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Abstract. Recently, it has been suggested that certain neurons with Poisso-

nian spiking statistics may communicate by discontinuously switching between
two levels of firing intensity. Such a situation resembles in many ways the opti-

mal information transmission protocol for the continuous-time Poisson channel

known from information theory. In this contribution we employ the classical
information-theoretic results to analyze the efficiency of such a transmission

from different perspectives, emphasising the neurobiological viewpoint. We

address both the ultimate limits, in terms of the information capacity under
metabolic cost constraints, and the achievable bounds on performance at rates

below capacity with fixed decoding error probability. In doing so we discuss
optimal values of experimentally measurable quantities that can be compared

with the actual neuronal recordings in a future effort.

1. Introduction. The problem of information processing and transmission in the
brain is historically one of the most intensively studied topics in neurosciences
[2, 40, 10]. Frequently, the theoretical approach to this problem relies on the meth-
ods of information theory [15] with emphasis on channel capacity as the ultimate
fidelity criterion [42, 33, 11, 36]. The operational interpretation of channel capacity
relies on an essentially digital transmission protocol (not necessarily binary) and a
special encoding-decoding setup known as the separation assumption [15, 43]. Ad-
ditionally, the information rate equal to the capacity is only an asymptotic quantity,
assuming arbitrarily reliable communication, infinite decoder complexity and delay.
The unconstrained (or asymptotically achievable) amount of information, however,
might not be the main objective for biological systems, as metabolic costs and real-
time information processing should definitely be considered [45, 30, 46]. In this
paper we attempt to include multiple factors that might affect the efficiency of the
actual information transmission, thus continuing the effort started in [28, 30, 29].

The available information-theoretic methods do not allow to include many of the
detailed biological phenomena easily [15, 44]. In particular, different time scales
of the dynamics dictate that dependence on the history and feedback is frequently
present in neural systems [5]. On the other hand, simplified models often provide
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a satisfactory description of experimental data [51, 16, 26]. The classic Poissonian
assumption of neural spiking statistics seems sufficient under broad circumstances
[39, 48] and the capacity of Poisson neurons has been discussed in the neuroscientific
context too [22, 23]. The key advantage here is that a plethora of results is available
for the Poisson communication [24, 9, 54, 55, 37], so that the model can be employed
also outside of the neurobiological context (e.g., in [50]).

It was observed in [38] that certain neurons with Poissonian spiking statistics
may communicate by discontinuously switching between two discrete levels of fir-
ing intensity. We calculate the asymptotic limits on reliable communication under
such circumstances and we address the problem of the effective information rate,
provided that the coding system is constrained in its bandwidth and complexity.
We believe that the bandwidth limitation might be of special interest since neu-
ral systems are generally limited by the finite speed of the underlying chemical
and electric processes [10]. The main goal of this paper is therefore to provide an
information-theoretic interpretation of the results recently obtained by Mochizuki
and Shinomoto [38]. We are convinced that our effort is timely as the problem of
constrained information transmission has been attracting attention in the theoreti-
cal neuroscience community recently [49, 45, 30, 46, 29].

2. Methods.

2.1. Information capacity of the Poisson neuron. Let (Ω,F ,P) be a probabil-
ity space and Ft a filtration on F . The neuronal input is described by a stationary
stochastic process λt ≥ 0, t ∈ [0, T ] adapted to Ft. The neuronal response is given
by the doubly stochastic Poisson process Nt with intensity λt +µ0. In this scenario
we assume that λt is proportional to the driving synaptic current [25, 16, 31], µ0 ≥ 0
is the spontaneous activity rate and Nt is the number of postsynaptic spikes ob-
served up to time t. The following two constraints are imposed on the input signal.
The peak-amplitude constraint,

0 ≤ λt ≤ L, (1)

and the average power constraint

Eλ
∫ T

0

λt dt ≤ %LT, (2)

where 0 ≤ % ≤ 1 is the maximum allowed average-to-peak ratio of the input signal.
The information capacity (in nats per second) of the point process Nt is given

by

C = lim
T→∞

sup
λ

1

T
IT (λ,N), (3)

where supλ is over all signals λt satisfying Eqs. (1) and (2), with no other restrictions
on the form of the trajectories or their statistics. The mutual information between
λt and Nt is

IT (λ,N) = Eλ
∫ T

0

[
ϕ(λt)− ϕ(λ̂t)

]
dt, (4)

where

ϕ(x) = (µ0 + x) log(µ0 + x)− µ0 logµ0, (5)

λ̂t = Eλ(λt|FNt ) and FNt is the canonical filtration of Nt [6, Ch. 6.5]. Hence, the

conditional mean λ̂t is the minimum mean-square error estimate of λt based on the
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history of the process Nt. It was shown in [9] (see also [24] and [6]) that, remarkably,
Eq. (3) can be evaluated in a closed form,

C(%) =L
[
(1 + s)r log(1 + s) + (1− r)s log s− (r + s) log(r + s)

]
, (6)

where

s =µ0/L, (7)

r = min(%, ξ), (8)

ξ =
1

e

(1 + s)1+s

ss
− s. (9)

If the neuron is not spontaneously active, µ0 = 0, then Eq. (6) reduces considerably
to C(%) = −Lmin(%, e−1) log[min(%, e−1)].

The capacity-achieving input signal λ∗t is a limiting case of the random telegraph
wave, i.e., of the stationary process with a piecewise constant path taking only the
extremal values 0 and L. More precisely, let n be a positive integer and consider
the process λnt which admits the representation [9, 6]

λnt = λn0 + n

∫ t

0

1(λns = 0) ds− n(1− r)
r

∫ t

0

1(λns = L) ds+mn
t , (10)

where r is given by Eq. (8), P [µn0 = L] = r and mn
t is a martingale. The capacity

achiever is the process λ∗t = limn→∞ λnt . As n grows the rate of transitions between
states λn = 0 and λn = L is unbounded and therefore the optimal input has infinite
bandwidth. The optimal average-to-peak ratio of the input signal equals r. Note
that if µ0 = 0 and % = 1 (no average-power constraint on λt) then the probability
that λt = L at any given time equals e−1.

2.2. Metabolic cost of neural activity. Both empirical and theoretical stud-
ies suggest that the metabolic cost of neuronal spiking activity, in terms of ATP
molecules (ATPm) expenditure, is proportional to the firing rate [4, 3]. By employ-
ing the linear model of Laughlin and Attwell [3] we naturally define the average
metabolic cost W (in ATPm per second) evoked by the optimal input signal as

W = (µ0 + rL)κ+ β, (11)

where κ = 0.71×109 ATPm is the cost of a single spike and β = 0.34×109 ATPm/s
is the basic metabolic rate required to maintain the membrane potential. In what
follows we express C(%) in terms of W as C(W ), even though due to Eq. (8) the
same value of W may correspond to different % for high enough %.

We propose the information efficiency, E (in bit per ATPm), as the ratio of
information capacity to the associated metabolic cost,

E =
C(W )

W
. (12)

The maximum efficiency with respect to the cost, E∗ = maxW E (also known as
the capacity per unit cost [52]), represents the maximum amount of information per
ATPm that can be communicated at arbitrarily low probability of channel decoding
error. The rationale for adopting Eq. (12) as the efficiency measure lies in the crucial
importance of balancing the performance versus the metabolic workload for living
organisms [18, 34, 30].
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2.3. Coding capacity and Wyner’s code. The extension of Shannon’s discrete-
time channel coding theorem for general continuous-time channels is mathematically
non-trivial [41, 20, 53]. However, in his seminal work Wyner [54, 55] proved (among
other things) the achievability and converse theorems for the information capacity
in Eq. (6) by employing the equivalence between the Poisson continuous-time chan-
nel and a certain discrete-time memoryless channel. In other words the information
capacity of the Poisson neuron equals its coding capacity. Hence, for any informa-
tion rate up to capacity, 0 ≤ R < C, and arbitrary ε > 0 there exists a channel code
with M ≥ eRT codewords (for T sufficiently large) such that the average probability
of decoding error Pe satisfies Pe ≤ ε [15].

The construction of Wyner’s code ensemble with integer parameters M > 1 and
k ≥ 1,

M = beRT c, (13)

k = brMc, (14)

proceeds by dividing the interval [0, T ] into
(
M
k

)
subintervals and by assigning the

value λ = L into (k/M)
(
M
k

)
bins and λ = 0 to the remaining bins (see [54, Sec. III.A]

for details). In this way, M distinct input signal waveforms (codewords) are cre-
ated, each satisfying Eq. (2) while bearing similarity to the process λnt in Eq. (10).
The maximum likelihood decoder observes the process Nt and identifies the input
waveform based on the spike counts. The probability of mismatch (decoding error)
for each input waveform is Pe,m. The sequence of codes provided by Wyner is es-
sentially optimal, satisfying the Gallager’s random coding bound [15]. Therefore we
can define the achievable average probability of decoding error at rate R as

Pe , e−E(R)T , (15)

where E(R) > 0 for all 0 ≤ R < C and Pe =
∑M
m=1 Pe,m/M . The coordinate

{R,E(R)} can be expressed in an implicit parametric form in terms of p ∈ (0, 1]
following [54] as

E(R) =

{
R0 −R, 0 ≤ R < R(1),
LE1(p)− pR, R(1) ≤ R < C,

(16)

with the following functions defined,

τ(p) =

(
1 +

1

s

)1/(1+p)

− 1, (17)

q(p) = min

{
%,

1

τ(p)

[(
1

(1 + p)sτ(p)

)1/p

− 1

]}
, (18)

R ≡ R(p) =Ls

[
[1 + q(p)τ(p)]p

1 + p
q(p)

(
1 +

1

s

)1/(1+p)

log

(
1 +

1

s

)
−

− [1 + q(p)τ(p)]1+p log
(
1 + q(p)τ(p)

)]
, (19)

E1(p) =q(p) + s− [1 + τ(p)q(p)]1+ps, (20)

and s given by Eq. (7). The value R0 = E(0) is the cutoff rate [35],

R0 =Lq∗(1− q∗)
(√

1 + s−
√
s
)2
, (21)

q∗ = min(%, 1/2). (22)
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The time window T thus plays a similar role to the channel code blocklength in
discrete-time channels [15, Theorem 7.3.2].

2.4. Effective information rate and required bandwidth. The capacity rep-
resents the maximal information rate achievable under the stringent reliability crite-
rion Pe → 0. Approaching capacity then requires unbounded coding windows T and
infinitely fast switching rates of the input signal [9, 54]. It is practically impossible
to implement such information transmission schemes. The error exponent E(R) in
Eq. (15) relates the information rate R, coding window T and the probability of
decoding error Pe. Therefore, we employ it to analyze the possibility of effective
information transfer at rates below capacity and tolerable value of Pe as follows.

For a fixed value of Pe and rate R we define the required length of coding window
T as

T = max(TP , Tk), (23)

where

TP =− logPe
E(R)

, (24)

Tk =
logd1/re

R
. (25)

Then Eq. (24) follows directly from Eq. (15) and guarantees that the error prob-
ability does not exceed Pe. The condition in Eq. (25) is necessary since k ≥ 1 in
Wyner’s code, and follows from the combination of Eq. (14) for k = 1 and Eq. (13).
Once the coding window T is determined, the M,k parameters of Wyner’s code
may be calculated through Eqs. (13) and (14). The maximal required bandwidth
B of the input signal is of particular practical importance. Regularly, the band-
width of a unit pulse is defined to be equal to its inverse duration in engineering
applications [12], hence from the properties of Wyner’s code we have

B ,

(
M

k

)
1

T
. (26)

In other words, Eq. (26) implicitly defines the effective information rate Reff(B),
which is achievable with input signal bandwidth not exceeding B at some fixed error
probability Pe.

3. Results. In the following we evaluate the information rates and capacities below
in bits, using the standard conversion 1 “bit” = log(2) “nat”.

First we examine the dependence of the neuron capacity given by Eq. (6) on the
metabolic expenditure given by Eq. (11), more precisely we examine the capacity-
cost function C(W ). We set the peak input firing rate to L = 50 Hz and in-
vestigate the effect of the spontaneous activity of four different intensities µ0 =
{0.1, 1, 5, 10}Hz. The chosen values are entirely physiological (note that the output
firing rate peaks at L+µ0 Hz) and represent a rather generic situation under various
experimental conditions (e.g., [38, 13, 17]). We do not consider peak firing rates
L > 50 Hz in order to guarantee the validity of the linear cost model in Eq. (11)
[3] and of the Poissonian approximation to the real neuronal firing activity [21]. In
practice it is possible to determine L and µ0 by fitting the hidden Markov model to
the given the experimentally observed neuronal activity, as has been done in [38].
Alternatively, one may fit the hidden Markov model to the data by fixing two firing
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rates in advance. Here the two firing rates may be chosen by hand or using other
principles.

The respective capacity-cost functions are shown in Fig. 1a. The metabolic cost
W for each µ0 spans the whole possible range of values since the parameter % in
Eq. (2) varies continuously in the interval (0, 1). The C(W ) departs from zero at
the minimum possible cost, Wmin = µ0κ + β, which corresponds to the metabolic
cost of the spontaneous firing rate µ0 and the baseline cost, see Eq. (11). The
unconstrained channel capacity is the limit of C(W ) as the metabolic cost is allowed
to grow. Under all four spontaneous activity levels the unconstrained capacity
exceeds 10 bit/s. The efficiency E defined by Eq. (12) balances the information
capacity and the required metabolic expenditure (Fig. 1b). Note that the factor
L/µ0 = 1/s essentially describes the signal-to-noise ratio (SNR) of the Poisson
neuron. The capacity in Eq. (6), as a function of SNR, is proportional to L and
hence we may obtain different capacity values for situations with equal SNR. We see
that as the SNR increases, the point of maximal efficiency E∗ moves towards lower
costs. (At the same time the cost of 1 bit (equal to 1/E∗) decreases, as expected
intuitively.) The point of maximal efficiency is less pronounced for low SNR.

An alternative point of view is provided by analyzing the best possible per-
formance when the metabolic cost is fixed, W = const. It follows from Eq. (11)
that W and the average postsynaptic firing rate 〈f〉 are linearly related due to
〈f〉 = µ0 + rL. We therefore maximize the capacity as a function of s, L along the
curve 〈f〉 = (s+ r)L = const. (note that r is a function of s). Since L acts only as a
scaling factor in Eq. (6) it is possible to verify that the solution to this constrained
maximization problem requires s = 0. In other words, for the given value of 〈f〉,
the Poisson neuron with parameters µ0 = 0 and L = 〈f〉/min(%, 1/e) attains the
largest capacity.

The effective rate for B = 2 Hz at Pe = 10−5 is shown in Fig. 1c. For convenience
we neglect that M and k are integers and set M = eRT , k = rM together with(

M

k

)
=

Γ(M + 1)

Γ(k + 1)Γ(M − k + 1)
, (27)

where Γ(x) is the gamma function [1]. The most striking difference with respect
to Fig. 1a is the significant drop in information transfer, approximately one order
of magnitude large. In addition, if the metabolic cost is neglected, the difference
between maximal Reff becomes negligible with growing SNR, e.g., there is virtually
no difference between µ0 = 0.1 Hz and µ0 = 1 Hz. Similarly to Fig. 1b the ratio
Reff/W corresponds to the achievable efficiency (Fig. 1d). The notable difference
here, besides the respective values of the maxima, is that the points of maximal
efficiency occur at lower values of the metabolic cost (shown by vertical lines).

An alternative point of view is provided by fixing the metabolic cost and varying
the maximum allowed input signal bandwidth. Although currently do not have
enough information on the biologically valid range of B, we believe that relatively
small values, B < 10 Hz, are plausible. Fig. 2a shows such a situation for % = 0.2.
The value % = 0.2 was chosen for illustration only, there is a qualitative correspon-
dence between the results for different % (not shown). In terms of the metabolic cost
and the capacity we have W = 8.6 ATPm/s and C(W ) = 22.6 bit/s for µ0 = 0.1 Hz,
W = 9.2 ATPm/s and C(W ) = 19.8 bit/s for µ0 = 1 Hz, W = 12.0 ATPm/s and
C(W ) = 14.3 bit/s for µ0 = 5 Hz, W = 15.6 ATPm/s and C(W ) = 11.0 bit/s for
µ0 = 10 Hz. At this value of the input signal average-to-peak ratio the growth of
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Figure 1. Capacity, efficiency and the effective information trans-
fer rate of the Poisson neuron in dependence on the average (post-
synaptic) metabolic cost W . Four different values of the sponta-
neous firing rate µ0 are examined, the input signal (presynaptic
firing intensity) is restricted to λt ∈ [0, L] and L = 50 Hz. The
capacity-cost function (a) exhibits the law of diminishing returns
as W grows. The efficiency C(W )/W (b) shows a pronounced
optimum for higher signal-to-noise (SNR) ratios L/µ0. Both the
capacity and the efficiency are asymptotic quantities in terms of
coding-decoding delay and complexity. The effective information
rate Reff (c) is a non-asymptotic quantity with explicit coding con-
siderations, i.e., λt bandwidth not exceeding 2 Hz and decoding
error probability Pe = 10−5. The maximal Reff is only about 5 %
of the unconstrained capacity value and the benefit of increased
SNR between µ0 = 1 Hz and µ0 = 0.1 Hz is negligible. The balance
between the metabolic cost and the effective rate (d) also achieves
only 5 % of the asymptotic values in (b), in addition, the optima
occur for smaller metabolic cost (vertical lines).
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Figure 2. Effective information rate Reff when the input signal
bandwidth does not exceed B under constant % = 0.2, see Eq. (2).
As in Fig. 1c, d it holds L = 50 Hz and Pe = 10−5. For small band-
widths the effective rate grows linearly and independently of the
SNR (level of spontaneous activity µ0) up to the critical bandwidth
B(µ0) (a). The information rate per metabolic cost per allocated
bandwidth (b) considers the three most important aspects of prac-
tical information transmission jointly. The rapid drop in Reff/W/B
after the critical bandwidth shows that increasing the transmission
rate is not equally easy in terms of practical coding parameters.

Reff with B is initially linear and independent of µ0. This trend continues up to
certain critical B (dependent on µ0), from which on the growth of information rate
becomes much slower. The ratio Reff/B/W (Fig. 2b) balances the information rate
vs. the allocated signal bandwidth vs. the incurred metabolic expenses, although
the actual importance of each factor can hardly be determined unquestionably.
Nonetheless the key observation here is the significant drop in information-transfer
capabilities above the critical bandwidth (which grows with SNR).

Finally, we illustrate behavior of the key Wyner’s code parameters in dependence
on the transmission rate R at bandwidth not exceeding B = 2 Hz and % = 0.2. The
required coding window T is shown in Fig. 3a. The actual value of T is analogous
to the discrete-time channel code blocklength and hence the decoding delay and
complexity increase with T [15, 7, 29]. We observe that for a fixed constraint % and
maximal allowed bandwidth B there exists an information transmission rate R > 0
achieving smallest T . The existence of such an “optimal”R stems from the condition
in Eq. (23). If the value of Pe was decreased, the minimum of T would become
more pronounced and occur at smaller rates (not shown). The coding bandwidth in
Eq. (26) combines the coding window duration with the number of time divisions(
M
k

)
. The number of these divisions grows explosively once the optimal rate in

Fig. 3a is crossed (Fig. 3b). Wyner’s coding waveforms thus approach the capacity
achieving input signal in Eq. (10) rapidly.

4. Discussion and conclusions. In this contribution we have analyzed the infor-
mation coding and transmission efficiency of a Poissonian neuron. We have deter-
mined the channel capacity and efficiency (Fig. 1a, b) and stressed their asymptotic
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Figure 3. Detailed parameters of Wyner’s code with B ≤ 2 Hz
and % = 0.2 in dependence on the transmission rate (L = 50 Hz
and Pe = 10−5). The required coding window duration T corre-
sponds to the classical discrete-time channel code blocklength. The
decoding complexity and delay grows with T so it is desirable to
minimize T for the given rate R and Pe (a). For all investigated
SNRs there exists an information rate with minimal T and this
rate increases with the SNR. The coding window [0, T ] is divided

into
(
M
k

)
sub-intervals. The number of these bins grows explosively

once the optimal information rate (minimal T ) is crossed (b). Con-
sequently, the required bandwidth of the input signal grows too
(Fig. 2a).

properties and the impossibility of actually achieving these rates practically. The
focus of our effort is the explicit consideration of decoding error probability and
its influence on the code complexity (bandwidth or duration). These considera-
tions might be of crucial importance for finite-sized, power-constrained and real-
time operating communication systems – such as neurons. To our best knowledge,
though, this part of information (or communication) theory has not been applied
to neuroscience, with the exception of [29]. We have found that once the balance
between information, metabolic cost and code parameters is taken into account,
the achievable information rates drop significantly with respect to their asymptotic
counterparts (Fig. 1c, d). Similar conclusions were reached in [29] for the case of
a realistic Hodgkin-Huxley neuronal model. In addition, the progress towards the
higher information rates is accompanied by sudden and rapid increase in certain
undesirable code parameters (Figs. 2 and 3). The difficulties associated with cross-
ing the cutoff rate in Eq. (21) are well known [35, 37]. Here we have demonstrated
similar effects at lower rates with respect to parameters of potential neurobiological
importance.

Throughout this paper it has been assumed that the input signal (the presynaptic
firing rate λt) has a very restricted form, taking only two possible values. This
assumption stems directly from the mathematical fact that such a signal is optimal
(asymptotically) for the Poisson communication, and from the recent analysis of
Mochizuki and Shinomoto [38] of real neuron behavior. However, our methods do
not answer the question whether, under certain coding constraints, a continuously
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varied λt might be beneficial. In this context, Kostal and Kobayashi [29] have shown,
without imposing the discreteness constraint on the presynaptic firing rate, that
coding complexity restrictions result in an input with very few and well separated
levels. In addition, the binary input signal usually near-achieves the information
capacity values in systems with low SNR [27, 28, 19].

Finally, few remarks about the interpretation of our results are in place. First,
the definition of achievable Pe in Eq. (15) is only approximate for small T . The
reason lies in the fact that unlike the unconstrained Gallager’s bound which holds
for all code lengths [15, Theorem 5.6.2], the power constraint in Eq. (10) prohibits an
equally elegant formulation [15, Theorem 7.3.2]. On the other hand, the Gallager’s
bound is the upper bound on the smallest possible Pe, so it is entirely possible
that a code with Pe satisfying Eq. (15) exists even for very small T . Second, the
capacity in Eq. (6) cannot be further increased by causal feedback, that is, λt may
depend on Nτ , τ ∈ [0, t] [6]. The feedback however allows for the existence of
simpler codes at given R < C and Pe, and therefore increases the value of the error
exponent [32]. The capacity thus cannot be further increased by a non-Poissonian
neuron, provided that the presynaptic input still satisfies the constraints in Eq. (1)
and (2) and provided that the spontaneous activity is Poissonian with intensity µ0.
For further capacity-related results on the Poisson channel subject to additional
constraints see [14, 8, 47].
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