Research article Special Issues

Prioritizing COVID-19 vaccination. Part 2: Real-time comparison between single-dose and double-dose in Japan

  • Received: 12 April 2022 Revised: 08 May 2022 Accepted: 12 May 2022 Published: 19 May 2022
  • Japan successfully implemented a mass vaccination program for coronavirus disease 2019 (COVID-19), immunizing more than 1 million persons a day by July 2021. Given the COVID-19 vaccination capacity limitations, an urgent question was raised regarding whether it would be better to (ⅰ) complete double-dose COVID-19 vaccination among healthcare personnel and older adults before beginning double-dose vaccination of younger adults (double-dose strategy) or (ⅱ) allocate a single dose of COVID-19 vaccine to all adults regardless of age before administering the second dose (single-dose-first strategy). We used an age-structured susceptible-infectious-recovered (SIR) compartment model to compare the effectiveness of possible COVID-19 vaccination strategies and the length of public health and social measures (PHSM) to minimize the cumulative COVID-19 disease risk and death toll. Our results indicate that if the single-dose-first strategy was taken, an estimated total of 1,387,078 persons, i.e., 263,315 children, 928,518 young adults, and 195,245 older adults, would develop COVID-19, resulting in 15,442 deaths. In contrast, if the double-dose strategy was taken instead, an estimated total of 1,900,172 persons, i.e., 377,107 children, 1,315,927 young adults, and 207,138 older adults, would develop COVID-19, yielding 17,423 deaths. Real-time investigation favored the disease transmission blocking option, i.e., single-dose vaccination strategy. Applying the single-dose-first strategy should yield a smaller epidemic size than applying the double-dose strategy; however, for both strategies, PHSM will be essential by the time second-dose COVID-19 vaccination is complete among all adults.

    Citation: Tetsuro Kobayashi, Hiroshi Nishiura. Prioritizing COVID-19 vaccination. Part 2: Real-time comparison between single-dose and double-dose in Japan[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 7410-7424. doi: 10.3934/mbe.2022350

    Related Papers:

  • Japan successfully implemented a mass vaccination program for coronavirus disease 2019 (COVID-19), immunizing more than 1 million persons a day by July 2021. Given the COVID-19 vaccination capacity limitations, an urgent question was raised regarding whether it would be better to (ⅰ) complete double-dose COVID-19 vaccination among healthcare personnel and older adults before beginning double-dose vaccination of younger adults (double-dose strategy) or (ⅱ) allocate a single dose of COVID-19 vaccine to all adults regardless of age before administering the second dose (single-dose-first strategy). We used an age-structured susceptible-infectious-recovered (SIR) compartment model to compare the effectiveness of possible COVID-19 vaccination strategies and the length of public health and social measures (PHSM) to minimize the cumulative COVID-19 disease risk and death toll. Our results indicate that if the single-dose-first strategy was taken, an estimated total of 1,387,078 persons, i.e., 263,315 children, 928,518 young adults, and 195,245 older adults, would develop COVID-19, resulting in 15,442 deaths. In contrast, if the double-dose strategy was taken instead, an estimated total of 1,900,172 persons, i.e., 377,107 children, 1,315,927 young adults, and 207,138 older adults, would develop COVID-19, yielding 17,423 deaths. Real-time investigation favored the disease transmission blocking option, i.e., single-dose vaccination strategy. Applying the single-dose-first strategy should yield a smaller epidemic size than applying the double-dose strategy; however, for both strategies, PHSM will be essential by the time second-dose COVID-19 vaccination is complete among all adults.



    加载中


    [1] T. Kobayashi, H. Nishiura, Prioritizing COVID-19 vaccination. Part 1: Final size comparison between a single dose and double dose, Math. Biosci. Eng., 19 (2022), 7374-7387. https://doi.org/10.3934/mbe.2022348 doi: 10.3934/mbe.2022348
    [2] J. Wood, J. McCaw, N. Becker, T. Nolan, C. R. MacIntyre, Optimal dosing and dynamic distribution of vaccines in an influenza pandemic, Am. J. Epidemiol., 169 (2009), 1517-1524. https://doi.org/10.1093/aje/kwp072 doi: 10.1093/aje/kwp072
    [3] S. Riley, J. T. Wu, G. M. Leung, Optimizing the dose of pre-pandemic influenza vaccines to reduce the infection attack rate, PLoS Med., 4 (2007), e218. https://doi.org/10.1371/journal.pmed.0040218 doi: 10.1371/journal.pmed.0040218
    [4] H. Nishiura, K. Iwata, A simple mathematical approach to deciding the dosage of vaccine against pandemic H1N1 influenza, Euro. Surveill., 14 (2009), 1-5. https://doi.org/10.2807/ese.14.45.19396-en doi: 10.2807/ese.14.45.19396-en
    [5] A. Levin, W. Hanage, N. Owusu-Boaitey, K. Cochran, S. Walsh, G. Meyerowitz-Katz, Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications, Eur. J. Epidemiol., 35 (2020), 1123-1138. https://doi.org/10.1007/s10654-020-00698-1
    [6] K. Bubar, K. Reinholt, S. Kissler, M. Lipsitch, S. Cobey, Y. Grad, et al., Model-informed COVID-19 vaccine prioritization strategies by age and serostatus, Science, 371 (2021), 916-921. https://doi.org/10.1126/science.abe6959 doi: 10.1126/science.abe6959
    [7] E. Rumpler, M. J. Feldman, M. T. Bassett, M. Lipsitch, Equitable COVID-19 vaccine prioritization: front-line workers or 65-74 year olds?, preprint, Available from: https://www.medrxiv.org/content/10.1101/2022.02.03.22270414v1.full
    [8] G. Persad, E. J. Emanuel, S. Sangenito, A. Glickman, S. Phillips, E. A. Largent, Public perspectives on COVID-19 vaccine prioritization, JAMA Netw. Open, 4 (2021), e217943. https://doi.org/10.1001/jamanetworkopen.2021.7943 doi: 10.1001/jamanetworkopen.2021.7943
    [9] G. Persad, M. E. Peek, E. J. Emanuel, Fairly prioritizing groups for access to COVID-19 vaccines, JAMA, 324 (2020), 1601-1602. https://doi.org/10.1001/jama.2020.18513 doi: 10.1001/jama.2020.18513
    [10] K. Dooling, N. McClung, M. Chamberland, M. Marin, M. Wallace, B. P. Bell, et. al., The advisory committee on immunization practices' interim recommendation for allocating initial supplies of COVID-19 vaccine—United States, 2020, MMWR Morbid. Mortal W., 69 (2020), 1857-1859. https://doi.org/10.15585/mmwr.mm6949e1 doi: 10.15585/mmwr.mm6949e1
    [11] J. Buckner, G. Chowell, M. Springborn, Dynamic prioritization of COVID-19 vaccines when social distancing is limited for essential workers, Proc. Natl. Acad. Sci. U. S. A., 118 (2021), e2025786118. https://doi.org/10.1073/pnas.2025786118 doi: 10.1073/pnas.2025786118
    [12] P. Jentsch, M. Anand, C. Bauch, Prioritising COVID-19 vaccination in changing social and epidemiological landscapes: A mathematical modelling study, Lancet Infect. Dis., 3099 (2021), 00057-8. https://doi.org/10.1016/S1473-3099(21)00057-8 doi: 10.1016/S1473-3099(21)00057-8
    [13] S. Han, J. Cai, J. Yang, J. Zhang, Q. Wu, W. Zheng, et al., Time-varying optimization of COVID-19 vaccine prioritization in the context of limited vaccination capacity, Nat. Commun., 12 (2021), 4673. https://doi.org/10.1038/s41467-021-24872-5 doi: 10.1038/s41467-021-24872-5
    [14] N. Askitas, K. Tatsiramos, B. Verheyden, Estimating worldwide effects of non-pharmaceutical interventions on COVID-19 incidence and population mobility patterns using a multiple-event study, Sci. Rep., 11 (2021), 1972. doi: https://doi.org/10.1038/s41598-021-81442-x doi: 10.1038/s41598-021-81442-x
    [15] S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland, et.al., Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature, 584 (2020), 257-261. doi: https://doi.org/10.1038/s41586-020-2405-7 doi: 10.1038/s41586-020-2405-7
    [16] S. Moore, E. M. Hill, M. J. Tildesley, L. Dyson, M. J. Keeling, Vaccination and non-pharmaceutical interventions for COVID-19: A mathematical modelling study, Lancet Infect. Dis., 3099 (2021), 793-802. https://doi.org/10.1016/S1473-3099(21)00143-2 doi: 10.1016/S1473-3099(21)00143-2
    [17] An open letter by a group of public health experts, clinicians, scientists, COVID-19: An urgent call for global "vaccines-plus" action, BMJ, 376 (2022), 1-3. https://doi.org/10.1136/bmj.o1 doi: 10.1136/bmj.o1
    [18] M. Coccia, Preparedness of countries to face COVID-19 pandemic crisis: Strategic positioning and factors supporting effective strategies of prevention of pandemic threats, Environ. Res., 203 (2022), 111678. https://doi.org/10.1016/j.envres.2021.111678 doi: 10.1016/j.envres.2021.111678
    [19] K. Prem, Y. Liu, T. Russell, A. Kucharski, R. Eggo, N. Davies, et al., The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study, Lancet Public Health, 5 (2020), e261-e270. https://doi.org/10.1016/S2468-2667(20)30073-6 doi: 10.1016/S2468-2667(20)30073-6
    [20] B. Dickens, J. Koo, J. Lim, M. Park, S. Quaye, H. Sun, et al., Modelling lockdown and exit strategies for COVID-19 in Singapore, Lancet Regional Health—Western Pacific, 1 (2020) 100004. https://doi.org/10.1016/j.lanwpc.2020.100004
    [21] L. Munasinghe, Y. Asai, H. Nishiura, Quantifying heterogeneous contact patterns in Japan: A social contact survey, Theor. Biol. Med. Model., 16 (2019), 6. https://doi.org/10.1186/s12976-019-0102-8 doi: 10.1186/s12976-019-0102-8
    [22] E. Mahase, Covid-19: Reports from Israel suggest one dose of Pfizer vaccine could be less effective than expected, BMJ, 372 (2021), n217. https://doi.org/10.1136/bmj.n217 doi: 10.1136/bmj.n217
    [23] H. Nishiura, Tracking public health and social measures, in World Health Organization, 2021, work in progress.
    [24] T. Kuniya, Evaluation of the effect of the state of emergency for the first wave of COVID-19 in Japan, Infect. Dis. Model., 5 (2020), 580-587. https://doi.org/10.1016/j.idm.2020.08.004 doi: 10.1016/j.idm.2020.08.004
    [25] K. Nakajo, H. Nishiura, Assessing interventions against Coronavirus Disease 2019 (COVID-19) in Osaka, Japan: A modeling study, J Clin. Med., 19 (2021), 1256. https://doi.org/10.3390/jcm10061256
    [26] Ministry of Health, Labor and Welfare: COVID-19 Advisory Board, (Japanese), 2021. Available from: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000121431_00216.html.
    [27] I. Locatelli, B. Trächsel, V. Rousson, Estimating the basic reproduction number for COVID-19 in Western Europe, PLoS One, 16 (2021), 1-9. https://doi.org/10.1001/jama.2021.3341 doi: 10.1001/jama.2021.3341
    [28] Z. Zhuang, S. Zhao, Q. Lin, P. Cao, Y. Lou, L. Yang, et al., Preliminary estimates of the reproduction number of the coronavirus disease (COVID-19) outbreak in Republic of Korea and Italy by 5 March 2020, Int. J. Infect. Dis., 95 (2020), 308-310. https://doi.org/10.1016/j.ijid.2020.04.044 doi: 10.1016/j.ijid.2020.04.044
    [29] M. Al-Raeei, The basic reproduction number of the new coronavirus pandemic with mortality for India, the Syrian Arab Republic, the United States, Yemen, China, France, Nigeria and Russia with different rate of cases, Clin. Epidemiol. Glob. Heal., 9 (2021), 147-149. https://doi.org/10.1016/j.cegh.2020.08.005
    [30] M. A. Billah, M. M. Miah, M. N. Khan, Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence, PLoS One, 15 (2020), e0242128. https://doi.org/10.1371/journal.pone.0242128 doi: 10.1371/journal.pone.0242128
    [31] E. Mahase, COVID-19: Order to reschedule and delay second vaccine dose is "totally unfair, " says BMA, BMJ, 371 (2020), m4978. https://doi.org/10.1136/bmj.m4978
    [32] S. Kadire, R. Wachter, N. Lurie. Clinical decisions delayed second dose versus standard regimen for COVID-19 vaccination: A task force on administration of COVID-19 vaccine recommend delaying the second dose recommend following the standard Regimen, N. Engl. J. Med., 384 (2021), e28. https://doi.org/10.1056/NEJMclde2101987 doi: 10.1056/NEJMclde2101987
    [33] G. Iacobucci, G. E. Mahase, COVID-19 vaccination: What's the evidence for extending the dosing interval? BMJ, 372 (2021), n18. https://doi.org/10.1136/bmj.n18
    [34] S. Moghadas, T. Vilches, K. Zhang, S. Nourbakhsh, P. Sah, M. Fitzpatrick, et al., Evaluation of COVID-19 vaccination strategies with a delayed second dose, PLoS Biol., 19 (2021), 1-13. http://dx.doi.org/10.1371/journal.pbio.3001211 doi: 10.1371/journal.pbio.3001211
    [35] K. Leung, M. Jit, G. M. Leung, J. T. Wu, The allocation of COVID-19 vaccines and antivirals against emerging SARS-CoV-2 variants of concern in East Asia and Pacific region: A modelling study, Lancet Regional Health—Western Pacific, 21 (2022), 100389. https://doi.org/10.1016/j.lanwpc.2022.100389 doi: 10.1016/j.lanwpc.2022.100389
    [36] L. Tian, X. Li, F. Qi, Q. Tang, V. Tang, J. Liu, et al., Harnessing peak transmission around symptom onset for non-pharmaceutical intervention and containment of the COVID-19 pandemic, Nat. Commun., 12 (2021), 1147. https://doi.org/10.1038/s41467-021-21385-z doi: 10.1038/s41467-021-21385-z
    [37] M. Coccia, Optimal levels of vaccination to reduce COVID-19 infected individuals and deaths: A global analysis, Environ. Res., 204 (2022), 112314. doi: https://doi.org/10.1016/j.envres.2021.112314 doi: 10.1016/j.envres.2021.112314
    [38] L. S. F. Frederiksen, Y. Zhang, C. Foged, A. Thakur, The long road toward COVID-19 herd immunity: Vaccine platform technologies and mass immunization strategies, Front. Immunol., 11 (2020), 1817. https://doi.org/10.3389/fimmu.2020.01817 doi: 10.3389/fimmu.2020.01817
    [39] K. O. Kwok, F. Lai, W. I. Wei, S. Y. S Wong, J. W. T. Tang, Herd immunity - estimating the level required to halt the COVID-19 epidemics in affected countries, J. Infect., 80 (2020), e32-e33. doi: https://doi.org/10.1016/j.jinf.2020.03.027 doi: 10.1016/j.jinf.2020.03.027
    [40] Cabinet Public Relations Office: Novel Coronavirus Vaccines: Total number of vaccine doses administered to date, 2021. Available from: https://www.kantei.go.jp/jp/headline/kansensho/vaccine.html
    [41] E. Mahase, COVID-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant, BMJ, 372 (2021), n296. https://doi.org/10.1136/bmj.n296 doi: 10.1136/bmj.n296
    [42] J. Wise, COVID-19: The E484K mutation and the risks it poses, BMJ, 372 (2021), n359. https://doi.org/10.1136/bmj.n359 doi: 10.1136/bmj.n359
    [43] T. Burki, Understanding variants of SARS-CoV-2, Lancet, 397 (2021), 462. https://doi.org/10.1016/S0140-6736(21)00298-1 doi: 10.1016/S0140-6736(21)00298-1
    [44] V. Biotechnology, S. Francisco, I. Diseases, C. L. Moncucco, L. S. Hospital, A. Hospital, et al., SARS-CoV-2 B.1.1.7 sensitivity to mRNA vaccine-elicited, convalescent and monoclonal antibodies, preprint, Available from https://www.medrxiv.org/content/10.1101/2021.01.19.21249840v4
    [45] D. Planas, T. Bruel, L. Grzelak, F. Guivel-Benhassine, I. Staropoli, F. Porrot, et al., Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies, Nat. Med., 27 (2021), 917-924. https://doi.org/10.1038/s41591-021-01318-5 doi: 10.1038/s41591-021-01318-5
    [46] A. Muik, A. K. Wallisch, B. Sänger, K. A. Swanson, J. Mühl, W. Chen, et al., Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera, Science, 371 (2021), 1152-1153. https://doi.org/10.1126/science.abg6105 doi: 10.1126/science.abg6105
    [47] P. Wang, M. S. Nair, L. Liu, S. Iketani, Y. Luo, Y. Guo, et al., Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7, Nature, 593 (2021), 130-135. https://doi.org/10.1038/s41586-021-03398-2 doi: 10.1038/s41586-021-03398-2
    [48] D. Zhou, W. Dejnirattisai, P. Supasa, C. Liu, A. J. Mentzer, H. M. Ginn, et al., Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera, Cell, 184 (2021), 2348-2361. https://doi.org/10.1016/j.cell.2021.02.037 doi: 10.1016/j.cell.2021.02.037
    [49] The Center for Systems Science and Engineering (CSSE) at Johns Hopkins University: COVID-19 Dashboard, 2021. Available from: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
    [50] S. Saadat, Z. R. Tehrani, J. Logue, M. Newman, M. B. Frieman, A. D. Harris, et al., Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2, JAMA, 325 (2021), 1467-1469. https://doi.org/10.1001/jama.2021.3341 doi: 10.1001/jama.2021.3341
    [51] N. G. Davies, A. J. Kucharski, R. M. Eggo, A. Gimma, W. J. Edmunds, T. Jombart, et al., Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: A modelling study, Lancet Public Health, 5 (2020), e375-e785. https://doi.org/10.1016/S2468-2667(20)30133-X doi: 10.1016/S2468-2667(20)30133-X
    [52] N. Dagan, N. Barda, E. Kepten, O. Miron, S. Perchik, M. A. Katz, et al., BNT162b2 mRNA COVID-19 vaccine in a nationwide mass vaccination setting, N. Engl. J. Med., 384 (2021), 1412-1423. https://doi.org/10.1056/NEJMoa2101765 doi: 10.1056/NEJMoa2101765
    [53] Toyo Keizai Online COVID-19 Task Team: Coronavirus Disease (COVID-19) Situation Report in Japan. Toyo Keizai Online, 2021. Available from: https://toyokeizai.net/sp/visual/tko/covid19/en.html
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1445) PDF downloads(72) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog