Controlling a model for bone marrow dynamics in cancer chemotherapy

  • Received: 01 February 2004 Accepted: 29 June 2018 Published: 01 March 2004
  • MSC : 49J15, 92C50.

  • This paper analyzes a mathematical model for the growth of bone marrow cells under cell-cycle-speci c cancer chemotherapy originally proposed by Fister and Panetta [8]. The model is formulated as an optimal control problem with control representing the drug dosage (respectively its eff ect) and objective of Bolza type depending on the control linearly, a so-called $L^1$-objective. We apply the Maximum Principle, followed by high-order necessary conditions for optimality of singular arcs and give sufficient conditions for optimality based on the method of characteristics. Singular controls are eliminated as candidates for optimality, and easily veri able conditions for strong local optimality of bang-bang controls are formulated in the form of transversality conditions at switching surfaces. Numerical simulations are given.

    Citation: Urszula Ledzewicz, Heinz Schättler. Controlling a model for bone marrow dynamics in cancer chemotherapy[J]. Mathematical Biosciences and Engineering, 2004, 1(1): 95-110. doi: 10.3934/mbe.2004.1.95

    Related Papers:

  • This paper analyzes a mathematical model for the growth of bone marrow cells under cell-cycle-speci c cancer chemotherapy originally proposed by Fister and Panetta [8]. The model is formulated as an optimal control problem with control representing the drug dosage (respectively its eff ect) and objective of Bolza type depending on the control linearly, a so-called $L^1$-objective. We apply the Maximum Principle, followed by high-order necessary conditions for optimality of singular arcs and give sufficient conditions for optimality based on the method of characteristics. Singular controls are eliminated as candidates for optimality, and easily veri able conditions for strong local optimality of bang-bang controls are formulated in the form of transversality conditions at switching surfaces. Numerical simulations are given.


    加载中
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3361) PDF downloads(937) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog