well described by the
Poisson model. Besides that, the firing of the leaky integrate-and-fire model without
input current but with stochastic fluctuations of the membrane potential can be
also described by the Poisson spiking model ([39]). The main attention is given to
the situation when both the spontaneous and the evoked response are Poissonian,
nevertheless, a more general scenario, where the response is not a Poisson process,
but a renewal process, is also briefly discussed for a comparison.

We are interested in the first-spike latency of the response, i.e., the time R elapsed
from the stimulus onset at t0 to the first evoked spike. However, if the neuron fires
spikes spontaneously, there is no way how the first evoked spike can be experi-
mentally distinguished from other eventual spikes resulting from the spontaneous
activity. Therefore only the time to the first spike after t0, which is denoted by T ,
is measured, and it is taken into account that

T = min{W,R}, (1)

where W is the time to the first spontaneous spike after t0. Throughout all the paper
it is assumed that W and R are independent. As W is given by the spontaneous
activity, it must be also independent of the stimulation. This description of the
time to the first observed spike was already used in [46, 55, 56]. An illustration of
spike trains arising in the four scenarios introduced above is provided in Fig. 1. The
realizations of R, W and T are also shown there.

When studying a neuronal response to a stimulation, the firing rate is typically
investigated. A natural way how to estimate it from data is to divide the number
of elicited spikes N(t) observed in the time window (t0, t0 + t), by the length of ob-
servation period t. Since it is assumed that the underlying point process generating
spikes is at least locally stationary during the response, the following relationship
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Figure 1. Spike trains generated according to the assumed sce-
narios. 1. No spontaneous activity; (a) response starts immediately
after t0, (b) response starts after t0 + ω. 2. Spontaneous activity
is present; (a) response starts immediately after t0, (b) response
starts after t0 +ω. Spontaneous spikes are marked with black dots,
evoked spikes with red crosses. W denotes the time from t0 to the
first subsequent spontaneous spike, R is the time to the first evoked
spike and T is the time from t0 to the first spike of any type, thus
T = min{W,R}. Spike times were simulated, so it is known if the
first spike after t0 is spontaneous (T = W ) or evoked (T = R).
Times of evoked and spontaneous spikes were generated separately
and the same data are used for all subfigures. In 1.(a) only times
of evoked spikes occur; in 1.(b) times of evoked spikes were shifted
by ω; in 2.(a) both times of spontaneous and evoked spikes are dis-
played together; in 2.(b) spontaneous spikes are displayed without
any change and evoked spikes are shifted by ω.

between spike counts and interspike intervals (ISIs), denoted by X, holds (see [11])

E[N(t)]

t
=

1

E(X)
. (2)

This formula shows that the frequency of spikes and ISIs are closely related.

3. Transfer function. There is an experimental evidence (e.g. [53]) that the mean
of the time to the first spike, E(T ), depends on the strength of the stimulus, also
called a stimulus level, s. Since W is completely independent of the stimulation,
the dependence of E(T ) on s is a result of the relationship between E(R) and s.
Whenever it is needed to highlight that R or T is considered for a given signal level
s, it is indicated by a lower index as Rs and Ts.

The relationship between the signal level s and E(Rs) is described by a transfer
function. A transfer function, in a broad sense, refers to a function that describes a
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relationship between the stimulus level and any quantity of the model that changes
with respect to the stimulation intensity. There is almost no experimental evidence
about the relationship between the first spike latency and the stimulus intensity.
When selecting an appropriate formula for the transfer function describing E(R),
we can come out of the usual form of a transfer function used for the firing rate. The
experimentally obtained frequencies of spikes are often fitted to the Hill function
([2, 9, 15], for example). Its basic form is

f(x) =
axb

Cb + xb
, x ≥ 0, (3)

where x is the nonnegative stimulus intensity expressed in corresponding physical
units on a linear scale, f(x) is the number of spikes per unit of time and a > 0,
b > 0, C > 0. However, instead of the original signal level x, its logarithm s = log x
is often considered, which implies that the transformed signal level s is allowed to be
positive as well as negative. The resulting transfer function for the firing frequency
is then ([37, 44, 53])

f(s) =
a

1 + e−b(s−c)
, s ∈ (−∞,∞), (4)

where c = logC. The logistic function (4) is bounded by two asymptotes; zero for
s→ −∞ and a for s→∞ (the saturating level). The parameter b is responsible for
the steepness of the curve and also affects the width of the region of predominant
increase of the function, i.e., a range of signals for which the function changes
significantly (a dynamical range); c corresponds to the inflection point where the
slope is maximal. As was pointed out in [34], the choice of the stimulus scale is an
integral part of the neural coding problem and may have a significant influence on
the coding accuracy. Therefore it is crucial to work with a physiologically relevant
scale, which is assumed in the rest of the paper.

The frequency can be viewed as the inverse of the mean ISI, as shown in (2). If
we assume that E(R) is proportional to E(X), then E(R) is inversely proportional
to the firing rate and the transfer function for E(R) may be approximated by the
inverse of (3), yielding

E(Rx) = θ0

(
1 +

Cb

xb

)
, x ≥ 0. (5)

where θ0 = 1/a has the meaning of the minimum mean latency. Since the rate of
spikes and the first-spike latency are not exactly inverse, the parameters in (3) and
(5) do not have to be identical. If the latency is expressed for s on the log scale,
s = log(x), by rescaling (5) or inverting (4) we get

E(Rs) = θ0

(
1 + e−b(s−c)

)
, s ∈ (−∞,∞). (6)

This formula can be also supported by experimental data from frog olfactory re-
ceptor neurons in [53], where the function of the same form was reported as the
best choice to fit the dependence of the measured first-spike latencies with respect
to changing stimulus levels. The transfer functions (3)–(6) are illustrated in Fig. 2.
All calculations in the following section are based on the transfer function (6).

When the rate coding is studied, the simplest and most intuitive way to determine
the optimally detectable signal level is to identify s, for which the slope of the
transfer function (4) is maximal, so that a small change in s implies a large change
of the rate of elicited spikes. This suggests that the maximum of ∂f(s)/∂s may be
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Figure 2. Transfer functions for the rate of spikes on the lin-
ear (f(x)) and the log scale (f(s)) and their counterparts for the
latency obtained as their inversions E(Rx) and E(Rs). Three dif-
ferent values of b are used, b = 1 (full red line), b = 2 (dashed blue
line) and b = 1/2 (dotted green line). In all the graphs, a = 1,
c = 0, θ0 = 1.

an indicator of the optimally detectable signal level with respect to the rate coding.
If the same idea is applied for the latency coding, then the slope of (6) would be
investigated and the optimality measure would be

J (0)
s (s) =

∣∣∣∣
∂E(Rs)

∂s

∣∣∣∣ . (7)

Recall that E(Rs) as given in Eq. (6) is independent of which of the models is as-
sumed. The maximal slope of E(Rs) is reached for s = −∞ and thus this optimality
measure suggests that the weakest possible signal is optimal for all of the models
1.(a)–2.(b).

4. Fisher information. The measure J
(0)
s does not take into account the random-

ness of Rs and the fact that not only the mean of Rs, but also its variability may
change with respect to s, making thus the identification of the signal level for some
s more difficult than for others. The whole distribution of R should be therefore
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taken into account. Fisher information is a more complex measure that overcomes
this problem. Another difficulty arises in the presence of spontaneous activity when
R is not directly observed and the signal level detection is based on observations of
T , from which the distribution of R has to be deduced.

Fisher information reflects, how well a parameter can be estimated from available
data, if the distribution family is known. The Cramer-Rao inequality states that,
under some regularity conditions, the variance of an unbiased estimator ŝ of the
signal level s based on observations of Ts cannot be smaller than the inverse of the
Fisher information. Obviously, the higher the Fisher information, the smaller the
lower bound on variance and the more accurate estimate of s can be reached. This
rule also implies that the higher the Fisher information, the less neurons are needed
to get an equally accurate estimate.

Fisher information about a generic parameter α in one observation of T can be
calculated according to the formula

Jα(α) = E

(
∂

∂α
log fT (T ;α)

)2

=

∫
1

fT (t)

(
∂

∂α
fT (t;α)

)2

dt. (8)

If the parameter α is a function of s, the Fisher information can be easily reparam-
eterized, yielding the Fisher information about s as

Js(s) = Jα
(
α(s)

)( ∂

∂s
α(s)

)2

. (9)

The following lower bound for Js can be obtained from the Cauchy-Schwarz
inequality ([54]),

J (2)
s (s) =

1

Var(Ts)

(
∂E(Ts)

∂s

)2

, (10)

where Var(Ts) is the variance of the random variable Ts. In experimental works,
this quantity is often used and referred to as Fisher information, e.g. in [13, 30, 45].
If Var(Ts) is constant for all s and ∂E(Ts)/∂s is proportional to ∂E(Rs)/∂s, then

J
(2)
s (s) ∝ [J

(0)
s (s)]2. Thus the optimal signal level deduced from J (0)(s) can be

regarded as a crude approximation of the optimal signal level based on the Fisher
information Js.

When thinking about efficient neuronal decoding, one would require not only
the information about stimulus to be estimated with maximal accuracy (as can be
expressed in terms of Fisher information), but also that the decoding process is as
fast as possible. Thus the time necessary to observe the first spike after t0 should
be also taken into account and signal levels leading on average to long waiting times
ought to be penalized. The following normalized Fisher information was used in
[36, 38],

Is(s) =
Js(s)

E(Ts)
. (11)

It can be considered as an alternative criterion of optimality and its maximum
represents a stimulus with the maximal Fisher information per unit of time.

5. Results. This section is devoted to the inspection of Fisher information about
the signal level contained in the latency for the scenarios outlined in Section 2.
Although values of optimal signals from the perspective of a particular optimality
measure are provided whenever it is possible, the primary aim lies not in the specific
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values of optimal s, but in their comparison under different conditions and for
different optimality measures.

5.1. Fisher information in a Poissonian model. At first, assume the simplest
of neuronal responses, when the stimulation evokes a sequence of spikes following
a Poisson process, there is no spontaneous activity and no delay (scenario 1.(a),
see Fig. 1). The first observed spike is thus identical with the first spike evoked
by the stimulation, T = R. When the underlying Poisson process has parameter
λ > 0, the time to the first spike is exponentially distributed with mean 1/λ. Thus
T ∼ Exp(λ) and its pdf is fT (t) = λe−λt, t ≥ 0. The mean E(R) = 1/λ depends on
the signal level s as described by (6), therefore

λ(s) =
1

θ0(1 + e−b(s−c))
. (12)

Note that λ(s) is identical with the transfer function for spike frequency (4). The
Fisher information about λ and s conveyed in one observation of T is then

Jλ(λ) =
1

λ2
, (13)

Js(s) =
b2e−2b(s−c)

(1 + e−b(s−c))2
, (14)

Is(s) =
b2e−2b(s−c)

θ0(1 + e−b(s−c))3
. (15)

The transfer function λ(s) together with Jλ, Js and Is are illustrated in Fig. 3.
As we can see, the Fisher information Js is bounded on the interval [0, b2] and is
decreasing for increasing s. It means that the stronger is the stimulus, the less
accurate estimate of s in terms of the mean squared error can be obtained. The
normalized Fisher information does not favour small values of s and suggests the
optimal signal level

s = c− 1

b
log 2. (16)

5.1.1. Effect of a delayed response. In the scenario 1.(b) a delay ω for the response
is introduced (see Fig. 1). Note that ω represents a substantially different quantity
from θ0, because θ0 is a lower limit for E(Rs), whereas ω is the lower limit for
any realization of R. The time to the first spike follows now a shifted exponential
distribution with rate λ and shift ω, T ∼ sh Exp(λ, ω). Its pdf is thus fT (t) =
λe−λ(t−ω), t ≥ ω, and the mean is E(T ) = E(R) = ω+ 1/λ. In order to ensure that
E(R) is not in contradiction with the transfer function (6), namely that the lower
asymptote of E(Rs) is not higher than θ0, it must hold that ω ≤ θ0.

Since ω describes an intrinsic property of the neuron, it is treated as a constant
regardless of the applied stimulus. The only parameter depending on the stimulus
level is λ. The Fisher information about λ is the same as in the previous model, see
(13), because the shift ω has no impact on the value of the integral in (8). However,
we must modify the dependence of λ on s, which is now

λ(s) =
1

θ0
(
1 + e−b(s−c)

)
− ω . (17)
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Figure 3. Fisher information for the Poissonian response. A: Re-
sponse rate λ as a function of stimulus intensity s; B: Fisher in-
formation about λ; C: Fisher information about s; D: normalized
Fisher information about s. Results for the four different scenarios
are shown: no spontaneous activity and no delay (full red line), no
spontaneous activity and nonzero delay (dashed blue line), presence
of spontaneous activity and no delay (dotted green line), presence of
spontaneous activity and nonzero delay (dash-dotted purple line).
Optimal stimulus levels given by maxima of Js and Is, respectively,
are marked with vertical dotted lines. Presence or absence of spon-
taneous activity plays no role in the first subfigure. All the other
parameters apart from the delay and the level of spontaneous ac-
tivity are fixed to θ0 = 1, b = 1 and c = 0.

Using this and the formula (9), we get the Fisher information about s as follows

Js(s) =
θ20b

2e−2b(s−c)
[
θ0
(
1 + e−b(s−c)

)
− ω

]2 , (18)

Is(s) =
θ0b

2e−2b(s−c)

(
1 + e−b(s−c)

) [
θ0
(
1 + e−b(s−c)

)
− ω

]2 . (19)
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The only change in Js, when compared with the previous scenario without a delay,
is that now the squared expression in the denominator is lowered by ω. Thus,
although still decreasing and bounded on the range [0, b2], Js in the scenario 1.(b)
is greater for all s. This is not surprising, because the constant shift ω allows λ(s)
to reach higher values and leads to a wider dynamical range. The normalized Fisher
information shows an optimum for

s = c− 1

b
log

(
θ0 − ω +

√
(θ0 − ω)(9θ0 − ω)

2θ0

)
. (20)

The transfer function λ(s) together with Jλ, Js and Is are illustrated in Fig. 3.

5.1.2. Effect of spontaneous activity. Assume now that the neuron fires spikes spon-
taneously even in the absence of stimulation and the stimulation modulates the on-
going neuronal activity. For now the possibility of a delay is not taken into account
(scenario 2.(a) in Fig. 1). Identification of latency in such situation was discussed in
[46]. For simplicity, the spontaneous activity is considered as Poisson process with
rate λ0 and the stimulation causes emission of extra spikes according to Poisson
process with rate λ. Thus the overall activity of the neuron during the response is
given by Poisson process with rate λ0 + λ. As a result, we have W ∼ Exp(λ0) and
R ∼ Exp(λ) and we get the pdf of T as fT (t) = (λ0 + λ)e−(λ0+λ)t, t > 0, which is
a pdf of the exponential distribution with rate parameter λ0 + λ.

The parameter of the spontaneous activity λ0 remains fixed, while λ depends on
s, so we are interested in the Fisher information about λ, which is

Jλ(λ) =
1

(λ0 + λ)2
. (21)

In comparison with (13) we see that λ0 > 0 results in a decrease of Jλ for every
possible λ, so the presence of noise complicates the information decoding. The rate
parameter λ depends on s as stated in (12) and, after applying (9), this yields

Js(s) =
b2e−2b(s−c)

(
1 + e−b(s−c)

)2 [
λ0θ0

(
1 + e−b(s−c)

)
+ 1
]2 , (22)

Is(s) =
b2e−2b(s−c)

θ0
(
1 + e−b(s−c)

)3 [
λ0θ0(1 + e−b(s−c)) + 1

] . (23)

Interestingly, Js is nonmonotone (see Fig. 3). For s → −∞ the Fisher information
Js approaches zero, because the response is almost completely covered by the spon-
taneous activity. As s increases, the noise induced by the spontaneous firing plays
smaller and smaller role and consequently Js rises. Simultaneously, the inherent
decreasing tendency of Js, as shown for the scenarios without spontaneous activity
(14), gradually comes in and after the maximum is reached for

s1 = c− 1

2b
log

(
λ0θ0 + 1

λ0θ0

)
, (24)

it completely prevails and Js decreases to zero. The normalized Fisher information
Is has a similar shape, but the maximum is reached for a different value of s

s2 = c− 1

b
log

(
−1 +

√
1 + 16λ0θ0(1 + λ0θ0)

4λ0θ0

)
. (25)
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The optimal level suggested by Is is higher, which is in agreement with the expecta-
tion, because Is penalizes weak signals with long latencies in general. The difference
between s1 and s2 depends on the level of spontaneous activity, as shown in Fig. 4,
and decreases with increasing spontaneous activity. In the limit when λ0 →∞ both
optimal levels are equal.

5.1.3. Mutual effect of a delayed response and spontaneous activity. Consider again
that the evoked activity is observed on top of a background spontaneous activity,
but now we allow for a delay for the first evoked spike (scenario 2.(b) in Fig. 1).
Consequently, R follows a shifted exponential distribution, R ∼ sh Exp(λ(s), ω),
while W remains unchanged. Several methods for the estimation of the delay ω in
such a case were shown in [55, 56]. The pdf of T is

fT (t) =

{
λ0e−λ0t 0 < t < ω

(λ0 + λ)e−λ0t−λ(t−ω) t ≥ ω. (26)

Assume again that all the parameters except λ does not depend on the stimulus
level. The Fisher information about λ is

Jλ(λ) =
e−λ0ω

(λ0 + λ)2
. (27)

In comparison with the previous case without a delay (21), Jλ is multiplied by the
factor exp(−λ0ω) = P(T > ω) < 1, which rules out all the cases when W ≤ ω and
therefore T carries no information about the stimulus. After employing (17) we get

Js(s)=
θ20b

2e−λ0ω−2b(s−c)
[
λ0θ0

(
1 + e−b(s−c)

)
− λ0ω + 1

]2[
θ0
(
1 + e−b(s−c)

)
− ω

]2 , (28)

Is(s)=
λ0θ

2
0b

2e−λ0ω−2b(s−c)
[
θ0
(
1+e−b(s−c)

)
−ω
]2[
λ0
[
θ0
(
1+e−b(s−c)

)
−ω
]
+1
][
λ0
[
θ0
(
1+e−b(s−c)

)
−ω
]
+1−e−λ0ω

] .

(29)

All the results are illustrated in Fig. 3.
The function Js is nonmonotonic again and reaches its maximum at

s = c− 1

2b
log

[
(θ0 − ω)

(
1 + λ0(θ0 − ω)

)

λ0θ20

]
. (30)

Note the difference between Js with and without an incorporated delay (Eqs. (22)
and (28)). The effect of the delay manifests itself in two opposite ways. First, there
is a multiplying constant e−λ0ω < 1 in the numerator of (28), which decreases the
value of the Fisher information. Secondly, the denominator is lowered by the delay,
which increases the Fisher information. Whether the overall effect of the delay for
given s results in an increase or a decrease of Js depends on the actual values of
the parameters.

The optimal signal level according to Is is not shown because the formula is too
complicated and provides no useful insight. Fig. 4 shows how it changes with respect
to λ0. Again, the optimal signal level given by Is is higher than the optimal signal
level given by the classical Fisher information Js, but this difference decreases with
increasing λ0 and tends to zero.
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Figure 4. Dependence of the optimal signal level s determined
by the maximum of the Fisher information Js and its normalized
version Is on the level of spontaneous activity λ0. Left: response
is given by Poisson process; right: R follows inverse Gaussian dis-
tribution.

5.2. Inverse Gaussian distribution of the first-spike latency. Poisson pro-
cess is memoryless and one might argue that it possibly does not reflect the key
properties of a response adequately. Therefore an example of a slightly different
model based on Eq. (1) is briefly presented. The eventual spontaneous activity is
still presumed to be given by a Poisson process, but for R the inverse Gaussian dis-
tribution is now used. It is one of commonly applied distributions in neuroscience
[27]. One of the reasons is that it can be obtained as a distribution of the first time,
when a Wiener process V (t) with drift µ and diffusion parameter σ, defined as

V (t) = µdt+ σdW (t), V (0) = 0, (31)

reaches a threshold B > 0, where W (t) denotes the standard Wiener process, µ and
σ are positive constants. This process can be used as a description of membrane
potential in the perfect integrate-and-fire model ([21]).

Throughout this section, the parametrization by Tweedie ([57]) is used. Inverse
Gaussian distribution is characterized by two parameters, mean parameter α = B/µ
and shape parameter β = B2/σ2, so that E(R) = α and Var(R) = α3/β. Results
for Js and Is are invariant with respect to reparametrization.

The pdf of R, if the response starts after a delay ω ≥ 0, is

fR(t) =

√
β

2π(t− ω)3
exp

(
−β(t− ω − α)2

2α2(t− ω)

)
, t ≥ ω. (32)

(33)

From E(Rs) = ω + α(s) we get the transfer function

α(s) = θ0

[
1 + e−b(s−c)

]
− ω, (34)
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β is treated as a constant. If a delay is not considered, we set ω = 0. T is equal to
R in the absence of spontaneous activity (scenarios 1.(a) and (b)) and we get

Jα(α) =
β

α3
, (35)

Js(s) =
βθ20b

2e−2b(s−c)
[
θ0
(
1 + e−b(s−c)

)
− ω

]3 , (36)

Is(s) =
βθ0b

2e−2b(s−c)

(
1 + e−b(s−c)

) [
θ0
(
1 + e−b(s−c)

)
− ω

]3 . (37)

As illustrated in Fig. 5, Js is nonmonotone, which is in contrast to the analogous
case in the Poissonian model (14), where Js is decreasing. The maximum of Js is
located at

s1 = c− 1

b
log

(
2(θ0 − ω)

θ0

)
. (38)

The nonmonotone shape of Js can be easily explained using the formula (9). For
weak signals, α(s) is very high and thus Jα

(
α(s)

)
is near to zero. With increasing

s, Jα
(
α(s)

)
rises, leading to the growth of Js. However, the absolute value of the

derivative of α(s) is decreasing and after s reaches the critical value s1, its influence
prevails and makes Js decrease. Is is also nonmonotone and reaches its maximum
at

s2 = c− 1

b
log

(√
ω2 + 16θ0(θ0 − ω)− ω

4θ0

)
. (39)

Now let us look on the effect of spontaneous activity (scenarios 2.(a) and (b)
in Fig. 1). Assume again that the spontaneous activity is given by Poisson process
with rate λ0. The pdf of T is then

fT (t) =

{
λ0e−λ0t t ≤ ω,
λ0e−λ0t(1− FR(t)) + e−λ0tfR(t) t > ω,

(40)

where FR(t) is the cumulative distribution function of R, which follows inverse
Gaussian distribution shifted by ω. The mean of T can be calculated from the
following formula derived in [55],

E(T ) = E(W )
[
1− e−λ0ωLR−ω(λ0)

]
, (41)

where LR−ω(s) is the Laplace transform of FR(t) with ω = 0. This yields

E(T ) =
1

λ0

[
1− exp

(
−λ0ω +

β

α
−
√
β

(
β

α2
+ 2λ0

))]
. (42)

In the presence of a spontaneous activity, Js and Is are not available in a closed
form. Results obtained by numerical methods are shown in Figs. 4 and 5 together
with the results given in (35)–(37). We can see that for all the scenarios the Fisher
information is increasing at first, but then decreases to zero again. The effect of
a delay and the presence of spontaneous activity is analogous to the model with
Poissonian response, i.e. the spontaneous activity decreases and the delay mostly
increases the Fisher information, though the mutual effect of the delay and sponta-
neous activity is ambiguous.
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Figure 5. Fisher information if R follows inverse Gaussian dis-
tribution. A: the mean of R as a function of a stimulus intensity
s; B: the Fisher information about α; C: the Fisher information
about s; D: the normalized Fisher information about s. Results for
the four different scenarios are shown: no spontaneous activity and
no delay (red), no spontaneous activity and nonzero delay (blue),
presence of spontaneous activity and no delay (green), presence of
spontaneous activity and nonzero delay (purple). The presence or
the absence of spontaneous activity plays no role in the first sub-
figure. All the parameters except λ0, ω are fixed; β = 1, θ0 = 1,
b = 1 and c = 0.

6. Discussion. All the models in the paper are constructed as a superposition of
an eventual process generating spontaneous spikes and another process generating
evoked spikes, so the models are explicitly designed for an excitatory response. Nev-
ertheless, an inhibitory response can be also incorporated into the purely Poissonian
model, provided that a spontaneous activity is present. In this model, the stimula-
tion causes that the generation of spikes after t0 + ω is given by a Poisson process
with rate λ0+λ(s). An inhibitory response can be easily captured if λ(s) ∈ (−λ0, 0).
However, a similar thing cannot be easily done in the model with non-exponential
distribution of R. A more elaborate way of combining the spontaneous and the
evoked activity would be needed there, some examples can be found in [40].

The spike train model based on pooling of the spontaneous and evoked activity
should not be understood as that there really exist two different types of spikes
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Table 1. Distributions of nonnegative random variables fre-
quently used for spiking data and the relationship between the
mean and the variance, if one of the parameters varies with s.

Distribution
Parameters

Mean-variance relation
Variable Fixed

Exponential
λ - rate

λ(s) Var(Ts) = [E(Ts)]
2

Gamma

k - shape, λ - rate

λ(s) k Var(Ts) = 1
k [E(Ts)]

2

k(s) λ Var(Ts) = 1
λE(Ts)

Inverse Gaussian
α - mean, β - shape

α(s) β Var(Ts) = 1
β [E(Ts)]

3

Lognormal
µ - location, σ2 - variance

µ(s) σ2 Var(Ts) = σ2[E(Ts)]
2

arising from two independent sources. Nevertheless, the discrimination between
spontaneous and evoked activity is well-founded for the first spike after t0. Fur-
thermore, although the assumed response is characterized by a whole random point
process, only the time to the first evoked spike is essential for the analysis. Therefore
the results stay valid also for more complicated responses as far as the distribution
of T is preserved.

It was mentioned in Introduction that the necessary condition for decoding
through synchronization of first spikes is that the mean and the variance of the
latency are directly proportional. Although the author is not aware of any general
proof that a shorter mean latency implies a smaller variance, it seems to hold at
least for unimodal distributions of nonnegative variables. The explanation is that
the decreasing mean is equivalent to the mass of the distribution shifting towards
zero, which means that the mode must increase and this leads simultaneously to the
inevitable decline of variance. For instance, let Rs0 be the latency for the weakest
stimulus, which is able to evoke a response, and let us assume that the latency for
stronger stimuli is scaled as follows

Rs = k(s− s0)Rs0 , (43)

where k(x) is a multiplying constant from the interval [0, 1] that is a decreasing
function of x, x > 0. Then we have

E(Rs) = k(s− s0)E(Rs0)

Var(Rs) =
[
k(s− s0)

]2
Var(Rs0),

(44)

so both the mean and the variance are decreasing with respect to s. Many common
distributions of nonnegative random variables have the same property that the mean
and the variance evolve in the same direction with respect to a varying parameter of
the distribution (see Table 1) and an analogous relation has been shown for the first-
spike latency in Morris-Lecar model with a channel noise [23]. This phenomenon
was observed also in experimental data, e.g. for retinal cells [5].
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7. Conclusions. It was pointed out in Section 3 that the measure J
(0)
s , when

applied on latency coding as described in this paper, suggests in all the models that
the weakest possible signal is optimal. This is in most cases a substantially different
result from the optimal stimulus level given by the exact Fisher information. In
most cases Js has a distinct maximum, indicating that a specific signal level can
be discriminated best. If the normalized Fisher information Is is applied as an
optimality measure, a particular optimal signal level is identified in all the cases.

The models 1.(a), 1.(b) and 2.(a), although presented separately, are subcases of
the model 2.(b), with the level of spontaneous activity, the delay or both of them
equal to zero. Thus all the Fisher informations and normalized Fisher informations
in the Poissonian model can be obtained from Eqs. (28) and (29) after choosing
λ0 = 0, ω = 0 (case 1.(a)), λ0 = 0 (case 1.(b)) or ω = 0 (case 2.(a)).

The impact of spontaneous activity on the Fisher information is in agreement
with a common intuition. The higher the spontaneous activity, the less accurate
estimates we would get for all s. Besides that, the optimal signal level moves to
higher values of s, because a stronger signal is necessary to achieve a sufficient
contrast with the background activity. On the contrary, the effect of a delay is less
straightforward. On one hand, in the presence of spontaneous activity it results in
a lower probability that an observation of T carries information about the stimulus
level. On the other hand, it broadens the range, on which the parameter depending
on the stimulus level can vary, and thus improves the discriminability.

The parameters b and c of the transfer function E(Rs) play only a quantitative
role. The parameter c is responsible for shifts of the whole Fisher information
function. The parameter b scales the Fisher information and thus influences its
maximal value and slope, but affects also the location of the maximum. The impact
of these two parameters on the optimal signal level follows the same pattern for all
the scenarios

arg max
s∈R

Js(s) = c− K(λ0, θ0, ω)

b

arg max
s∈R

Is(s) = c− L(λ0, θ0, ω)

b
,

where K(λ0, θ0, ω), L(λ0, θ0, ω) are expressions independent of b and c. By contrast,
the locations of the maxima of Js and Is are crucially affected by the shape of the
transfer function, namely its first derivative. If the transfer function for E(Rs) is
derived from a slightly different formula for f(s) than (4), this change could lead
to a substantial shift of the optimum.
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