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Abstract. In this paper, a mathematical model for chemotherapy that takes

tumor immune-system interactions into account is considered for a strongly
targeted agent. We use a classical model originally formulated by Stepanova,

but replace exponential tumor growth with a generalised logistic growth model

function depending on a parameter ν. This growth function interpolates be-
tween a Gompertzian model (in the limit ν → 0) and an exponential model

(in the limit ν → ∞). The dynamics is multi-stable and equilibria and their

stability will be investigated depending on the parameter ν. Except for small
values of ν, the system has both an asymptotically stable microscopic (benign)

equilibrium point and an asymptotically stable macroscopic (malignant) equi-
librium point. The corresponding regions of attraction are separated by the

stable manifold of a saddle. The optimal control problem of moving an initial

condition that lies in the malignant region into the benign region is formulated
and the structure of optimal singular controls is determined.

1. Introduction. A tumor’s microenvironment or stroma is comprised of several
components that also include various cells of our immune system with both bene-
ficial and detrimental effects. This reflects just one of many aspects of cancer as
a “multifaceted disease” [7]. The purpose of the immune system is to protect the
organism from disease. In order to fulfill this function, it needs to be able to de-
tect a wide variety of agents, from viruses to parasites, but also must be able to
distinguish these from the organism’s own healthy tissue in order not to harm the
organism. Tremendous progress in understanding the workings of the immune sys-
tem has been made in connection with research on HIV and this new knowledge also
finds its application in cancer research. Since the immune system’s first response
to its environment is on the basis of a discrimination between “own” and “foreign”
objects, many types of tumor cells are more or less tolerated by the patient’s own
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immune system since, essentially, they are classified as “own” cells [26]. However,
tumor cells also exhibit a large number of abnormalities (such as mutated proteins,
under- or over-expressed normal proteins and many more) that lead to the appear-
ance of specific antigens some of which will be classified as “foreign” and thus do
trigger reactions by both the innate and adaptive immune system [10, 33]. In fact,
the empirical hypothesis of immune surveillance, i.e., that the immune system may
act to eliminate tumors, which is well-established in the medical community, has
recently been confirmed experimentally and epidemiologically [6].

The competitive interaction between tumor cells and the immune system is com-
plex and involves a large number of events with the kinetics highly nonlinear. The
possible outcome of this interplay is not only constituted by either tumor sup-
pression or cancer outbreak, but there exist many intermediate scenarios. For ex-
ample, it has been hypothesized that in case of a fully developed and metastatic
tumor, upregulation of the immune system may be responsible for controlling small
metastases. There exist theoretical immuno-oncologic studies, largely inferred from
clinical data, that come to the conclusion that in some cases the immune system
may be able to keep the tumor in a dynamic equilibrium that corresponds to a
microscopic (undetectable) dormant state [18, 19, 21], so-called tumor dormancy.
But it is quite intuitive, that this equilibrium can be disrupted by sudden events
affecting the immune system. Mathematically, this simply is related to the size
of the region of attraction of this equilibrium: if this region is small, even minor
events may bring up the disease while the immune system is well able to control
the disease if this region is large. While there exist good reasons to believe that
the immune system may be able to control tumors initially, over a long period of
time, the neoplasm will develop various strategies to circumvent the action of the
immune system which allows the tumor to recommence growing [6, 21] into clini-
cally apparent tumors [12] and eventually reach its carrying capacity [21]. Outside
effects such as immuno-suppressive treatments or immuno-editing may move the
current state of the system (comprising cancer and immune cells) across the bound-
ary from a benign state (in the region of attraction of a microscopic equilibrium)
into a malignant state (in a region of uncontrolled growth or region of a attraction
of a malignant equilibrium). Overall, tumor-immune system interactions exhibit
a multitude of dynamic properties that include multi-stability, i.e., persistence of
both benign and malignant scenarios.

There exists a substantial literature on the mathematical description of tumor
and immune system interaction that has seen a strong resurgence due to our in-
creased understanding of the mechanisms of the immune system in connection with
AIDS (acquired immune deficiency syndrome) research, e.g., [2, 3, 11, 22, 29], to
mention just a small sample of more recent publications on this topic. Historically,
one of the earliest references on this topic is the 1980 paper by Stepanova [32] where
two ordinary differential equations are proposed that model the interactions between
tumor cell growth and the activities of the immune system during the development
of cancer. In this model, the main features of tumor-immune interactions are ag-
gregated into two principal variables, the tumor volume and immunocompetent cell
densities relating to the activities of various kind of T -cells. Precisely because of
its simplicity—a few parameters incorporate many medically important features—
the underlying equations have been widely accepted as a basic model. There exist
numerous extensions and generalizations of this model, most notably the one by
Kuznetsov, Makalkin, Taylor and Perelson who in [13] employ a logistic model for
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cancer growth and estimate parameters based on in vivo data of B-lymphoma BCL1

in the spleen of mice. In a paper by de Vladar and González [34], logistic growth
on cancer cells is replaced with a Gompertzian model. In all cases, the models ex-
hibit both stable microscopic (benign) and macroscopic (malignant) equilibria and
a comprehensive analysis of the dynamic behavior of the underlying systems and
its bifurcations is carried out in the respective papers. More recently, d’Onofrio
formulated and investigated a general class of models [19, 20] that incorporates all
these dynamical models. The analysis of these mathematical models all confirm the
following medical findings: while the immune system can be effective in the control
of small cancer volumes, for large volumes the cancer dynamics generally suppresses
the immune dynamics.

In this paper, we consider Stepanova’s model when a generalised logistic growth
model,

F (x) = ξ

(
1−

(
x

x∞

)ν)
, ν > 0,

with finite carrying capacity x∞ is employed to describe the growth of the tumor
volume p as ṗ = pF (p). The parameter ν in this model allows to differentiate the

rate of tumor growth: for small values of ν, the term
(

x
x∞

)ν
will be close to 1

and the model reflects a slowly growing tumor while tumor growth accelerates with
increasing values of ν reaching unrestricted exponential growth in the limit ν →∞.
In the other extreme, if the limit ν → 0 is taken with the growth coefficient ξ made
to depend on the parameter ν in the order of ξ = O( 1

ν ), a Gompertzian model
is obtained. The generalised logistic rate function F thus interpolates between
Gompertzian and exponential growth models with the parameter ν determining
the rate of tumor growth. For models of the tumor-vasculature dynamics it has
been argued by d’Onofrio, Gandolfi and Rocca [25] that models with ν < 1 more
realistically reflect a slowing down process of tumor proliferation as a response
to its changing environment. This also agrees with a mechanistic model for non-
immunogenic tumors as discussed by d’Onofrio in [23]. In the context of tumor
immune system interactions, which play a major role at the onset of the disease, it
would seem that all values of ν would appear reasonable, simply modeling different
rates of tumor growth lying between the extremes of Gompertzian and exponential
growth models.

For most of these models the dynamics is multi-stable and, except for small
values of ν, the system has both an asymptotically stable microscopic (benign)
and an asymptotically stable macroscopic (malignant) equilibrium point. Their
corresponding regions of attraction are separated by the stable manifold of a saddle.
We shall see that the coefficient ν (and thus ultimately the tumor growth rate)
directly relates to the size of the region of attraction of these equilibria. Indeed,
for small enough ν, there only exists one globally asymptotically stable equilibrium
which corresponds to a microscopic and thus benign equilibrium point. In this
sense, for very slow growing tumors, in the model the immune system is able to
control the disease. However, as ν increases, an unstable and a stable macroscopic
(malignant) equilibrium are born in a saddle-node bifurcation and the corresponding
malignant region of attraction increases in size with increasing tumor growth rate
converging to the region of attraction for the model with exponential growth in
the limit ν → ∞. From a practical point of view, the question of curing cancer
then is related to the mathematical problem of how to move an initial condition
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that lies in the malignant region into the benign region. This requires therapy and
can naturally be formulated and analyzed as an optimal control problem. In this
paper, we analyze the structure of singular controls and their optimality depending
on the parameter ν. It will be seen that the regions where singular controls can be
optimal shrink with increasing values ν and in the limit ν →∞ they no longer are
candidates for optimality for the exponential model.

2. Benign and malignant regions for Stepanova’s model with generalized
logistic growth. We retain Stepanova’s model for tumor immune system inter-
actions, but replace exponential growth for the tumor with a generalized logistic
growth model. Stepanova’s model has the advantage of being minimally parame-
terized while, nevertheless, rather accurately reflecting the main qualitative aspects
of tumor-immune interactions. Let x denote the tumor volume and suppose there
exists a fixed carrying capacity x∞ < ∞. Furthermore, let y denote the immuno-
competent cell densities, a non-dimensional, order of magnitude quantity related
to various types of immune cells (T -cells) activated during the immune reaction.
Stepanova’s model then takes the form

ẋ = µCx

(
1−

(
x

x∞

)ν)
− γxy (1)

ẏ = µI (1− βx)xy − δy + α (2)

with ν > 0 a parameter. The model is classical and we therefore only briefly
review its rationale and refer the reader to [16, 32] for a more detailed discussion.
Equation (2) summarizes the main features of the immune system’s reaction to
cancer. The coefficient α models a constant rate of influx of T-cells generated
through the primary organs and δ is simply the rate of natural death of T-cells.
The first term in this equation models the proliferation of lymphocytes. The fact
that small tumors stimulate the immune system while large tumors suppress it, is
expressed in the model through the inclusion of the factor (1 − βx) at the term
µIxy describing the effects of tumor immune interactions on the immune system.
The constant 1/β thus corresponds to a threshold beyond which the immunological
system becomes depressed by the growing tumor. Together, the coefficients µI and
β are used to calibrate these interactions. Similarly, in the first equation, (1), the
term γxy describes the elimination effects of the tumor-immune interactions on
the cancer volume. The difference between this model and the formulations used
by Kuznetsov et al. [13] and de Vladar and Gonzalez [34] is that we employ a
generalised logistic model for tumor growth.

In this section, we illustrate the changes in the equilibria and the associated
regions of attractions of the existing stable equilibria. We recall that for a dynamical
system ż = f(z) with a locally asymptotically stable equilibrium point x∗, its
region of attraction is defined as the set of all initial conditions z0 for which the
corresponding solution z(t;x0) of the initial value problem ż = f(z), z(0) = z0,
exists for all times t ≥ 0 and converges to z∗ as t → ∞. This set is always an
open and connected subset of the state space. By solving the equation ẋ = 0 for
y and substituting into the relation ẏ = 0, equilibria are solutions of the nonlinear
equation

µC

(
1−

(
x

x∞

)ν)(
µI
(
x− βx2

)
− δ
)

+ αγ = 0.
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Clearly, the analysis of solutions depends on the parameter values and in this paper
we only analyze this equation for the parameter values given in Table 1. These values
are non-dimensional on an order of magnitude scale. The values for α through δ
are taken from the paper by Kuznetsov et al. [13] and µI and µC were adjusted
to account for the different growth function. The tumor volume x is expressed in
terms of multiples of 106 cells and y is a dimensionless quantity that describes the
immuno-competent cell density as an order of magnitude relative to base value 1.

variable/
parameters interpretation numerical value Ref.

x tumor volume [32]
x0 initial value for x 600
y immuno-competent [32]

cell density
y0 initial value for y 0.10
α rate of influx 0.1181 [13]
β inverse threshold 0.00264 [13]

for tumor suppression
γ interaction rate 1 [13]
δ death rate 0.37451 [13]
µC tumor growth parameter 0.5599
µI tumor stimulated 0.00484

proliferation rate
x∞ fixed carrying capacity 780
κ chemotherapeutic 1

killing parameter

Table 1. Numerical values for the variables and parameters used
in computations.

Figure 1 shows the values of the equilibria as function of ν. The system under-
goes a saddle-node bifurcation for ν∗ = 0.40355. For ν < ν∗, there exists a unique
globally asymptotically stable equilibrium that corresponds to a microscopic (be-
nign) state. Medically this reflects a situation where the tumor growth is very small
and the reaction of the immune system is able to control the tumor. For ν > ν∗
the system is multi-stable. In this case, there always exist three equilibria, a locally
asymptotically stable focus (xb, yb) whose values are represented by the green curves
in Fig. 1, a saddle point (xs, ys) whose values are represented by the blue curves
in Fig. 1, and a locally asymptotically stable node (xm, ym) whose values are repre-
sented by the red curves in Fig. 1. For example, for classical logistic growth (ν = 1)
these values are given by (xb, yb) = (35.158, 0.537), (xs, ys) = (387.527, 0.283) and
(xm, ym) = (736.102, 0.032).

The focus (xb, yb) represents a benign equilibrium and we call its region of at-
traction the benign region while (xm, ym) represents a malignant equilibrium and
we call its region of attraction the malignant region. The benign and malignant
regions are separated by the stable manifold of the saddle (xs, ys) that forms the
common boundary of these regions (separatrix). These regions are illustrated for
the values ν = 1

2 , 1, 2, and 4 in Fig. 2. In each of the figures, the separatrix is shown

as a red curve and Fig. 3 gives the curve of saddle points for ν ∈ [ 12 , 4] with a stable
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Figure 1. Values of the equilibria of the uncontrolled system (1)
and (2) as a function of ν with the x-values shown on the top
and the y-values shown on the bottom. The values for the benign
equilibrium point are shown as the green curve, for the saddle as
the blue curve and for the malignant equilibrium point as the red
curve.

eigenvector indicated in the diagram for specific values. The phase portraits shown
in Fig. 2 show the decrease of the benign region at the expense of the malignant
regions as the parameter ν increases reflecting the fact that the immune system
becomes increasingly overwhelmed by a fast growing tumor.

3. Optimal chemotherapy with tumor-immune interactions. We now con-
sider the dynamics (1) and (2) under the action of a chemotherapeutic agent. Fol-
lowing standard cell-kinetic principles, the so-called log-kill hypothesis, we use a
linear pharmacodynamic model to describe the tumor loss, i.e., assume that the
elimination of tumor cells is proportional to the tumor volume x and the concen-
tration of the chemotherapeutic agent which we denote by u. We do not include a
cytotoxic effect of the chemotherapeutic agent on the immune system here. Clearly,
it exists, but the interactions are complex. They might be included as a separate
log-kill type term in the equation for ẏ, but could also be modeled through a factor
that reduces the constant influx α of T-cells. This term depends on the bone marrow
which is one of the main recipients of the negative side effects of chemotherapeutic
drugs. Essentially, in the model here we are assuming that these effects are small
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Figure 2. Phase portrait of the uncontrolled system (1) and (2)
for the values (a) ν = 1

2 , (b) ν = 1, (c) ν = 2, and (d) ν = 4.

350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y(
ν)

x(ν)

ν = 4

ν = 2

ν = 1

ν = 1/2

Figure 3. The curve of saddle points with a stable eigenvector
indicated for values 1

2 ≤ ν ≤ 4.
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and, in a first step, have neglected them. This can be considered a reasonable as-
sumption for strongly targeted chemotherapeutic drugs. For simplicity, we also do
not include a pharmacokinetic model and identify dose rates with concentrations. In
other papers, e.g., [14, 17], we have investigated the relationships of optimal controls
under augmentations of the system with standard linear pharmacokinetic models
and generally the changes in the optimal controls are minor so that we here consider
this simpler modeling approach. We normalize the maximum of the control values
to 1 and subsume all the coefficients describing the effectiveness of treatment and
accounting for possible heterogeneities in the composition of tumor cells (consisting
of sensitive and more resistant cells) in the coefficient κ in the pharmacodynamic
model. Thus, overall the controlled equations with treatment take the form

ẋ = µCx

(
1−

(
x

x∞

)ν)
− γxy − κxu, (3)

ẏ = µI
(
x− βx2

)
y − δy + α. (4)

Throughout the paper, we only consider M = {(x, y) : 0 < x < x∞, y > 0}, the
region of interest for the problem.

Proposition 1. The region M is positively invariant for the control system, i.e.,
given an arbitrary Lebesgue measurable function u : [0, T ] → [0, 1] defined over the
interval [0, T ], T ≤ ∞, the solution to the dynamics (3) and (4) exists on [0, T ] and
the corresponding trajectory x lies in M..

Proof. Since ẏ|y=0 = α > 0, it follows that the y-components of solutions cannot
cross y = 0 from positive to negative values. Since the initial condition y0 is positive,
the y-component of the solution is always positive. Furthermore, for any control
u, x = 0 is an equilibrium solution to equation (3) and ẋ|x=x∞ < 0. Thus the x-
component of the solution cannot leave the open interval (0, x∞). In particular, by
a standard argument of ODEs, this implies that solutions exist on all of [0, T ].

In principle, it is possible to eliminate the cancer through indefinite adminis-
tration of cytotoxic agents. Obviously, side effects of the drugs need to be taken
into account and this invalidates such a simplistic reasoning. This model does not
include a separate compartment of healthy cells to describe the side effects of treat-
ment and these are only indirectly measured through the total amounts of cytotoxic
drugs given. Essentially, under a log-kill hypothesis, the drugs kill healthy cells at

a proportional rate and thus the total amount of drugs given,
∫ T
0
u(t)dt, is used to

represent the side effects of treatment. The practical aim of therapy thus becomes
to move an initial state (x0, y0) of the system that lies in the malignant region of the
uncontrolled system into the region of attraction of the stable, benign equilibrium
point while keeping side effects tolerable. In an optimal control formulation, the
aim is to achieve this goal in an efficient and effective way.

Intuitively, such a transfer requires to minimize the cancer cells x while not de-
pleting the T -cell density y too strongly. The uncontrolled system is Morse-Smale [8]
and the separatrix between the benign and malignant regions is the stable manifold
of the saddle point. It generally is difficult to give explicit analytic expressions for
this manifold, but its tangent space is spanned by the stable eigenvector of the sad-
dle point and thus is easily computed and can serve as a reasonable approximation.
This motivates us to include in the objective a term of the form Ax(T ) − By(T )
where A and B are positive coefficients determined by the stable eigenvector v of
the saddle point (xs, ys), v = (B,A)T . Minimizing this quantity, whose level sets
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are lines parallel to the tangent space of the stable manifold of the saddle, creates
an incentive for the system to move across the separatrix into the benign region.
Furthermore, we keep the terminal time T in our problem formulation free and in
order to avoid trajectories that use zero controls over very long time horizons, we
also add a small penalty on the terminal time. It has been shown in [16] that the
existence of the asymptotically stable, benign equilibrium point generates controlled
trajectories that improve the value Ax(T )−By(T ) of the objective along the trivial
controls u = 0. These trajectories provide a “free pass” and, by taking a very long
time horizon, no minimum may exist in this case. The infimum arises as the control
switches to follow u = 0 when the controlled trajectory intersects the separatrix
(the red curves in the phaseportraits in Fig. 2), then follows the separatrix for an
infinite time to the saddle and then again leaves this saddle point along the unstable
manifold, once more taking an infinite time. This indeed would be the “optimal”
solution for this problem formulation, but it is not an admissible trajectory in our
system. For this reason, we include a penalty term on the final time as well. This
creates a well-posed mathematical problem for which the existence of solutions fol-
lows from standard theory. From a biological point of view, the addition of this
term induces optimal solutions to enter the benign region rather than taking an
infinite time with a smaller amount of agents. Clearly, it is not desirable for the
system to evolve along the boundary between benign and malignant tumor behav-
ior and it is the penalty term on the terminal time T that forces the system into
the benign region. In view of imprecise and mathematically unmodelled dynamics
and other random perturbations, from a system theoretic perspective, the addition
of this term provides desired robustness and stability properties for the underlying
real system.

Summarizing, we therefore consider the following optimal control problem in
Bolza form:

[OC]: for a free terminal time T , minimize the objective

J(u) = Ax(T )−By(T ) + C

∫ T

0

u(t)dt+ ST, (5)

over all Lebesgue measurable functions u : [0, T ] → [0, 1] subject to the dy-
namics (3) and (4),

ẋ = µCx

(
1−

(
x

x∞

)ν)
− γxy − κxu, x(0) = x0,

ẏ = µI
(
x− βx2

)
y − δy + α, y(0) = y0.

We emphasize that the coefficients in the objective (5) are variables of choice
and typically will be calibrated to tailor the response of the system. The choice of
the weights aims at striking a balance between the benefit at the terminal time T ,
Ax(T )−By(T ), and the overall side effects measured by the total amount of drugs
given, while it guarantees the existence of an optimal solution by also penalizing
the free terminal time T . The integrals of the dose rates model the side effects of
the therapies on the healthy tissue and clinical data as to the severity of the drugs
should be reflected in the choice for C. Naturally, the specific type of tumor, and
even the stage of cancer the patient has will enter into the choice and calibration of
these coefficients. In a more advanced stage, higher side effects need to be tolerated
and thus smaller values of C would need to be taken. Overall, the coefficients A,



796 URSZULA LEDZEWICZ, OMEIZA OLUMOYE AND HEINZ SCHÄTTLER

B, C and S are variables of choice that can be fine tuned to calibrate the system’s
optimal response.

Writing z = (x, y)T for the state of the system, we can express the dynamics in
the vector field form

ż = f(z) + ug(z) (6)

where

f(z) =

(
µCx

(
1−

(
x
x∞

)ν)
− γxy

µI
(
x− βx2

)
y − δy + α

)
and g(z) =

(
−κx

0

)
(7)

are the drift and control vector field, respectively. First-order necessary conditions
for optimality of a control u are given by the Pontryagin maximum principle ([30],
for some recent texts, see [4, 5, 31]): for λ0 ∈ R and a 2-dimensional row-vector
λ = (λ1, λ2), define the Hamiltonian H = H(λ0, λ, x, y, u) as

H = λ0 (Cu+ S) + λ1

(
µCx

(
1−

(
x

x∞

)ν)
− γxy − κxu

)
+λ2

(
µI
(
x− βx2

)
y − δy + α

)
, (8)

or, equivalently, in terms of the vector fields f and g, as

H = λ0S + 〈λ, f(z)〉+ u (λ0C + 〈λ, g(z)〉) . (9)

If u∗ is an optimal control defined over an interval [0, T ] with corresponding trajec-
tory z∗ = (x∗, y∗)

T , then there exist a constant λ0 ≥ 0 and an absolutely continuous
covector λ = (λ1, λ2), also defined on [0, T ], such that the following conditions hold:
(a) λ0 and λ(t) = (λ1(t), λ2(t)) do not vanish simultaneously, (b) λ1 and λ2 satisfy
the adjoint equations

λ̇1 = −∂H
∂x

= λ1

(
µC

(
−1 + (ν + 1)

(
x

x∞

)ν)
+ γy + uκ

)
− λ2µI (1− 2βx) y,

(10)

λ̇2 = −∂H
∂y

= λ1γx− λ2
(
µI
(
x− βx2

)
− δ
)
, (11)

with terminal conditions λ1(T ) = λ0A and λ2(T ) = −λ0B, and (c) for almost
every time t ∈ [0, T ], the optimal control u∗(t) minimizes the Hamiltonian H along
(λ0, λ(t), x∗(t), y∗(t)) over the control set [0, 1] with minimum value given by 0.

Since the Lagrangian, the integral term in the objective, does not depend on the
state variables x and y, the adjoint equations can be succinctly expressed in the
form

λ̇(t) = −λ(t) (Df(z∗(t)) + u∗(t)Dg(z∗(t))) (12)

where Df and Dg denote the matrices of the partial derivatives of the vector fields
f and g, respectively.

A controlled trajectory ((x, y), u), consisting of an admissible control u and cor-
responding solution (x, y) of the initial value problem (3) and (4), for which there
exist multipliers λ0 and λ such that the conditions of the maximum principle are
satisfied is called an extremal (pair) and the triple ((x, y), u, (λ0, λ)) is an extremal
lift (to the cotangent bundle). If the multiplier λ0 = 0, the extremal is called ab-
normal while it is called normal if λ0 > 0. In this case, by dividing by λ0, it is
always possible to normalize λ0 = 1. For our problem, it is easily seen that all
extremals are normal. For, if λ0 = 0, then the terminal conditions for the adjoint
equation are given by λ1(T ) = λ2(T ) = 0 and thus, as solutions of the homogeneous



CHEMOTHERAPY WITH GENERALIZED LOGISTIC GROWTH 797

linear differential equations (10) and (11), λ1(t) and λ2(t) vanish identically. But
this contradicts condition (a), the nontriviality of the multipliers. Thus extremals
are normal and henceforth we take λ0 = 1.

By condition (c), an optimal control u∗(t) minimizes the Hamiltonian H along
the extremal (λ(t), x∗(t), y∗(t)) over the control set [0, 1] a.e. on [0, T ]. Since H is
linear in the controls and the control set is an interval, this minimization is easily
carried out. Defining the switching function Φ for the control as

Φ(t) = C + 〈λ(t), g(z∗(t))〉 = C − λ1(t)κx∗(t), (13)

it follows that

u∗(t) =

{
0 if Φ(t) > 0,

1 if Φ(t) < 0.
(14)

We refer to the constant controls given by the values 0 and 1 as the bang controls.
The minimum condition itself does not determine the control at times τ when the
switching function vanishes, Φ(τ) = 0, but if the time-derivative Φ̇(τ) does not
vanish, then the control switches at τ between its extreme values 0 and 1 with the
order depending on the sign of Φ̇(τ). Thus also the name of bang-bang controls.
In the other extreme, if Φ(t) ≡ 0 on an open interval I, then all derivatives of Φ(t)
must vanish as well and typically this does allow to compute the control. Controls
of the second kind are called singular [4, 31]. Corresponding trajectories are called
singular arcs. Overall, optimal controls need to be synthesized from these classes
of candidates.

We analyze singular controls. The proposition below, which is verified with a
direct computation, provides a simple and efficient formalism for the computation
of these derivatives.

Proposition 2. Let z(·) be a solution of the dynamics (6) for the control u and
let λ be a solution of the corresponding adjoint equation (12). For a continuously
differentiable vector field h, let

Ψ(t) = 〈λ(t), h(z(t))〉 . (15)

Then the derivative of Ψ is then given by

Ψ̇(t) = 〈λ(t), [f + ug, h](z(t))〉 , (16)

where [k, h](z) = Dh(z)k(z)−Dk(z)h(z) denotes the Lie bracket of the vector fields
k and h. �

For example, since [k, k] ≡ 0 for any vector field k, the first two derivatives of
the switching functions Φ are given by

Φ̇(t) = 〈λ(t), [f, g](z∗(t))〉 (17)

and

Φ̈(t) = 〈λ(t), [f + u∗(t)g, [f, g]](z∗(t))〉 . (18)

A singular control is said to be of order 1 over an interval I if the quantity
〈λ(t), [g, [f, g]](z∗(t))〉 does vanish on I. In this case, we can formally solve for
the singular control using as

using(t) = −〈λ(t), [f, [f, g]](z∗(t))〉
〈λ(t), [g, [f, g]](z∗(t))〉

(19)
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and it is a high-order necessary condition for optimality, the so-called Legendre-
Clebsch condition, that

〈λ(t), [g, [f, g]](z∗(t))〉 < 0 for all t ∈ I. (20)

Direct computations verify that

[f, g](z) = κ

(
−µC

(
x
x∞

)ν
νx

µI
(
x− 2βx2

)
y

)
and [g, [f, g]](z) = κ2

(
µC

(
x
x∞

)ν
ν2x

µI
(
4βx2 − x

)
y

)
.

Analyzing these conditions, we obtain the following result:

Proposition 3. For the problem [OC], singular controls are of order 1 and the
Legendre-Clebsch condition is satisfied if and only if

ν <
1− 4βx∗(t)

1− 2βx∗(t)
. (21)

Proof. Suppose the control u∗ is singular over an open interval I. Then we have
Φ(t) ≡ 0 on I, i.e., λ1(t)κx∗(t) ≡ C > 0 and thus λ1 is positive along a singular

arc. Therefore the condition that Φ̇(t) ≡ 0 on I implies that

λ2(t)µI (1− 2βx∗(t)) y∗(t) ≡ λ1(t)µC

(
x∗(t)

x∞

)ν
ν > 0.

Evaluating the Legendre-Clebsch condition, and using this relation to eliminate the
multiplier λ2, we therefore obtain that

〈λ(t), [g, [f, g]](z∗(t))〉

= κ2
{
λ1(t)µC

(
x∗(t)

x∞

)ν
ν2x∗(t) + λ2(t)µI

(
4βx2∗(t)− x∗(t)

)
y∗(t)

}

= κ2λ1(t)x∗(t)

µC
(
x∗(t)

x∞

)ν
ν2 +

µC

(
x∗(t)
x∞

)ν
ν

1− 2βx∗(t)
(4βx∗(t)− 1)


= κ2λ1(t)µC

(
x∗(t)

x∞

)ν
νx∗(t)

{
ν − 1− 4βx∗(t)

1− 2βx∗(t)

}
. (22)

Since λ1(t) is positive along a singular arc, this implies that equation (20) holds if
and only if (21) is satisfied. �

This determines the following intervals along which an optimal control can be
singular dependent on the parameter ν.

Corollary 1. Suppose an optimal control u∗ is singular at time t. Then, we have
that

1. if 0 < ν < 1, we have either 0 ≤ βx∗(t) < 1
2
1−ν
2−ν <

1
4 or 1

2 < βx∗(t),

2. if 1 ≤ ν ≤ 2, then 1
2 < βx∗(t) and

3. if ν > 2, then 1
2 < βx∗(t) <

1
2
1−ν
2−ν . �

These relations readily follow from condition (21) and are illustrated in Figure
4. In the limiting case ν → 0 we obtain that the Legendre-Clebsch condition is
satisfied on the intervals [0, 14 ) ∪ ( 1

2 ,∞) and this agrees with the result obtained in
[16] for a Gompertzian growth function. As ν increases, these intervals continuously
shrink until, in the limit ν →∞, for exponential growth singular controls no longer
are optimal.
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β x
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Figure 4. The highlighted region represents the intervals (hor-
izontally, for fixed value of ν and scaled as βx) on which the
Legendre-Clebsch condition for minimality of singular arcs is sat-
isfied

We now compute the singular control and singular arcs. Along a singular control
we have that Φ = C + 〈λ, g(z∗)〉 ≡ 0, Φ̇ = 〈λ, [f, g](z∗)〉 ≡ 0 and also H = S +
〈λ, f(z∗)〉 + uΦ ≡ 0. It thus follows that the multiplier λ(t) vanishes against both
the vector fields Sg − Cf and [f, g] along a singular arc. Since λ is nonzero (as
nontrivial solution to a homogeneous linear ODE), it follows that singular arcs can
only lie in the set S where Sg − Cf and [f, g] are linearly dependent,

S = {z ∈M : det (Cf(z)− Sg(z), [f, g](z)) = 0} . (23)

This leads to the relation

det

(
C
[
µC

(
1−

(
x
x∞

)ν)
− γy

]
+ Sκ −µC

(
x
x∞

)ν
ν

C
[
µI
(
x− βx2

)
y − δy + α

]
µI
(
x− 2βx2

)
y

)
= 0

which takes the form

Q(x, y) = a0(x) + a1(x)y + a2(x)y2 = 0

where

a0(x) = CµCαν

(
x

x∞

)ν
> 0 and a2(x) = CµIγ (2βx− 1)x.

In the region where βx > 1
2 , the coefficient a2(x) is positive and thus, for a given

value of x, there exist 0, 1 or 2 solutions y = ysing(x) that define possible singular
arcs. On the other hand, a2(x) is negative for βx < 1

4 and in this case there always
exists a unique solution y = ysing(x) for the singular arc. Generally, singular arcs
are defined through this relation as function of x. The associated singular control
is the defined in equation (19) and it is admissible if its values lie in the interval
[0, 1].
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4. Conclusion and discussion. Following the approach introduced in [15] and
[16], in this paper we analyzed tumor-immune interactions under chemotherapy
with a targeted agent for Stepanova’s model with a generalized logistic rate function

F (x) = µC

(
1−

(
x
x∞

)ν)
, ν > 0. The parameter ν in the model allows to differ-

entiate the tumor growth rate with Gompertzian and exponential models forming
the limiting cases. For a specific set of parameters, we analyzed the multi-stability
of the underlying system leading to both benign and malignant regions of dynamic
behavior and then, for the general model, investigated the optimal control problem
of transferring an initial condition that lies in the malignant region into the benign
region under chemotherapy. Our results about optimal singular controls for the gen-
eralized logistic growth provide a natural interpolation between the Gompertzian
and exponential models and, together with our previous results in [16], suggest that
singular controls, which administer agents at less than maximum dose, may play
an essential part of optimal solutions in phases when the tumor is growing slowly,
but will be replaced with bang-bang structures which correspond to the traditional
maximum tolerated dose (MTD) approaches it tumor growth is fast.

From a practical side, this indicates the use of partial lower doses, maybe even a
metronomic scheduling, for slowly growing tumors. In such a treatment approach,
chemotherapy essentially is given at low concentrations over prolonged periods with-
out any major interruptions. As more aspects of the tumor microenvironment
are taken into account, antiangiogenic and/or immunostimulatory effects that such
schedules exhibit (e.g., see [27, 35]) have been suggested as possible mechanisms
that would explain the effectiveness of such therapy schedules in some cases (e.g.,
[28]). In the context of angiogenic signaling, theoretical evidence also points to the
optimality of such schedules [9] as well as to a metronomic scheduling of antiangio-
genic agents [25]. Generally, because of the ubiquity of immunoediting, it would
be important to also consider the evolution of the tumor-immune system dynam-
ics over time [1, 24], but this requires further modeling efforts. In this paper, a
stationary point of view (represented by the coefficient ν) was taken.
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