On the MTD paradigm and optimal control for multi-drug cancer chemotherapy

  • Received: 01 October 2012 Accepted: 29 June 2018 Published: 01 April 2013
  • MSC : Primary: 49K15, 92C50; Secondary: 93C95.

  • In standard chemotherapy protocols, drugs are given at maximum tolerated doses(MTD) with rest periods in between. In this paper, we briefly discuss therationale behind this therapy approach and, using as examplemulti-drug cancer chemotherapy with a cytotoxic and cytostatic agent, show thatthese types of protocols are optimal in the sense of minimizing a weightedaverage of the number of tumor cells (taken both at the end of therapy and atintermediate times) and the total dose given if it is assumed that the tumorconsists of a homogeneous population of chemotherapeutically sensitive cells.A $2$-compartment linear model is used to model the pharmacokinetic equations for the drugs.

    Citation: Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 803-819. doi: 10.3934/mbe.2013.10.803

    Related Papers:

    [1] Hongli Yang, Jinzhi Lei . A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356
    [2] Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White . Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1435-1463. doi: 10.3934/mbe.2018066
    [3] Urszula Ledzewicz, Heinz Schättler . The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences and Engineering, 2005, 2(3): 561-578. doi: 10.3934/mbe.2005.2.561
    [4] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [5] Craig Collins, K. Renee Fister, Bethany Key, Mary Williams . Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 451-467. doi: 10.3934/mbe.2009.6.451
    [6] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
    [7] Andrzej Swierniak, Jaroslaw Smieja . Analysis and Optimization of Drug Resistant an Phase-Specific Cancer. Mathematical Biosciences and Engineering, 2005, 2(3): 657-670. doi: 10.3934/mbe.2005.2.657
    [8] Urszula Ledzewicz, Heinz Schättler . Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences and Engineering, 2004, 1(1): 95-110. doi: 10.3934/mbe.2004.1.95
    [9] Shuo Wang, Heinz Schättler . Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040
    [10] Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz . Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences and Engineering, 2016, 13(6): 1185-1206. doi: 10.3934/mbe.2016038
  • In standard chemotherapy protocols, drugs are given at maximum tolerated doses(MTD) with rest periods in between. In this paper, we briefly discuss therationale behind this therapy approach and, using as examplemulti-drug cancer chemotherapy with a cytotoxic and cytostatic agent, show thatthese types of protocols are optimal in the sense of minimizing a weightedaverage of the number of tumor cells (taken both at the end of therapy and atintermediate times) and the total dose given if it is assumed that the tumorconsists of a homogeneous population of chemotherapeutically sensitive cells.A $2$-compartment linear model is used to model the pharmacokinetic equations for the drugs.


    [1] Cambridge University Press, 1997.
    [2] Springer Verlag, Series: Mathematics and Applications, 40, 2003.
    [3] (in German), 2nd ed., Deutscher Apotheker -Verlag, Stuttgart, Germany.
    [4] Lecture Notes in Biomathematics, 30, Springer Verlag, 1979.
    [5] J. of Theoretical Biology, 220 (2003), 545-554.
    [6] Scientific Bulletin of the Silesian Technical University, 65 (1983), 120-130.
    [7] J. of Mathematical Biology, 64 (2012), 557-577.
    [8] J. of Optimization Theory and Applications - JOTA, 114 (2002), 609-637.
    [9] J. of Biological Systems, 10 (2002), 183-206.
    [10] J. of Medical Information Technology, 8 (2004), 5-13.
    [11] Discrete and Continuous Dynamical Systems, Series B, 6 (2006), 129-150.
    [12] SIAM J. on Control and Optimization, 46 (2007), 1052-1079.
    [13] Control and Cybernetics, 38 (2009), 1501-1523.
    [14] in "Chemotherapy Source Book" (ed. M. C. Perry), Williams &Wilkins, Baltimore, (1992), 403-408.
    [15] Cancer Chemotherapy and Pharmacology, 50 (2002), 419-428.
    [16] MacMillan, New York, 1964.
    [17] Springer Verlag, 2012.
    [18] Proc. of the 51st IEEE Conference on Decision and Control, Maui, (2012), 7691-7696.
    [19] Cancer Research, 24 (1964), 1295-1302.
    [20] Int. J. of Applied Mathematics and Computer Science, 13 (2003), 297-305.
    [21] Mathematical Biosciences, 101 (1990), 237-284.
    [22] Proceedings of the 12th IMACS World Congress, Paris, 4 (1988), 170-172.
    [23] Applied mathematics and Computer Science, 4 (1994), 223-233.
    [24] J. of Biological Systems, 3 (1995), 41-54.
    [25] Bulletin of the Polish Academy of Sciences, Technical Sciences, 56 (2008), 367-378.
    [26] Int. J. Applied Mathematics and Computer Science, 13 (2003), 357-368.
    [27] Cell Proliferation, 29 (1996), 117-139.
    [28] Control and Cybernetics, 28 (1999), 61-75.
    [29] Nonlinear Analysis, 47 (2000), 375-386.
    [30] J. of Clinical Oncology, 11 (1993), 820-821.
    [31] Boston-Philadelphia: Hilger Publishing, 1988.
  • This article has been cited by:

    1. Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 10, 978-1-4939-0457-0, 295, 10.1007/978-1-4939-0458-7_10
    2. Yimae Wufuer, Xuefeng Shan, Magaoweiya Sailike, Kamile Adilaimu, Songfeng Ma, Huguo Wang, GPVI-Fc-PEG improves cerebral infarct volume and cerebral thrombosis in mouse model with cerebral thrombosis, 2017, 16, 1791-2997, 7561, 10.3892/mmr.2017.7556
    3. Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 3, 978-1-4939-2971-9, 115, 10.1007/978-1-4939-2972-6_3
    4. URSZULA LEDZEWICZ, HEINZ SCHÄTTLER, ON OPTIMAL CHEMOTHERAPY FOR HETEROGENEOUS TUMORS, 2014, 22, 0218-3390, 177, 10.1142/S0218339014400014
    5. David C. Norris, Dose Titration Algorithm Tuning (DTAT) should supersede ‘the’ Maximum Tolerated Dose (MTD) in oncology dose-finding trials, 2017, 6, 2046-1402, 112, 10.12688/f1000research.10624.3
    6. Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 2, 978-1-4939-2971-9, 41, 10.1007/978-1-4939-2972-6_2
    7. Heinz Schättler, Urszula Ledzewicz, Fields of extremals and sensitivity analysis for multi-input bilinear optimal control problems, 2015, 35, 1553-5231, 4611, 10.3934/dcds.2015.35.4611
    8. Patrícia de Oliveira Figueiredo, Renata Trentin Perdomo, Fernanda Rodrigues Garcez, Maria de Fatima Cepa Matos, João Ernesto de Carvalho, Walmir Silva Garcez, Further constituents of Galianthe thalictroides (Rubiaceae) and inhibition of DNA topoisomerases I and IIα by its cytotoxic β-carboline alkaloids, 2014, 24, 0960894X, 1358, 10.1016/j.bmcl.2014.01.039
    9. Clara Rojas, Juan Belmonte-Beitia, Optimal control problems for differential equations applied to tumor growth: state of the art, 2018, 3, 2444-8656, 375, 10.21042/AMNS.2018.2.00029
    10. Heinz Schättler, Urszula Ledzewicz, Helmut Maurer, Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints, 2014, 19, 1553-524X, 2657, 10.3934/dcdsb.2014.19.2657
    11. U. Ledzewicz, H. Schättler, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, A Review of Optimal Chemotherapy Protocols: From MTD towards Metronomic Therapy, 2014, 9, 0973-5348, 131, 10.1051/mmnp/20149409
    12. Angela M. Jarrett, Danial Faghihi, David A. Hormuth, Ernesto A. B. F. Lima, John Virostko, George Biros, Debra Patt, Thomas E. Yankeelov, Optimal Control Theory for Personalized Therapeutic Regimens in Oncology: Background, History, Challenges, and Opportunities, 2020, 9, 2077-0383, 1314, 10.3390/jcm9051314
    13. Omar Shindi, Jeevan Kanesan, Graham Kendall, Anand Ramanathan, The combined effect of optimal control and swarm intelligence on optimization of cancer chemotherapy, 2020, 189, 01692607, 105327, 10.1016/j.cmpb.2020.105327
    14. Dominique Barbolosi, Joseph Ciccolini, Bruno Lacarelle, Fabrice Barlési, Nicolas André, Computational oncology — mathematical modelling of drug regimens for precision medicine, 2016, 13, 1759-4774, 242, 10.1038/nrclinonc.2015.204
    15. Urszula Ledzewicz, Kenneth Bratton, Heinz Schättler, A 3-Compartment Model for Chemotherapy of Heterogeneous Tumor Populations, 2015, 135, 0167-8019, 191, 10.1007/s10440-014-9952-6
    16. Clara Rojas Rodríguez, Juan Belmonte-Beitia, Optimizing the delivery of combination therapy for tumors: A mathematical model, 2017, 10, 1793-5245, 1750039, 10.1142/S1793524517500395
    17. Rafael T. Guiraldello, Marcelo L. Martins, Paulo F.A. Mancera, Evaluating the efficacies of Maximum Tolerated Dose and metronomic chemotherapies: A mathematical approach, 2016, 456, 03784371, 145, 10.1016/j.physa.2016.03.019
    18. Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz, Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases, 2016, 13, 1551-0018, 1185, 10.3934/mbe.2016038
    19. Urszula Ledzewicz, Heinz Schättler, Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?, 2017, 401, 03043835, 74, 10.1016/j.canlet.2017.03.021
    20. Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, 2017, 14, 1551-0018, 217, 10.3934/mbe.2017014
    21. David C. Norris, Dose Titration Algorithm Tuning (DTAT) should supersede ‘the’ Maximum Tolerated Dose (MTD) in oncology dose-finding trials, 2017, 6, 2046-1402, 112, 10.12688/f1000research.10624.2
    22. Clara Rojas, Juan Belmonte-Beitia, Víctor M. Pérez-García, Helmut Maurer, Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model, 2016, 21, 1531-3492, 1895, 10.3934/dcdsb.2016028
    23. Derek S. Park, Kimberly A. Luddy, Mark Robertson-Tessi, Cliona O'Farrelly, Robert A. Gatenby, Alexander R.A. Anderson, Searching for Goldilocks: How Evolution and Ecology Can Help Uncover More Effective Patient-Specific Chemotherapies, 2020, 80, 0008-5472, 5147, 10.1158/0008-5472.CAN-19-3981
    24. Urszula Ledzewicz, Heinz Schaettler, 2016, Chapter 11, 978-3-319-42021-9, 209, 10.1007/978-3-319-42023-3_11
    25. David C. Norris, Dose Titration Algorithm Tuning (DTAT) should supersede the Maximum Tolerated Dose (MTD) concept in oncology dose-finding trials, 2017, 6, 2046-1402, 112, 10.12688/f1000research.10624.1
    26. Seho Kweon, Yoo-Seong Jeong, Seung Woo Chung, Hanul Lee, Ha Kyeong Lee, Seong Jin Park, Jeong Uk Choi, Jooho Park, Suk-Jae Chung, Youngro Byun, Metronomic dose-finding approach in oral chemotherapy by experimentally-driven integrative mathematical modeling, 2022, 286, 01429612, 121584, 10.1016/j.biomaterials.2022.121584
    27. Cristian Axenie, Daria Kurz, Matteo Saveriano, Antifragile Control Systems: The Case of an Anti-Symmetric Network Model of the Tumor-Immune-Drug Interactions, 2022, 14, 2073-8994, 2034, 10.3390/sym14102034
    28. Urszula Ledzewicz, Heinz Schättler, The Structure of Optimal Protocols for a Mathematical Model of Chemotherapy with Antiangiogenic Effects, 2022, 60, 0363-0129, 1092, 10.1137/21M1395326
    29. Malgorzata Kardynska, Daria Kogut, Marcin Pacholczyk, Jaroslaw Smieja, Mathematical modeling of regulatory networks of intracellular processes – Aims and selected methods, 2023, 21, 20010370, 1523, 10.1016/j.csbj.2023.02.006
    30. Ana Amiama-Roig, Eva M. Verdugo-Sivianes, Amancio Carnero, José-Ramón Blanco, Chronotherapy: Circadian Rhythms and Their Influence in Cancer Therapy, 2022, 14, 2072-6694, 5071, 10.3390/cancers14205071
    31. Mohsen Yousefnezhad, Chiu-Yen Kao, Seyyed Abbas Mohammadi, Optimal Chemotherapy for Brain Tumor Growth in a Reaction-Diffusion Model, 2021, 81, 0036-1399, 1077, 10.1137/20M135995X
    32. M.A.R. Strobl, J. Gallaher, M. Robertson-Tessi, J. West, A.R.A. Anderson, Treatment of evolving cancers will require dynamic decision support, 2023, 34, 09237534, 867, 10.1016/j.annonc.2023.08.008
    33. Mariusz Bodzioch, Juan Belmonte-Beitia, Urszula Foryś, Asymptotic dynamics and optimal treatment for a model of tumour resistance to chemotherapy, 2024, 135, 0307904X, 620, 10.1016/j.apm.2024.07.008
    34. Chiu-Yen Kao, Seyyed Abbas Mohammadi, Mohsen Yousefnezhad, Is maximum tolerated dose (MTD) chemotherapy scheduling optimal for glioblastoma multiforme?, 2024, 139, 10075704, 108292, 10.1016/j.cnsns.2024.108292
    35. Richa Pathak, Nisha Singh, Arti Parganiha, 2025, Chapter 4, 978-981-97-7323-7, 69, 10.1007/978-981-97-7324-4_4
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3536) PDF downloads(643) Cited by(35)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog