Efficient information transfer by Poisson neurons

  • Received: 01 March 2015 Accepted: 29 June 2018 Published: 01 January 2016
  • MSC : Primary: 62B10, 62P10; Secondary: 60G55.

  • Recently, it has been suggested that certain neurons with Poissonianspiking statistics may communicate by discontinuously switchingbetween two levels of firing intensity. Such a situation resembles inmany ways the optimal information transmission protocol for thecontinuous-time Poisson channel known from information theory. In thiscontribution we employ the classical information-theoretic results toanalyze the efficiency of such a transmission from differentperspectives, emphasising the neurobiological viewpoint. We addressboth the ultimate limits, in terms of the information capacity undermetabolic cost constraints, and the achievable bounds on performanceat rates below capacity with fixed decoding error probability. Indoing so we discuss optimal values of experimentally measurablequantities that can be compared with the actual neuronal recordings ina future effort.

    Citation: Lubomir Kostal, Shigeru Shinomoto. Efficient information transfer by Poisson neurons[J]. Mathematical Biosciences and Engineering, 2016, 13(3): 509-520. doi: 10.3934/mbe.2016004

    Related Papers:

  • Recently, it has been suggested that certain neurons with Poissonianspiking statistics may communicate by discontinuously switchingbetween two levels of firing intensity. Such a situation resembles inmany ways the optimal information transmission protocol for thecontinuous-time Poisson channel known from information theory. In thiscontribution we employ the classical information-theoretic results toanalyze the efficiency of such a transmission from differentperspectives, emphasising the neurobiological viewpoint. We addressboth the ultimate limits, in terms of the information capacity undermetabolic cost constraints, and the achievable bounds on performanceat rates below capacity with fixed decoding error probability. Indoing so we discuss optimal values of experimentally measurablequantities that can be compared with the actual neuronal recordings ina future effort.


    加载中
    [1] Dover, New York, 1992.
    [2] W. W. Norton and Co., New York, 1928.
    [3] J. Cereb. Blood Flow Metab., 21 (2001), 1133-1145.
    [4] Netw. Comput. Neural Syst., 13 (2002), 531-552.
    [5] Princeton University Press, Princeton, 2012.
    [6] Springer, New York, USA, 1981.
    [7] in Advances in Network Information Theory (eds. P. Gupta, G. Kramer and A. J. van Wijngaarden), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 66, American Mathematical Society, 2004, 263-284.
    [8] IEEE Trans. Inf. Theory, 53 (2007), 2349-2364.
    [9] IEEE Trans. Inf. Theory, 26 (1980), 710-715.
    [10] MIT Press, 2001.
    [11] Nature, 379 (1996), 642-644.
    [12] CRC Press, Boca Raton, USA, 1997.
    [13] J. Neurobiol., 65 (2005), 97-114.
    [14] IEEE Trans. Inf. Theory, 37 (1991), 244-256.
    [15] John Wiley and Sons, Inc., New York, USA, 1972.
    [16] Cambridge University Press, Cambridge, 2002.
    [17] Brain Res., 1434 (2012), 123-135.
    [18] Proc. Natl. Acad. Sci. U.S.A., 107 (2010), 12329-12334.
    [19] IEEE Trans. Inf. Theory, 51 (2005), 2336-2351.
    [20] World Scientific Publishing, Singapore, 1993.
    [21] J. Acoust. Soc. Am., 107 (2000), 908-921.
    [22] J. Comput. Neurosci., 3 (1996), 275-299.
    [23] Netw. Comput. Neural Syst., 19 (2008), 13-33.
    [24] Theor. Prob. App., 23 (1978), 143-147.
    [25] Neural Comput., 23 (2011), 3070-3093.
    [26] Front. Comput. Neurosci., 3 (2009), p9.
    [27] Phys. Rev. E, 82 (2010), 026115.
    [28] Brain Res., 1434 (2012), 136-141.
    [29] Biosystems, 136 (2015), 3-10.
    [30] Biol. Cybern., 107 (2013), 355-365.
    [31] Math. Biosci. Eng., 11 (2014), 63-80.
    [32] IEEE Trans. Inf. Theory, 39 (1993), 491-503.
    [33] Z. Naturforsch., 36 (1981), 910-912.
    [34] Nat. Neurosci., 1 (1998), 36-41.
    [35] IEEE Trans. Commun., 29 (1981), 1615-1621.
    [36] Biol. Cybern., 105 (2011), 55-70.
    [37] IEEE Trans. Inf. Theory, 27 (1981), 393-398.
    [38] Phys. Rev. E, 89 (2014), 022705.
    [39] PLoS Comput. Biol., 10 (2014), e1003522.
    [40] Neurosci. Res. Prog. Sum., 3 (1968), 405-527.
    [41] Holden-Day, Inc., San Francisco, 1964.
    [42] MIT Press, Cambridge, 1999.
    [43] in 4th Int. ITG Conf., VDE Verlag, Berlin, 2002, 233-238.
    [44] IEEE Trans. Inf. Theory, 55 (2009), 663-688.
    [45] PLoS Comput. Biol., 9 (2013), e1003263.
    [46] Proc. IEEE, 102 (2014), 738-750.
    [47] IEEE Trans. Inf. Theory, 39 (1993), 19-29.
    [48] J. Neurosci., 13 (1993), 334-350.
    [49] IEEE Trans. Inf. Theory, 56 (2010), 838-851.
    [50] preprint, arXiv:1411.1650.
    [51] Cambridge University Press, New York, 1988.
    [52] IEEE Trans. Inf. Theory, 36 (1990), 1019-1030.
    [53] IEEE Trans. Inf. Theory, 40 (1994), 1147-1157.
    [54] IEEE Trans. Inf. Theory, 34 (1988), 1449-1461.
    [55] IEEE Trans. Inf. Theory, 34 (1988), 1462-1471.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2426) PDF downloads(508) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog