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Abstract. This paper analyzes a mathematical model for the growth of bone
marrow cells under cell-cycle-specific cancer chemotherapy originally proposed

by Fister and Panetta [8]. The model is formulated as an optimal control
problem with control representing the drug dosage (respectively its effect)
and objective of Bolza type depending on the control linearly, a so-called L

1-

objective. We apply the Maximum Principle, followed by high-order necessary
conditions for optimality of singular arcs and give sufficient conditions for opti-

mality based on the method of characteristics. Singular controls are eliminated
as candidates for optimality, and easily verifiable conditions for strong local
optimality of bang-bang controls are formulated in the form of transversality

conditions at switching surfaces. Numerical simulations are given.

1. Introduction. Mathematical models for cancer chemotherapy treatments have
a long history (for a survey of early efforts see, for example [7, 23]) and attracted
extensive research in the eighties and nineties (for example, [5, 15, 25]). While
biomedical research concentrates on the development of new drugs and experimen-
tal (in vitro) and clinical (in vivo) determinations of their treatment schedules,
analysis of mathematical models can assist in testing various treatment strategies
and searching for optimal ones. Considerable research has been done in this di-
rection analytically (for example, [2, 3, 4, 5, 27]) as well as experimentally and
clinically (for example, [9, 14, 26]). However, the few existing realistic models for
specific diseases are very complex and with a large number of variables and param-
eters, typically are analyzed on a computational or simulation level [21]. Usually
only simpler models with a small number of variables can be analyzed theoretically.
Although they may be medically unrealistic, nevertheless their analysis can further
our understanding of some simplified aspects of the overall system, a necessary step
toward the goal of analyzing more medically relevant models.

A major problem in the design of actual chemotherapy protocols is the assess-
ment of the negative side effects of the therapeutic agents. In clinical studies, these
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are determined experimentally: drug dosages are tested by increasing the dosage
until limiting side effects occur. Because most models for cancer chemotherapy
focus, for obvious reasons, on the dynamics of the cancer cells, automatically less
emphasis is put on the effect therapy has on healthy cells. For example, in compart-
mental models considered in [25, 12, 13, 24] the dynamics represents the numbers
of cancer cells at various stages of the cell cycle, and the aim is to minimize the
number of these cells at the end of a fixed therapy interval. The negative effects
on the healthy cells are represented only indirectly by also minimizing the drug
dosage in the objective. For this, however, many nonequivalent formulations exist,
with no apparent clear-cut biological favorite (see also section 3.2). Other models
distinguish normal and tumor populations and include loss-functions to model the
effects of the drugs [16]. These and other efforts indicate that the complexity of the
underlying biological processes is difficult to capture in a mathematical framework.

In this paper, we analyze a model for cancer chemotherapy in which the negative
effects of the drug are central. For many drugs the limiting tissue is hemopoietic
(related to blood cell formulation). Blood cell counts are routinely taken in clinical
practice and if the results are too low, treatment will be delayed or a lower dose
will be administered. Thus the blood count becomes a deciding factor in designing
treatment. Mature cells of these renewing tissues are formed through differentiation
from the self-renewing stem-cell population in the bone marrow and it is generally
accepted that “ideal cancer treatment would aim to bring about minimal normal
stem cell kill ”[10]. Toxicity to the bone marrow thus is one of the main limiting
factors in chemotherapy. The model considered here, introduced in the nineties by
Panetta [19] and analyzed by Fister and Panetta in [8], focuses on this aspect by
directly modelling the dynamic behavior of the number of bone marrow cells. The
purpose of its analysis is to find strategies for chemotherapy treatments of cancer
where the bone marrow and thus, indirectly, the blood cell count are kept above
a minimum level. An analysis of this model as an optimal control problem was
given in [8] with an objective of Lagrange type (no terminal payoff) which was
quadratic in the control, a so-called L2-objective. The analysis led to protocols,
which starting from no dose gradually increased achieving a full dose at the end of
the therapy. On the other hand, both experimental and clinical trials as well as
preliminary analysis of models led to the general conclusion that “short drug pulses
at appropriate intervals are less toxic to the bone marrow compared to arbitrary
treatment intervals or slowly infused continuous treatments”[8, 27]. Researchers
suggested the use of “on-off” type drug functions (the drug is either active or not
active) to describe the effect of the cell-cycle-specific drugs on the bone marrow.
Such a treatment corresponds to bang-bang controls, which also appeared in our
work on other chemotherapy models [12, 13, 24], with an objective, that was linear
in the control; that is, a so-called L1-type objective. Combining these suggestions
and experiences, in this paper we analyze the bone marrow dynamics with an L1-
objective containing also a terminal payoff term representing the total count of the
bone marrow cells at the end of the therapy.

We review the underlying model in section 2. To establish the steady state be-
havior of the system, we start with the analysis of the uncontrolled dynamics. Then
the application of the Maximum Principle to the optimal control problem in sec-
tion 3 leads to two types of controls: singular controls (with values in the interior
of the control set corresponding to partial drug dosages) and bang-bang controls
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(which take values in the boundary of the control set corresponding to alternat-
ing full-dose and no-dose periods). Further analysis of both classes of controls is
performed using high-order conditions. The Legendre-Clebsch condition is used to
eliminate singular controls and bang-bang controls are analyzed with the use of
the method of characteristics. The results are supported by numerical simulations
which are presented in Section 4. Simulations of trajectories and controls are com-
pared for initial conditions from the steady state and away from it. Comparisons
of the results obtained with an L2-objective case and remarks on future directions
of research conclude the paper.

2. Mathematical Model. The model for cancer chemotherapy considered below
assesses the negative side-effects of chemotherapy on healthy tissue, which is taken
as bone marrow. The effects of the drugs on cancer cells are not modelled in the
dynamics, but will be taken into account indirectly in the objective for the optimal
control problem.

2.1. The dynamics of the uncontrolled model. We briefly review the under-
lying model which originally was proposed by Panetta in [19] and then analyzed as
an optimal control problem with an objective which was quadratic in the control
by Fister and Panetta in [8].

In the model, proliferating cells P and quiescent (or dormant) cells Q are distin-
guished in the bone marrow. The growth rate of the proliferating cells is denoted
by γ, and the transition rates from proliferating to quiescent cells and vice versa are
denoted by α and β respectively. The rate at which bone marrow enters the blood
stream is denoted by ρ, and the natural death rate of the proliferating cells is called
δ. It is assumed that all these parameters governing the cell cycle remain constant
over the time horizon considered. Thus, the overall dynamics of the uncontrolled
system is described by

Ṗ = (γ − δ − α)P + βQ, P (0) = P0, (1)

Q̇ = αP − (ρ + β)Q, Q(0) = Q0, (2)

with all initial conditions positive. It is easy to see (c.f. Lemma 2.1 below) that all
states remain positive if the initial conditions are positive.

In steady state, this corresponds to a model of exponential growth of the overall
bone marrow at a fixed rate ξ given by

ξ = ωx̄ − ρ, ω = γ − δ + ρ > 0, (3)

where x̄ is the unique positive root of the quadratic equation

−ωx2 + (ω − α − β)x + β = 0. (4)

For, if

x =
P

P + Q
and y =

Q

P + Q
= 1 − x (5)

denote the portions of the cells in the respective compartments, then x satisfies the
scalar Riccati equation

ẋ = −ωx2 + (ω − α − β)x + β, (6)

which has a locally asymptotically stable equilibrium at x̄ in the open interval (0, 1)
that contains the closed interval [0, 1] in its region of attraction. Thus, in terms of
P and Q the region of attraction contains all possible initial conditions.
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0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

st
at

es

Figure 1. Evolution of the uncontrolled system.
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Figure 2. Evolution of x = P
P+Q

.

For our simulations, we use the parameters from [8] given by α = 5.643, β = 0.48,
γ = 1.47, δ = 0, and ρ = 0.164. In this case, we have x̄ = 0.1031 and ξ = 0.0044.
In particular, in steady state only about 10% of the bone marrow cells are in
their proliferating state and the total bone marrow mass is quite stagnant. Figs.
1 and 2 give the graphs of trajectories of the system for various initial conditions
(the percentages of cells in the proliferating compartment are 10%, 50% and 90%,
respectively, with the total bone-marrow cells normalized to 1 initially). These sim-
ulations show how quickly the steady state behavior is reached for the percentages.
While the total number of bone-marrow cells grows slowly as the steady state is
reached, note, however, that higher initial numbers of proliferating cells produce
significantly higher total numbers of bone marrow cells. The reason is the high
transition rate α from proliferating to quiescent cells. Not only the total initial
bone marrow cells, but also their distribution as proliferating and dormant cells–
i.e., the initial condition of (1)-(2)–determines the total number of bone marrow
cells. This transition effect would not be captured in a scalar exponential growth
model alone.
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2.2. The controlled dynamics. Drug treatment is modelled by a bounded mea-
surable function u, which takes values in the compact interval [0, 1] and represents
the drug dosage with u = 1 corresponding to a full dose and u = 0 standing for no
control being applied. It is assumed that the drug effects are instantaneous, i.e.,
pharmacokinetic equations are not modelled. This is a reasonable assumption for
fast-acting drugs, and in this paper we want to focus on the role of the objective
in the model. Simple linear models for pharmacokinetics can be included in the
model and will not change the analysis. Also a simple case of pharmacodynamics is
assumed where the effect of the drug is proportional to the dosage u, with a factor
s, 0 < s ≤ 1. Then as in [8], the overall dynamics can be described as

Ṗ = (γ − δ − α − su(t))P + βQ, P (0) = P0, (7)

Q̇ = αP − (ρ + β)Q, Q(0) = Q0. (8)

If we set N = (P,Q)T , then the general form of the dynamics is given by the
bilinear system

Ṅ(t) = (A + uB)N(t), N(0) = N0, (9)

where A and B are (2 × 2)-matrices given by

A =

(

γ − δ − α β

α −(ρ + β)

)

and B =

(

−s 0
0 0

)

(10)

Note that for any admissible control the norm of matrix A+uB is bounded over the
interval [0, T ] and thus the right-hand side of the differential equation (9) is linearly
bounded. Hence it follows from well-known results about ordinary differential equa-
tions that the corresponding trajectory (i.e., solution to the dynamics) exists on all
of [0, T ]. Furthermore, only states N(t) for which each component is positive are
meaningful, but it is not necessary to add this condition as extra state-space con-
straint since it is easily seen that the first quadrant P = R

2
+ = {N ∈ R

2 : P,Q > 0}
in the state-space is positively invariant; that is, if each coordinate of N(t0) is pos-
itive, then all coordinates of N(t) remain positive for all times t ≥ t0. This follows
directly from the fact that the off-diagonal terms in the matrix A+uB are positive
for all u ∈ [0, 1].

Lemma 2.1. If N(t0) ∈ P, then N(t) ∈ P for all t ≥ t0.

Proof: Let τ = inf{t > 0 : P (t) < 0} and let σ = inf{t > 0 : Q(t) < 0}. Nothing
needs to be shown if both τ and σ are infinite. Thus, assume at least one is
finite and without loss of generality suppose τ < σ ≤ ∞. (Since the differential
equations are homogeneous, P and Q cannot vanish simultaneously.) But then we

have Ṗ (τ) = βQ(τ) > 0, and thus P is positive for t > τ , t sufficiently close to τ .
But this contradicts the definition of τ . �

2.3. Objective. While there is underlying biology for modelling the dynamics even
in simplified form, there are no real biological or medical indications for how the
objective should be structured mathematically except for the obvious: the aim is
to kill as many cancer cells possible without causing too much damage to healthy
cells. There seems to be consensus that depending on the type of cells that are
directly modelled (such as bone marrow cells here, or cancer cells in other models
[25, 24]), terms representing these cells should be in the objective either at the
terminal time, under the integral, or both. Different approaches arise when the
overall drug given is measured in different norms. This term typically represents
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the influence on the “other” types of cells not directly included in the model and thus
is open to interpretation. Commonly used models are linear (L1-type) or quadratic
(L2-type) and each has its advantage and disadvantage. Quadratic objectives are
easier mathematically since the associated Hamiltonian will be strictly convex in
the control with a unique minimum; on the other hand, they lower the role of partial
doses somewhat by squaring the control. Linear objectives typically lead to more
difficult mathematical models, but they are consistent with a linear relation for the
effect of the drug on the modelled cells (as in (7)). Since both approaches lead to
different classes of optimal controls it seems worthwhile to analyze the problems in
both scenarios and compare the results.

In [8], Fister and Panetta maximize an objective with a quadratic control term,

J =

∫ T

0

a(P (t) + Q(t)) −
b

2
(1 − u(t))2dt → max, (11)

over the class U of all Lebesgue measurable functions that take values in the control
set U = [0, 1]; a and b are positive constants. It is shown in [8] that for T sufficiently
small a unique optimal control exists and is continuous on [0, T ]. However, only
at the terminal time T does the optimal control take the maximum value u = 1;
otherwise it is strictly smaller than one, u(t) < 1 for t < T . In all the simulations
in [8], the optimal controls are first given by u = 0, and from a certain time the
drug dosages strictly increase to reach level 1 at the terminal time. This leads to
a depletion of bone marrow toward the end, which is natural since the later values
have a much smaller influence in the objective.

In this paper, we chose the performance index with a linear control term in the
form to maximize

J = r1P (T ) + r2Q(T ) +

∫ T

0

q1P (t) + q2Q(t) + bu(t)dt → max, (12)

where r1, r2 , q1 and q2 are positive weights and b is a positive constant. We
assume that at least one of r1 or q1 and one of r2 or q2 is positive, so that no
compartment would be left out completely in the objective. As in [8] we have
incorporated a term q1P (t) + q2Q(t) in the Lagrangian, in an effort to keep the
number of bone-marrow cells high. Rather than requiring an absolute lower bound,
this so-called “soft” constraint implicitly maximizes the bone marrow. In addition,
we have added a terminal term r1P (T ) + r2Q(T ) which represents a weighted
average of the total bone marrow at the end of an assumed fixed therapy interval
[0, T ]. This term is included to prevent the possibility that the bone marrow would
be depleted excessively toward the end of the therapy interval. Like for the L2-
model the effectiveness of the treatment (i.e., the killing effect on the cancer cells)
has to be taken into account indirectly, since the cancer cells are not modelled in the
dynamics. To kill a large number of cancer cells, one wants to maximize the dosage.
In the dynamics, the side-effects of the drug on the proliferating bone marrow cells
are described by −su(t)P (t); that is, the drug dosage u(t) is proportional to the
number of proliferating bone marrow cells killed. Using the same reasoning for the
objective, the dosage is also proportional to the number of cancer cells killed; thus,

a linear term
∫ T

0
u(t)dt represents a measure for the total number of cancer cells

killed over the therapy interval.
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Writing r = (r1, r2) and using q = (q1, q2), the objective therefore can be formu-
lated mathematically as to maximize

J(u) = rN(T ) +

∫ T

0

qN(t) + bu(t)dt (13)

over all Lebesgue measurable functions u which take values in [0, 1], subject to the
dynamics (9) and given initial condition N(0).

3. Analysis of Extremals. First-order necessary conditions for optimality are
given by the Pontryagin Maximum Principle [20], which for this model can be
stated as follows: If u∗ is an optimal control with corresponding trajectory N∗,
then there exists an absolutely continuous function λ, which we write as row-vector,
λ : [0, T ] → (R2)∗, satisfying the adjoint equation with transversality condition,

λ̇ = −λ(A + uB) − q, λ(T ) = r, (14)

with the property that an optimal control maximizes the Hamiltonian

H = qN + bu + λ(A + uB)N (15)

over the control set [0, 1] along (λ(t), N∗(t)). We call a pair (x, u) consisting of an
admissible control u and corresponding trajectory for which there exists a multiplier
λ such that the conditions of the Maximum Principle are satisfied an extremal
(pair), and the triple (x, u, λ) is an extremal lift (to the cotangent bundle).

While the first quadrant in the state-space is positively invariant, the first quad-
rant in the dual space becomes negatively invariant under the adjoint flow (14).
Even a bit stronger, it holds that if λi(T ) ≥ 0 for i = 1, 2, then λi(t) > 0 for all
t < T . This result, which will be important in the further analysis of the prob-
lem, again easily follows from the fact that the off-diagonal elements in the matrix
defining the dynamics, α and β, are positive.

Lemma 3.1. If λi(T ) ≥ 0 for i = 1, 2, then λi(t) > 0 for all t < T .

Proof: We first note that there exists an ε > 0 such that both components λi(t),
i = 1, 2, are positive on [T − ε, T ). This is trivial for λi if ri = λi(T ) > 0. If r1 = 0,

then λ̇1(T ) = −r2α−q1 ≤ −q1 < 0, and if r2 = 0, then λ̇2(T ) = −r1β−q2 ≤ −q2 <

0. Thus, in either case λi is positive on a small interval before the terminal time
T . Now let τ = sup{0 ≤ t ≤ T : λ1(t) < 0} and σ = sup{0 ≤ t ≤ T : λ2(t) < 0}.
Thus λ1(τ) = 0 and λ2(σ) = 0. If τ = σ, then q1 and q2 cannot both be zero

since otherwise λ(t) ≡ 0. If, say q1 > 0, then λ̇1(τ) = −q1 < 0 and thus λ1

is negative for times t > τ , contradicting the definition of τ . If τ < σ, then
λ̇2(σ) = −λ1(σ)β − q2 < 0, and again λ2 is negative for times t > σ, contradicting

the definition of σ. Similarly, if τ > σ, then λ̇1(τ) = −λ2(τ)α − q1 < 0, leading to
the same contradiction. �

Summarizing, since N0 ∈ P we have shown that

Proposition 3.1. All states Ni are positive over [0, T ] and the costates λi are
positive over [0, T ) with the possible exception of the endpoints if ri = 0.

3.1. Switching function. Optimal controls u∗ maximize the Hamiltonian H, i.e.

(b + λ(t)BN(t))u∗(t) = max
0≤u≤1

(b + λ(t)BN(t))u. (16)
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Thus, if we define the so-called switching function Φ by Φ(t) = b+λ(t)BN(t), then
the optimal controls are given as

u∗(t) =

{

1 if Φ(t) > 0
0 if Φ(t) < 0

. (17)

A priori the control is not determined by the maximum condition at times when
Φ(t) = 0. However, if Φ(t) ≡ 0 on an open interval, then all its derivatives vanish as
well and this may determine the control. Controls of this kind are called singular,
while we refer to the constant controls as bang controls. Optimal controls then need
to be synthesized from these candidates.

The structure of optimal controls is determined by the switching function and
its derivatives. For instance, if Φ(t) = 0, but Φ̇(t) 6= 0, then the control has a
switch at time t. To analyze the structure of the optimal controls, we therefore
need to analyze the switching function and its derivatives. The following lemma,
which is verified by a direct calculation, allows one to calculate first and higher
order derivatives of the switching function simply by calculating commutators of
matrices.

Lemma 3.2. Let M be a constant matrix and let Ψ(t) = λ(t)MN(t), where N

is a solution to the system equation (9) for control u and λ is a solution to the
corresponding adjoint equation. Then

Ψ̇(t) = λ(t)[A + uB,M ]N(t) − qMN(t), (18)

where [A,M ] denotes the commutator of the matrices A and M defined as [A,M ] =
MA − AM . �

Note that we have chosen the order in the commutator to be consistent with the
Lie derivative of the linear vector fields f(N) = AN and g(N) = MN . For,

[f, g](N) = Dg(N)f(N) − Df(N)g(N) = MAN − AMN = [A,M ]N. (19)

Proof: The Lemma is verified by a direct computation, which we include for the
reader’s convenience. Using the dynamics and adjoint equation we obtain

Ψ̇(t) = λ̇(t)MN(t) + λ(t)MṄ(t)

= (−λ(t)(A + uB) − q) MN(t) + λ(t)M(A + uB)N(t)

= λ(t)[A + uB,M ]N(t) − qMN(t).

3.2. Singular Controls. We will show that singular controls in fact are locally
minimizing instead of maximizing; hence not optimal. Suppose a control u is singu-
lar on a non-empty open interval I. Thus the switching function vanishes identically
on I, and we obtain

Φ̇(t) = λ(t)[A,B]N(t) − qBN(t) ≡ 0. (20)

Differentiating once more yields

Φ̈(t) = λ(t)[A + u(t)B, [A,B]]N(t) − q ([A,B] + B(A + uB))N(t) ≡ 0. (21)

The coefficient multiplying the control u is given by the expression

∂

∂u

d2

dt2
∂H

∂u
= λ[B, [A,B]]N − qB2N (22)

evaluated along the extremal lift of the singular control. The singular control is
of order 1 on the interval I if this quantity does not vanish on I. In this case
the equation (21) can formally be solved for the control, and if the corresponding
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control value is admissible (i.e., has a value between 0 and 1), this defines the
singular control. Otherwise the singular arc is not admissible. It is a second-
order necessary condition for optimality of a singular arc of order one, the so-called
generalized Legendre-Clebsch condition [11], that for the case of maximizing the
Hamiltonian

∂

∂u

d2

dt2
∂H

∂u
(λ(t), x(t), u(t)) ≥ 0. (23)

Since B2 = −sB and Φ̇ ≡ 0 along a singular arc, for this model we find that

qB2N = −sqBN = −sλ[A,B]N. (24)

Thus (all quantities are evaluated along the singular lift):

∂

∂u

d2

dt2
∂H

∂u
= λ ([B, [A,B]] + s[A,B]) N. (25)

Direct calculations show that

[A,B] = s

(

0 −β

α 0

)

, [B, [A,B]] = −s2

(

0 β

α 0

)

, (26)

and thus

∂

∂u

d2

dt2
∂H

∂u
= s2λ

(

0 −2β
0 0

)

N = −2s2βλ1Q < 0, (27)

violating the Legendre-Clebsch condition. Thus all singular arcs locally minimize
the objective. Hence we have:

Proposition 3.2. Singular controls are not optimal. �

3.3. Bang-bang Controls. Although more complicated structures (like for ex-
ample chattering arcs, which would have an infinite number of switchings), cannot
be excluded a priori, bang-bang controls with only a finite number of switchings
become the prime candidates for optimality. However, because of the presence of
nonoptimal singular arcs, one expects that there exist bang-bang extremals with an
arbitrary large number of switchings in a vicinity of this non-optimal singular arc,
and it therefore becomes important to develop high-order conditions that distin-
guish between locally optimal and locally nonoptimal bang-bang controls. In this
section we formulate such an algorithm based on an earlier construction by Noble
and Schättler [18] specifically tailored to the type of problems under consideration.
Recently significant activity has focused on the question of high-order necessary and
sufficient conditions for optimality of bang-bang controls, specifically the papers by
Agrachev, Stefani and Zezza [1] and by Maurer and Osmolovskii [17]. Either of
these constructions could equally well be employed in the further analysis, but we
use the more geometric approach pursued in [18]. We have the following theorem
about optimality of bang-bang controls:

Theorem 3.1. Let u∗ be a bang-bang control with switchings at times ti, i =
1, . . . ,m, 0 < tm < · · · < t1 < t0 = T , and denote the values of the control
on the interval (ti, ti−1) by ui. Let N∗ be the corresponding trajectory and sup-
pose Γ = (N∗, u∗) is an extremal pair (control and trajectory) with correspond-

ing multiplier λ∗. Assume that the derivative Φ̇∗(ti) of the switching function
Φ∗(t) = b + λ∗(t)BN∗(t) does not vanish at the switching times ti, i = 1, . . . ,m.
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Set R−
0 = 0, and for i = 1, . . . ,m, inductively define

R+
i = exp

(

(A + uiB)T (ti−1 − ti)
)

R−
i−1 exp ((A + uiB)(ti−1 − ti)) , (28)

Gi =
1

∣

∣

∣
Φ̇∗(ti)

∣

∣

∣

(

λ∗(ti)B + NT
∗ (ti)B

T R+
i

)

, (29)

R−
i =

(

BT λT
∗ (ti)Gi + R+

i

)

(

Id +
BN∗(ti)Gi

1 − GiBN∗(ti)

)

. (30)

Here we have GiBN∗(ti) 6= 1 if and only if
∣

∣

∣
Φ̇∗(ti)

∣

∣

∣
6= sb + NT

∗ (ti)B
T R+

i BN∗(ti). (31)

If for i = 1, . . . ,m, we have that
∣

∣

∣
Φ̇∗(ti)

∣

∣

∣
> sb + NT

∗ (ti)B
T R+

i BN∗(ti), (32)

then u∗ is a strong relative minimum. If the transversality condition
∣

∣

∣
Φ̇∗(ti)

∣

∣

∣
> sb + NT

∗ (ti)B
T R+

i BN∗(ti), (33)

is satisfied for i = 1, . . . , ` − 1, but
∣

∣

∣
Φ̇∗(t`)

∣

∣

∣
< sb + NT

∗ (t`)B
T R+

` BN∗(t`), (34)

then u∗ is optimal for initial times t > t`, but is no longer optimal for initial times
t ≤ t`.

The proof of this theorem is rather lengthy. The calculations are based on the
results in [18] for a general system, and the arguments are similar to those in [12]
for a model for cancer chemotherapy, but with several minor modifications due to
the structure of the equations. Thus here we only outline the proof and illustrate
the geometry of the construction (Fig. 3), referring the reader to [12] and [18] for
the general arguments.

Since the derivative of the switching function does not vanish at the switching
times for the reference trajectory, it is possible to construct a family of bang-bang
extremal lifts (that is, triples consisting of an extremal control and the correspond-
ing trajectory and adjoint variable) around the reference trajectory by parametriz-
ing the extremals through their endpoint in a sufficiently small neighborhood W of
p∗ = N∗(T ). Specifically, for p in a neighborhood W of p∗, integrate the equations

Ṅ(t, p) = (A + u(t, p)B)N(t, p), N(T, p) = p, (35)

λ̇(t, p) = −λ(t, p)(A + u(t, p)B) − q, λ(T, p) = r, (36)

backward from time T while choosing the control u = u(t, p) to maintain the max-
imum condition of the maximum principle. Thus u(t, p∗) is given by the reference
control u∗ and N(t, p∗) and λ(t, p∗) are the reference trajectory and corresponding
multiplier, respectively. Integration is done backward, since the transversality con-
dition (14) specifies the terminal condition for the multiplier λ, whereas the initial
condition is unknown. Then we have, analogous to [12, Lemma 5.1]:

Lemma 3.3. There exists a neighborhood W of p∗ and continuously differentiable
functions τi defined on W , i = 1, . . . ,m, such that for p ∈ W the controls u(·, p) are
bang-bang with switchings in the same order as the reference control at the times 0 <

τm(p) < · · · < τ1(p) < T and the corresponding triples Γp = (N(·, p), u(·, p), λ(·, p))
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for p ∈ W are extremal lifts with the property that the derivatives of the switching
function Φ(t, p) = b + λ(t, p)BN(t, p) do not vanish at all switching times.

The issue then becomes whether the flow map σ of the trajectories,

σ :[0, T ] × W → [0, T ] × P,

(t, p) 7→ σ(t, p) = (t,N(t, p)) (37)

defines a field; that is, whether the corresponding curves cover a neighborhood of
the reference trajectory injectively. This is checked with the algorithm formulated
in the theorem. The matrices R±

i denote the left- and right-hand limits of the
matrix

R(t, p) =
∂λT

∂p
(t, p)

(

∂N

∂p
(t, p)

)−1

(38)

evaluated along the reference trajectory at times t = ti. Since the controls are
constant over the intervals (ti, ti−1) these matrices are easily propagated over the
intervals (equation (28)), but the matrices become discontinuous at the switching
surfaces, and (29) and (30) compute the required jumps. Condition (31) guarantees
that the matrix ∂N

∂p
remains invertible. The geometric interpretation of condition

(32) is that the flow σ crosses the corresponding switching surfaces transversally.
This implies that the flow covers the state-space injectively in a neighborhood of
the reference trajectory and thus locally defines a field of broken extremals (see
Fig. 3). A differentiable solution to the Hamilton-Jacobi-Bellman equation can
then be constructed, implying the strong local optimality of the controls [18, Cors.
2.13 and 2.14]. If condition (34) is satisfied, however, the flow σ reflects off the
`th switching surface generating an overlap. The `th switching surface becomes a
surface of conjugate points and local optimality of the flow ceases there. This can
be verified for example with an envelope argument as in [12, Thm. 5.3] Thus the
algorithm (28)-(30) calculates the first conjugate point, but, following the spirit of
[18], integrating backward.

Fig. 3 illustrates the idea of the proof; that is, the embedding of the extremal
in a parametrized flow and the two types of transversal behavior at the switching
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Figure 4. Control for p0 = 0.9, b = 1.

surfaces: transversal crossings where the transversality is preserved and transversal
folds where the flow loses optimality. The algorithm (28)-(30) along with (32) can
easily be used in the numerical simulations to analyze local optimality of bang-bang
extremals at the switchings.

4. Simulations and Comparisons. Using a version of the gradient method for
the calculation of extremal bang-bang controls developed earlier by Duda [6], we
ran simulations for the model presented here for a therapy interval of length T = 10
with the following parameter values taken from [8]: α = 5.643, β = 0.48, γ = 1.47,
δ = 0, and ρ = 0.164. In the simulations we report on below, we set s = 1, r1 =
r2 = 1, and also q1 = q2 = 1. We do vary the parameter b multiplying the control
in the objective.

For b = 1 and initial conditions (p0, q0) chosen as the steady state of the uncon-
trolled system with these parameters, the optimal control is u ≡ 1. As the initial
conditions are changed to (p0, q0) = (.5, .5), the control has one switch from u = 0
to u = 1 which occurs at τ0 = 0.54. Even as the initial conditions are changed to
(p0, q0) = (.9, .1), the switching in the control still happens quickly at τ0 = 0.80.
The control (and switching function as dashed line) for this simulation is given in
Fig. 4, and the corresponding states are shown in Fig. 5. The dashed line in the
graphs of the states gives the evolution of the cells in the quiescent compartment
while the regular line gives the evolution of the cells in the proliferating stage. For
a control with only one switching, we have R+

1 = 0 in (32) and thus this condition

reduces to trans = |Φ̇(t1)| − bs > 0. For this case trans = 0.525, and thus the
corresponding control is locally optimal. In all these cases, for u ≡ 0 the system
quickly settles into steady state, and then the optimal control becomes u ≡ 1 for
the remaining time.

This behavior changes if a different weight is used for the control in the objective.
If the weight b at the integral of the control is decreased to b = .5, trajectories in
these simulations still have exactly one switch, from u = 0 to u = 1, but now the
switches occur much later. For initial conditions corresponding to the uncontrolled
steady state, the switching now is at τ0 = 5.02. This is consistent with the fact that
more “weight” put on the bone marrow cells count delays the time at which the full
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Figure 5. States for p0 = 0.9, b = 1.
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Figure 6. Control from steady state, b = 0.5.

dose can be applied. Figs. 6 and 7 give the graphs for steady state initial conditions,
and Figs. 8 and 9 give the graphs for (p0, q0) = (.9, .1). The corresponding values
of the transversality condition are given by trans = 0.013 for initial conditions in
steady state and by trans = 0.100 for p0 = .9; thus, each control is locally optimal.

5. Comparisons and Conclusions. In this paper we analyzed a model for can-
cer chemotherapy proposed earlier by Fister and Panetta [19, 8], which aims at
minimizing the damage to bone marrow cells during chemotherapy with an objec-
tive linear in the control (L1-type). The analysis shows that partial doses are not
optimal and that optimal controls alternate between chemotherapy sessions of full
dose and rest-periods. While the model is specified through a number of cell-cycle
specific parameters, this analysis does not depend on the actual values of these pa-
rameters, and so this conclusion is generally valid. In fact, even if the parameters in
the model are allowed to vary in time, (which seems reasonable under chemother-
apy), it can be shown that singular controls are not optimal. In all simulations we
ran (for various coefficients in the objective, but keeping the medically motivated
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Figure 7. States from steady state, b = 0.5.
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Figure 8. Control for p0 = 0.9, b = 0.5.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

st
at

es
 N

1 
an

d 
N

2

Figure 9. States for p0 = 0.9, b = 0.5.
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values for the parameters in the dynamics), the results had only one switching in
the control. But there does not seem to be a straightforward way of proving such
a result analytically. In principle, convexity properties of the switching functions
seen in some simulations (especially if we set q = 0) allow for more switchings. But
this also strongly depends on the parameter values in the dynamics and objective.
It is clear that putting less weight on the control (drug dosage) in the objective
makes it more beneficial to give less drug overall since thus the bone marrow cells
automatically are measured with relatively higher coefficients.

The simulations above exhibit both differences and similarities to the ones ob-
tained with the use of an L2-objective. The main difference, of course, lies in the
class of controls: bang-bang controls for an L1−objective versus continuous controls
for L2. On the other hand, although the controls come from different classes, they
exhibit similar overall behavior. In all the simulations for the L1-objective, optimal
controls exhibit only one switch from u = 0 to u = 1. Also, in runs performed for
the same time interval as in [8] (which are not included here), the solutions in both
cases start with a no-dose period that lasts longer in the case of an L1-objective,
but then the control switches to the full dose, whereas the control starts earlier
in the L2-objective case increasing slowly to a full dose only at the terminal time.
Thus, in the case of an L1-objective analyzed here, a full dose is applied more than
just at the final time and partial doses are not optimal. This would agree with
experimental and clinical data on the model, but only to some extent. All the
controls we obtained in our simulations have only one switching which means that
in one therapy interval there is only one “full-dose session” rather than “short drug
pulses at appropriate intervals”as clinical data indicate. However, we believe that
one should be able to achieve the desired effect by combining several short therapy
intervals. Another approach would be to maximize an objective which measures
the bone marrow not just at the final time, but at some intermediate times as well.
All of this will be pursued in future research on the topic.

Another important change in the model would be the inclusion of pharmacoki-
netics/pharmacodynamics (PK/PD) where the distinction of the drug dosage u and
the drug concentration c is made and the effects of the drug concentration on the
bone marrow and/or cancer cells are modelled through a more realistic function
s = s(c) (rather than just an effectiveness coefficient s as it was done here.) If
this function saturates at certain upper and lower concentrations, then we expect
the optimal solutions have several switchings, but this research currently is still in
progress.
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