Influence of backward bifurcation on interpretation of $R_0$ in a model of epidemic tuberculosis with reinfection

  • Received: 01 February 2004 Accepted: 29 June 2018 Published: 01 March 2004
  • MSC : 93D30, 34G20, 92D20.

  • There is significant disagreement in the epidemiological literature regarding the extent to which reinfection of latently infected individuals contributes to the dynamics of tuberculosis (TB) epidemics. In this study we present an epidemiological model of Mycobacterium tuberculosis infection that includes the process of reinfection. Using analysis and numerical simulations, we observe the effect that varying levels of reinfection has on the qualitative dynamics of the TB epidemic. We examine cases of the model both with and without treatment of actively infected individuals. Next, we consider a variation of the model describing a heterogeneous population, stratified by susceptibility to TB infection. Results show that a threshold level of reinfection exists in all cases of the model. Beyond this threshold, the dynamics of the model are described by a backward bifurcation. Uncertainty analysis of the parameters shows that this threshold is too high to be attained in a realistic epidemic. However, we show that even for sub-threshold levels of reinfection, including reinfection in the model changes dynamic behavior of the model. In particular, when reinfection is present the basic reproductive number, $R_0$, does not accurately describe the severity of an epidemic.

    Citation: Benjamin H. Singer, Denise E. Kirschner. Influence of backward bifurcation on interpretation of $R_0$ in a model of epidemic tuberculosis with reinfection[J]. Mathematical Biosciences and Engineering, 2004, 1(1): 81-93. doi: 10.3934/mbe.2004.1.81

    Related Papers:

  • There is significant disagreement in the epidemiological literature regarding the extent to which reinfection of latently infected individuals contributes to the dynamics of tuberculosis (TB) epidemics. In this study we present an epidemiological model of Mycobacterium tuberculosis infection that includes the process of reinfection. Using analysis and numerical simulations, we observe the effect that varying levels of reinfection has on the qualitative dynamics of the TB epidemic. We examine cases of the model both with and without treatment of actively infected individuals. Next, we consider a variation of the model describing a heterogeneous population, stratified by susceptibility to TB infection. Results show that a threshold level of reinfection exists in all cases of the model. Beyond this threshold, the dynamics of the model are described by a backward bifurcation. Uncertainty analysis of the parameters shows that this threshold is too high to be attained in a realistic epidemic. However, we show that even for sub-threshold levels of reinfection, including reinfection in the model changes dynamic behavior of the model. In particular, when reinfection is present the basic reproductive number, $R_0$, does not accurately describe the severity of an epidemic.


    加载中
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3443) PDF downloads(908) Cited by(29)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog