Research article Special Issues

Simultaneous confidence intervals for all pairwise differences of coefficients of variation of zero-inflated Birnbaum–Saunders distributions

  • Published: 09 February 2026
  • MSC : 62F25, 62P12

  • The data used for the analysis were collected from multiple regions or years. Evaluating each region or year separately may be insufficient for drawing comprehensive inferences and may fail to reveal statistically significant differences. To ensure the reliability of the analysis and to enable overall conclusions, it is necessary to apply a statistical method known as simultaneous confidence intervals. This technique enables the simultaneous construction of confidence intervals for multiple parameters. Therefore, we proposed and evaluated methods for constructing simultaneous confidence intervals for all pairwise differences between the coefficients of variation in zero-inflated Birnbaum-Saunders distributions. The methods utilized for constructing simultaneous confidence intervals comprise the generalized confidence interval (GCI), the bootstrap confidence interval (BCI), the method of variance estimates recovery (MOVER), the MOVER based on GCI, the MOVER based on BCI, the Bayesian credible interval, and the highest posterior density interval (HPD). Monte Carlo simulations were employed to evaluate the performance of each method, which involved the assessment of coverage probabilities and average widths under a set of parameter configurations and sample sizes. The generalized confidence interval method was the most efficient overall, as indicated by the simulation results. Finally, all proposed methods were applied to real-world wind speed data to examine their practical applicability and to demonstrate the consistency of the results between the simulation study and real-world applications.

    Citation: Usanee Janthasuwan, Suparat Niwitpong, Sa-Aat Niwitpong. Simultaneous confidence intervals for all pairwise differences of coefficients of variation of zero-inflated Birnbaum–Saunders distributions[J]. AIMS Mathematics, 2026, 11(2): 4043-4067. doi: 10.3934/math.2026162

    Related Papers:

  • The data used for the analysis were collected from multiple regions or years. Evaluating each region or year separately may be insufficient for drawing comprehensive inferences and may fail to reveal statistically significant differences. To ensure the reliability of the analysis and to enable overall conclusions, it is necessary to apply a statistical method known as simultaneous confidence intervals. This technique enables the simultaneous construction of confidence intervals for multiple parameters. Therefore, we proposed and evaluated methods for constructing simultaneous confidence intervals for all pairwise differences between the coefficients of variation in zero-inflated Birnbaum-Saunders distributions. The methods utilized for constructing simultaneous confidence intervals comprise the generalized confidence interval (GCI), the bootstrap confidence interval (BCI), the method of variance estimates recovery (MOVER), the MOVER based on GCI, the MOVER based on BCI, the Bayesian credible interval, and the highest posterior density interval (HPD). Monte Carlo simulations were employed to evaluate the performance of each method, which involved the assessment of coverage probabilities and average widths under a set of parameter configurations and sample sizes. The generalized confidence interval method was the most efficient overall, as indicated by the simulation results. Finally, all proposed methods were applied to real-world wind speed data to examine their practical applicability and to demonstrate the consistency of the results between the simulation study and real-world applications.



    加载中


    [1] K. Mohammadi, O. Alavi, J. G. McGowan, Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review, Energ. Convers. Manage., 143 (2017), 109–122. https://doi.org/10.1016/j.enconman.2017.03.083 doi: 10.1016/j.enconman.2017.03.083
    [2] N. Ratasukharom, S. A. Niwitpong, S. Niwitpong, Confidence interval estimation for the mean of zero-inflated Birnbaum–Saunders distribution, Lobachevskii J. Math., 44 (2023), 5364–5383. https://doi.org/10.1134/S1995080223120272 doi: 10.1134/S1995080223120272
    [3] N. Ratasukharom, S. A. Niwitpong, S. Niwitpong, Estimation methods for the variance of Birnbaum-Saunders distribution containing zero values with application to wind speed data in Thailand, PeerJ, 12 (2024), e18272. https://doi.org/10.7717/peerj.18272 doi: 10.7717/peerj.18272
    [4] U. Janthasuwan, S. Niwitpong, S. A. Niwitpong, Confidence intervals for coefficient of variation of Delta-Birnbaum-Saunders distribution with application to wind speed data. AIMS Math., 9 (2024), 34248–34269. https://doi.org/10.3934/math.20241631 doi: 10.3934/math.20241631
    [5] W. Thangjai, S. A. Niwitpong, S. Niwitpong, R. Somkhuean, Confidence intervals for function of percentiles of Birnbaum-Saunders distributions containing zero values with application to wind speed modelling, Modelling, 6 (2025), 16. https://doi.org/10.3390/modelling6010016 doi: 10.3390/modelling6010016
    [6] J. Li, W. Song, J. Shi, Parametric bootstrap simultaneous confidence intervals for differences of means from several two-parameter exponential distributions, Stat. Probab. Lett., 106 (2015), 39–45. https://doi.org/10.1016/j.spl.2015.07.002 doi: 10.1016/j.spl.2015.07.002
    [7] W. Thangjai, S. A. Niwitpong, S. Niwitpong, Simultaneous confidence intervals for all differences of means of normal distributions with unknown coefficients of variation, In Predictive Econometrics and Big Data TES2018, 753 (2018), 670–682. https://doi.org/10.1007/978-3-319-70942-0_48
    [8] A. Malekzadeh, M. Kharrati-Kopaei, Simultaneous confidence intervals for the quantile differences of several two-parameter exponential distributions under the progressive type Ⅱ censoring scheme, J. Stat. Comput. Simul., 90 (2020), 2037–2056. https://doi.org/10.1080/00949655.2020.1762084 doi: 10.1080/00949655.2020.1762084
    [9] W. Puggard, S. A. Niwitpong, S. Niwitpong, Simultaneous confidence intervals for all pairwise differences between the coefficients of variation of multiple birnbaum–saunders distributions, Symmetry, 14 (2022), 2666. https://doi.org/10.3390/sym14122666 doi: 10.3390/sym14122666
    [10] P. Ren, G. Liu, X. Pu, Simultaneous confidence intervals for mean differences of multiple zero-inflated gamma distributions with applications to precipitation, Commun. Stat. Simul. Comput., 52 (2023), 4705–4716. https://doi.org/10.1080/03610918.2021.1966466 doi: 10.1080/03610918.2021.1966466
    [11] Shechtman, O. The coefficient of variation as an index of measurement reliability, In Methods of clinical epidemiology, Springer Berlin Heidelberg, 2013, 39–49. https://doi.org/10.1007/978-3-642-37131-8_4
    [12] J. G. D'Cunha, K. A. Rao, Bayesian inference for volatility of stock prices, J. Mod. Appl. Stat. Methods., 13 (2014), 29. https://doi.org/10.22237/jmasm/1414816080 doi: 10.22237/jmasm/1414816080
    [13] Z. Jalilibal, A. Amiri, P. Castagliola, M. B. Khoo, Monitoring the coefficient of variation: A literature review, Comput. Ind. Eng., 161 (2021), 107600. https://doi.org/10.1016/j.cie.2021.107600 doi: 10.1016/j.cie.2021.107600
    [14] J. Aitchison, On the distribution of a positive random variable having a discrete probability mass at the origin, J. Am. Stat. Assoc., 50 (1955), 901–908. https://doi.org/10.1080/01621459.1955.10501976 doi: 10.1080/01621459.1955.10501976
    [15] H. K. T. Ng, D. Kundu, N. Balakrishnan, Modified moment estimation for the two-parameter Birnbaum–Saunders distribution, Comput. Stat. Data Anal., 43 (2003), 283–298. https://doi.org/10.1016/S0167-9473(02)00254-2 doi: 10.1016/S0167-9473(02)00254-2
    [16] S. Weerahandi, Generalized confidence intervals, J. Am. Stat. Assoc., 88 (1993), 899–905. https://doi.org/10.1080/01621459.1993.10476355 doi: 10.1080/01621459.1993.10476355
    [17] Z. I. Sun, The confidence intervals for the scale parameter of the Birnbaum-Saunders fatigue life distribution, Acta Armamentarii, 30 (2009), 1558.
    [18] B. X. Wang, Generalized interval estimation for the Birnbaum–Saunders distribution, Comput. Stat. Data Anal., 56 (2012), 4320–4326. https://doi.org/10.1016/j.csda.2012.03.023 doi: 10.1016/j.csda.2012.03.023
    [19] W. H. Wu, H. N. Hsieh, Generalized confidence interval estimation for the mean of delta-lognormal distribution: an application to New Zealand trawl survey data, J. Appl. Stat., 41 (2014), 1471–1485. https://doi.org/10.1080/02664763.2014.881780 doi: 10.1080/02664763.2014.881780
    [20] B. Efron, Bootstrap methods: Another look at the jackknife, Ann. Statist., 7 (1979), 1–26. https://doi.org/10.1214/aos/1176344552 doi: 10.1214/aos/1176344552
    [21] A. J. Lemonte, A. B. Simas, F. Cribari-Neto, Bootstrap-based improved estimators for the two-parameter Birnbaum–Saunders distribution, J. Stat. Comput. Simul., 78 (2008), 37–49. https://doi.org/10.1080/10629360600903882 doi: 10.1080/10629360600903882
    [22] J. G. MacKinnon, A. A. Smith Jr, Approximate bias correction in econometrics, J. Econom., 85 (1998), 205–230. https://doi.org/10.1016/S0304-4076(97)00099-7 doi: 10.1016/S0304-4076(97)00099-7
    [23] L. D. Brown, T. T. Cai, A. DasGupta, Interval estimation for a binomial proportion, Stat. Sci., 16 (2001), 101–133. https://doi.org/10.1214/ss/1009213286 doi: 10.1214/ss/1009213286
    [24] G. Y. Zou, A. Donner, Construction of confidence limits about effect measures: A general approach, Stat. Med., 27 (2008), 1693–1702. https://doi.org/10.1002/sim.3095 doi: 10.1002/sim.3095
    [25] M. Wang, X. Sun, C. Park, Bayesian analysis of Birnbaum–Saunders distribution via the generalized ratio-of-uniforms method, Comput. Stat., 31 (2016), 207–225. https://doi.org/10.1007/s00180-015-0629-z doi: 10.1007/s00180-015-0629-z
    [26] J. C. Wakefield, A. E. Gelfand, A. F. Smith, Efficient generation of random variates via the ratio-of-uniforms method, Comput. Stat., 1 (1991), 129–133. https://doi.org/10.1007/BF01889987 doi: 10.1007/BF01889987
    [27] P. Congdon, Bayesian statistical modeling, Wiley: Chichester, 2001.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(79) PDF downloads(10) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog