Citation: Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 787-802. doi: 10.3934/mbe.2013.10.787
[1] | Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360 |
[2] | Urszula Ledzewicz, Behrooz Amini, Heinz Schättler . Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257 |
[3] | H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852 |
[4] | Craig Collins, K. Renee Fister, Bethany Key, Mary Williams . Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 451-467. doi: 10.3934/mbe.2009.6.451 |
[5] | Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521 |
[6] | Xin Chen, Tengda Li, Will Cao . Optimizing cancer therapy for individuals based on tumor-immune-drug system interaction. Mathematical Biosciences and Engineering, 2023, 20(10): 17589-17607. doi: 10.3934/mbe.2023781 |
[7] | Qingfeng Tang, Guohong Zhang . Stability and Hopf bifurcations in a competitive tumour-immune system with intrinsic recruitment delay and chemotherapy. Mathematical Biosciences and Engineering, 2021, 18(3): 1941-1965. doi: 10.3934/mbe.2021101 |
[8] | Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325 |
[9] | Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028 |
[10] | G. V. R. K. Vithanage, Hsiu-Chuan Wei, Sophia R-J Jang . Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy. Mathematical Biosciences and Engineering, 2022, 19(2): 1559-1587. doi: 10.3934/mbe.2022072 |
[1] | Biology Direct, 7 (2012), 31. |
[2] | Physics of Life Reviews, 5 (2008), 183-206. |
[3] | Mathematical and Computational Modelling, 32 (2000), 413-452. |
[4] | Springer Verlag, Series: Mathematics and Applications, 40 (2003). |
[5] | American Institute of Mathematical Sciences, 2007. |
[6] | Annual Review of Immunology, 22 (2004), 322-360. |
[7] | Mathematical Modelling of Natural Phenomena, 7 (2012), 1-26. |
[8] | Springer Verlag, New York, 1983. |
[9] | J. of Theoretical Biology, 220 (2003), 545-554. |
[10] | W. H. Freeman, 2006. |
[11] | J. of Mathematical Biology, 37 (1998), 235-252. |
[12] | Nature, 450 (2007), 903-905. |
[13] | Bulletin of Mathematical Biology, 56 (1994), 295-321. |
[14] | Proceedings of the 51st IEEE Proceedings on Decision and Control, Maui, Hawaii, (2012), 7492-7497. |
[15] | Proceedings of the 8th AIMS Conference, Dresden, Germany, (2010), 971-980. |
[16] | J. of Mathematical Biology, 64 (2012), 557-577. |
[17] | Mathematical Biosciences and Engineering (MBE), 2 (2005), 561-578. |
[18] | Mathematical Medicine and Biology, 21 (2004), 1-34. |
[19] | Physica D, 208 (2005), 220-235. |
[20] | Mathematical Models and Methods in Applied Sciences, 16 (2006), 1375-1401. |
[21] | Chaos, Solitons and Fractals, 31 (2007), 261-268. |
[22] | Mathematical and Computational Modelling, 47 (2008), 614-637. |
[23] | Chaos, Solitons and Fractals, 41 (2009), 875-880. |
[24] | Physical Review E, 84 (2011). |
[25] | Cell Proliferation, 42 (2009), 317-329. |
[26] | Annual Reviews of Immunology, 21 (2003), 807-839. |
[27] | Nature Reviews$|$ Clinical Oncology, 7 (2010), 455-465. |
[28] | J. of Clinical Oncology, 23, (2005), 939-952. |
[29] | Cancer Research, 65 (2005), 7950-7958. |
[30] | MacMillan, New York, 1964. |
[31] | Springer Verlag, 2012. |
[32] | Biophysics, 24 (1980), 917-923. |
[33] | J. of Clinical Investigations, 117 (2007), 1137-1146. |
[34] | J. of Theoretical Biology, 227 (2004), 335-348. |
[35] | J. of Clinical Oncology, 11 (1993), 820-821. |
1. | Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 8, 978-1-4939-2971-9, 317, 10.1007/978-1-4939-2972-6_8 | |
2. | U. Ledzewicz, H. Schättler, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, A Review of Optimal Chemotherapy Protocols: From MTD towards Metronomic Therapy, 2014, 9, 0973-5348, 131, 10.1051/mmnp/20149409 | |
3. | Heinz Schättler, Urszula Ledzewicz, Behrooz Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, 2016, 72, 0303-6812, 1255, 10.1007/s00285-015-0907-y | |
4. | Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 1, 978-1-4939-2971-9, 1, 10.1007/978-1-4939-2972-6_1 | |
5. | Gary An, Swati Kulkarni, An agent-based modeling framework linking inflammation and cancer using evolutionary principles: Description of a generative hierarchy for the hallmarks of cancer and developing a bridge between mechanism and epidemiological data, 2015, 260, 00255564, 16, 10.1016/j.mbs.2014.07.009 | |
6. | Urszula Ledzewicz, Behrooz Amini, Heinz Schättler, Dynamics and control of a mathematical model for metronomic chemotherapy, 2015, 12, 1551-0018, 1257, 10.3934/mbe.2015.12.1257 | |
7. | Nicolas Houy, François Le Grand, Francesco Pappalardo, Optimal dynamic regimens with artificial intelligence: The case of temozolomide, 2018, 13, 1932-6203, e0199076, 10.1371/journal.pone.0199076 | |
8. | Dominique Barbolosi, Joseph Ciccolini, Bruno Lacarelle, Fabrice Barlési, Nicolas André, Computational oncology — mathematical modelling of drug regimens for precision medicine, 2016, 13, 1759-4774, 242, 10.1038/nrclinonc.2015.204 | |
9. | Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 7, 978-1-4939-1792-1, 157, 10.1007/978-1-4939-1793-8_7 | |
10. | Urszula Ledzewicz, Heinz Schättler, On the Role of the Objective in the Optimization of Compartmental Models for Biomedical Therapies, 2020, 187, 0022-3239, 305, 10.1007/s10957-020-01754-2 | |
11. | Raimund Bürger, Gerardo Chowell, Leidy Yissedt Lara-Díaz, Measuring differences between phenomenological growth models applied to epidemiology, 2021, 334, 00255564, 108558, 10.1016/j.mbs.2021.108558 | |
12. | Malgorzata Kardynska, Daria Kogut, Marcin Pacholczyk, Jaroslaw Smieja, Mathematical modeling of regulatory networks of intracellular processes – Aims and selected methods, 2023, 21, 20010370, 1523, 10.1016/j.csbj.2023.02.006 |